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Abstract— We consider the problem of stabilizing a swarm

of agents to a target probability distribution among a set of

states, given that the agents’ states evolve according to an

interacting system of continuous time Markov chains (CTMCs).

We construct a class of density-feedback laws, i.e., control

laws that are functions of the swarm population density, that

achieve this objective provided that the graph associated with

the CTMCs is strongly connected. To execute these control

laws, each agent only requires information on the population

fraction of agents that are in its current state. Additionally, the

control laws ensure that there are no state transitions by agents

at equilibrium, which is a known drawback of stabilization

using time- and density-independent control laws. We guarantee

global asymptotic stability of the equilibrium distribution by

analyzing the corresponding mean-field model. The fact that

any probability distribution can be globally stabilized is a

significant extension of previous mean-field based approaches

that control swarms of agents using time-invariant control laws,

which require the equilibrium distribution to have a strongly

connected support. To admit feedback laws that take values

only on a discrete set, we consider control laws that can be

discontinuous functions of the agent densities. We validate the

control laws using stochastic simulations of the CTMC model

and numerical simulations of the mean-field model.

I. INTRODUCTION

We address the problem of distributing a swarm of agents

among a set of states to achieve a target density in each

state, some of which may be zero, given that each agent

has only local information on the density of agents in its

current state. This problem has applications in multi-robot

coverage, in which the states represent spatial regions that

require different robot occupancy levels, and task allocation,

in which each state is a task that a certain number of agents

must perform. We expand upon our recent work in [7], [6]

on designing density-dependent transition rates of a swarm

of agents whose states evolve according to a continuous

time Markov chain (CTMC), such that the swarm converges

to a target probability distribution. In these works, we use

the corresponding mean-field model to design control inputs

(the transition rates) that stabilize the swarm to the target

distribution. Various mean-field based approaches to analysis

and control of robotic swarms have been developed in recent

years, e.g. [4], [1], [13], [15], [10]. An advantage of this

control approach over alternative well-established techniques

for multi-agent control [16], [5] is its scalability to very large
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agent populations, due to the fact that the mean-field model

is independent of the number of agents.

In this paper, we extend our previous results on density

feedback-based stabilization [7], [6] to the more general

case in which agents are not required in some states at

equilibrium. In this case, the target distribution has a dis-
connected support, meaning that the underlying subgraph

induced by the vertices that are associated with positive target

densities is disconnected. Stabilization of target distributions

with disconnected supports is not possible using time- and

density-independent control laws. If a desired distribution

with disconnected support is a stationary distribution of a

CTMC for a given set of time- and density-independent

transition rates, then multiple other stationary distributions

can be constructed from the disconnected components of the

support of the desired distribution, thus obstructing global

stability of this distribution. Hence, it has not been clear in

previous works whether distributions with disconnected or

weakly connected supports can be stabilized using density

feedback laws. Recently, in [7], we established a result

on asymptotic controllability of the forward equation of a

CTMC. This result implies the existence of a centralized

density feedback law that stabilizes the forward equation to

any target probability distribution. However, decentralized
control laws enable a scalable control architecture for multi-

agent applications, and therefore the question of whether

such control laws can be constructed to stabilize distributions

with disconnected supports is important to consider.

To bridge this gap, we propose a general class of decentral-

ized control laws that can globally asymptotically stabilize

any probability distribution. These feedback laws require

each agent to know the density of agents only in its current

state, and thus rely only on information that can be locally ac-

quired. The works [11], [14] also propose density-dependent

feedback laws to address the swarm redistribution problem

that we consider. However, the feedback laws in [11], which

are implemented using a quorum-sensing approach, stabilize

a swarm only to positive target distributions, with a nonzero

desired agent density in each state. In addition, while the

control laws in [11] are designed to yield a low rate of agent

transitions between states at equilibrium, the transitions do

not stop completely since the equilibrium control inputs are

nonzero. The control laws in [14], like the ones that we

propose in [7], [6], do take zero value at equilibrium, but are

only applicable for positive target distributions. Moreover,

due to the positivity constraints on the control inputs, the

density feedback laws in [14], [7], [6] are applicable only

when the graph associated with the CTMC is bidirected and



connected. In this paper, we only assume that the graph

associated with the CTMC is strongly connected. We justify

our stability analysis by proving convergence of the sample

paths of the N -agent stochastic process to Filippov solutions
of the associated mean-field model.

II. NOTATION

We first define some notation that will be used to formally

state the problems addressed in this paper. We will use

the following definitions from graph theory. We denote by

G = (V, E) a directed graph with a set of M vertices,

V = {1, ...,M}, and a set of NE edges, E ⇢ V ⇥ V , where

e = (i, j) 2 E if there is an edge from vertex i 2 V to vertex

j 2 V . We define a source map S : E ! V and a target map

T : E ! V for which S(e) = i and T (e) = j whenever

e = (i, j) 2 E . There is a directed path of length s from a

vertex i 2 V to a vertex j 2 V if there exists a sequence

of edges {ei}si=1

in E such that S(e

1

) = i, T (es) = j,

and S(ek) = T (ek�1

) for all 2  k < s. A directed graph

G = (V, E) is called strongly connected if for every pair

of distinct vertices v

0

, vT 2 V , there exists a directed path
of edges in E connecting v

0

to vT . We will assume that

(i, i) /2 E for all i 2 V . We will denote the set of outgoing

edges from a vertex v 2 V by N out

(v). The set of incoming

edges to a vertex v 2 V will be denoted by N in

(v).

Given a vector x 2 RM
, xi will refer to the i

th
coordinate

value of x. The 2-norm of the vector x 2 RM
will be denoted

by kxk =

pP
i x

2

i . For a matrix A 2 RM⇥N
, A

ij
will refer

to the element in the i

th
row and j

th
column of A.

We will also need some basic notions from set-valued

analysis [2]. We will use F : X ◆ Y to denote a set-valued
map, i.e., a map F from a metric space X to the power set

of a metric space Y . Let BX(x, ⌘) denote the open ball with

center x 2 X and radius ⌘ > 0. Then the set-valued map F
will be called upper semi-continuous at x 2 X if and only

if for any neighborhood U of F(x), there exists ⌘ > 0 such

that for all x0 2 BX(x, ⌘), F(x0
) ⇢ U . If A is a subset

of RM
, we define the distance between a point x 2 RM

and the set A using the notation dist(x, A) = inf

y2A
kx� yk.

The notation c̄o A will denote the convex closure of the

set A in X . The notation c̄o F will denote the set-valued

map that is defined by setting (c̄o F)(x) = c̄o F(x) for

all x 2 X . A function f : R ! RM
is said to be

absolutely continuous if 8✏ > 0, there exists � > 0 such that

for any finite set of disjoint intervals (a

1

, b

1

), ..., (aN , bN ),PN
j=1

(bj � aj) < � =)
PN

j=1

kf(bj) � f(aj)k < ✏.

More generally, f is said to be absolutely continuous on [a, b]

if this condition is satisfied whenever the intervals (aj , bj),

j = 1, ..., N , all lie in [a, b].

III. PROBLEM FORMULATION

There are N autonomous agents whose states evolve in

continuous time according to a Markov chain with finite

state space V . For example, the vertices in V can represent

a set of spatial locations obtained by partitioning the agents’

environment. The edge set E defines the pairs of vertices

between which the agents can transition. We will assume

that the graph G = (V, E) is strongly connected. The agents’

transition rules are determined by the control parameters

ue : [0,1) ! R
+

for each e 2 E , and are known as the

transition rates of the associated CTMC. The state of each

agent i 2 {1, ..., N} is defined by a stochastic process Xi(t)

that evolves on the state space V according to the conditional

probabilities

P(Xi(t+ h) = T (e)|Xi(t) = S(e)) = ue(t)h+ o(h) (1)

for each e 2 E . Here, o(h) is the little-oh symbol and P
is the underlying probability measure induced on the space

of events ⌦ by the stochastic processes {Xi(t)}Ni=1

. Let

P(V) = {y 2 RM
�0

;

P
v yv = 1} be the simplex of probabil-

ity densities on V . Corresponding to the CTMC is a system

of ordinary differential equations (ODEs) which determines

the evolution of the probability densities P(Xi(t) = v) =

xv(t) 2 R�0

. When {Xi}Ni=1

are independent and identi-

cally distributed random variables, the Kolmogorov forward
equation can be represented by a single linear system of

ODEs,

˙x(t) =

X

e2E
ue(t)Bex(t), t 2 [0,1), (2)

x(0) = x0 2 P(V),

where Be are control matrices whose entries are given by

B

ij
e =

8
><

>:

�1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.

We will consider a feedback stabilization problem for the

system (2). Consider the following system,

˙x(t) =

X

e2E
ke(xS(e)(t))Bex(t), t 2 [0,1), (3)

x(0) = x0 2 P(V).

Problem III.1. Given xeq 2 P(V) and u

max

> 0, determine
if there exists a local feedback law ke : [0, 1] ! [0, u

max

],
with ke(x

eq
S(e)) = 0 for each e 2 E , such that xeq is

asymptotically stable for the closed-loop system (3).

Note that since the control laws ke are functions of the

agent densities xS(e) in the states S(e), the random variables

Xi are not independent. Hence, the time evolution of the

probability distributions of the random variables {Xi}Ni=1

cannot be described exactly by the ODE (3). To justify our

stability analysis using the ODE (3), we will need to invoke

the mean-field hypothesis by taking N ! 1 [8], [12]. We

elaborate on this issue in Section V.

IV. ANALYSIS

To address Problem III.1, we define a general class of

control laws under which the resulting closed-loop system

(3) will have the desired probability distribution as a globally

asymptotically stable equilibrium point.



Define ke : [0, 1] ! [0, u

max

] as

ke(y) =

(
ce(y � x

eq
S(e)) if y > x

eq
S(e)

0 otherwise

(4)

where ce : [0, 1 � x

eq
S(e)] ! [0, u

max

] is a positive-valued

function for each e 2 E , and u

max

> 0 is the upper bound

on the transition rate parameters. For each e 2 E , we make

the following assumptions on the function ce:

1) The inequality ce(y) > 0 is satisfied for all y 2 (0, 1�
x

eq
S(e)].

2) The function ce is non-decreasing on [0, 1� x

eq
S(e)].

3) The function ce is locally Lipschitz continuous at every

point in [0, 1 � x

eq
S(e)], except for a finite number of

points, and right-continuous with left limits at every

point in [0, 1� x

eq
S(e)].

4) The set of points in [0, 1 � x

eq
S(e)] at which ce is

discontinuous is finite.

5) If ce
1

(0) > 0 for some e

1

2 E , then ce
2

(0) > 0 for all

e

2

2 E such that S(e

1

) = S(e

2

).

Due to the above assumptions on the functions ce, the

right-hand side of the ODE (3) can be discontinuous. Hence,

the classical solution of the ODE (3) might not exist in

general. Therefore, we will consider a generalized notion

of solutions using Filippov’s theory for ODEs with discon-

tinuous right-hand sides [9]. Toward this end, we define

the set-valued map F : P(V) ◆ RM
, also known as

the Krasovskii regularization of the vector field f(x) =P
e2E ke(xS(e))Bex, as:

F(x) = \�>0

c̄o {f(y) : y 2 RM
& kx� yk  �} (5)

for all x 2 P(V). We will also need the set-valued map

˜F : P(V) ◆ RM
defined by

˜F(x) =
�
lim

j!1
f(xj

) : lim

j!1
xj ! x & lim

j!1
f(xj

) exists

 

(6)

for all x 2 P(V). Then

˜F and F = c̄o

˜F are upper-

semicontinuous, closed, and bounded at each x 2 P(V)
[9][Lemma 1, Pg. 67]. Let L = {+,�}M . With each ` 2 L,

we associate the set-valued map

˜F` : P(V) ◆ RM
,

˜F`(x) =
�
f`(x)

 
=

⇢X

e2E
k

`S(e)
e (xS(e))Bex

�
(7)

for all x 2 P(V), where k

+

e (y) and k

�
e (y) denote the right

limit and left limit, respectively, of ke(y) at y 2 [0, 1]. Since

the function ke accepts xS(e) as its argument, the directional

limits of the vector field f at x 2 P(V) are determined

completely by the right and left limits of the function ke at

xS(e). Moreover, due to the assumption of right-continuity of

the functions ce at every x 2 [0, 1�x

eq
S(e)], we can infer that

˜F(x) = [`2L ˜F`(x) for all x 2 P(V). From the definition

of the set-valued map F, it follows that F(x) is convex for

all x 2 P(V). Note that P(V) is a convex and closed set.

Whenever the limits lim

j!1
xj ! x and lim

j!1
f(xj

) exist for

some x 2 P(V) and sequence {xj} in P(V), lim

j!1
f(xj

) lies

in T

x

P(V), the tangent space of P(V) at x,

T

x

P(V) =
⇢
y 2 RM

:

X

v2V
yv = 0 & yw � 0 (8)

whenever xw = 0 for w 2 V
�
.

This leads to the following observation.

Proposition IV.1. Let F be the set-valued map defined in
Equation (5). Then,

F(x) = \�>0

c̄o {f(y) : y 2 P(V) & kx� yk  �}
= c̄o { lim

h!0

+

f(x+ hy) : y 2 T

x

P(V)}

for all x 2 P(V).

For a given T > 0, a generalized solution or simply

solution of the ODE (3) will refer to an absolutely contin-

uous function x : [0, T ] ! RM
such that the following

Differential Inclusion (DI) is satisfied,

˙x(t) 2 F(x(t)), (9)

for almost every (a.e.) t 2 [0, T ] and x(0) = x0

. We will

be interested only in those solutions x(t) that are viable in

P(V), meaning that x(t) 2 P(V) for all t � 0. In the context

of this paper, only viable solutions are physically meaningful

since the density of agents in any state (vertex) cannot be

negative. Hence, we will first establish that for a given x0 2
P(V), at least one global viable solution of the system (9)

(and hence a generalized solution of system (3)) exists.

Theorem IV.2. (Viability) Given x0 2 P(V), there exists at
least one global viable solution of the system (3).

Proof. We define the contingent cone [2] of the set P(V) at

a point z 2 P(V) as

T�(z) =

⇢
y 2 RM

: lim inf

h!0

+

dist(z+ hy,P(V))
h

= 0

�
.

(10)

Then we know that T�(z) = T

z

P(V) for all z 2 P(V)
[2][Lemma 4.2.4]. Moreover, F is upper-semicontinuous,

closed, and compact-valued, and it is defined on a closed

domain P(V). From Proposition IV.1, it follows that F(z) ⇢
T�(z) for all z 2 P(V). Hence, it follows from the Local
Viability Theorem [2][Theorem 10.1.4] that there exists a

solution x : [0, tf ] ! P(V) of the DI (9) that is viable

in P(V) for some tf > 0, i.e., a local viable solution exists.

Since F(z) is uniformly bounded for all z 2 P(V) and P(V)
is a compact subset of RM

, we can take tf = 1 [2][Theorem

10.1.4], and hence x(t) can be extended to a global viable

solution.

In the following theorem, we note that the derivative of

any solution of the DI (9) can be expressed as a convex

combination of elements in F (x(t)) for a.e. t � 0 and

that this representation can be constructed using measurable

functions. The theorem and its proof are minor modifications



of the statement and proof of the Carathéodory representa-
tion theorem [2][Theorem 8.2.15], and are adapted for our

purposes.

Lemma IV.3. Let x : [0,1) ! P(V) be a global viable
solution of the DI (9). Then there exist measurable functions
�

+

v : [0,1) ! R�0

, ��
v : [0,1) ! R�0

for each v 2 V
such that

˙x(t) =
X

e2E
�

+

S(e)(t)k
+

e (xS(e)(t))Bex(t)

+

X

e2E
�

�
S(e)(t)k

�
e (xS(e)(t))Bex(t)

and X

v2V
�

+

v (t) +

X

v2V
�

�
v (t) = 1 (11)

for a.e. t 2 [0,1).

Proof. Suppose that x : [0,1) ! P(V) is a solution of the

DI (9). We define the set Q = {y 2 R2

M

�0

:

P
2

M

i=1

yi = 1}.

Let I : {1, ..., 2M} ! {+,�}M be a bijective map, i.e., an

ordering on {+,�}M . Then consider the map h : R2

M

�0

⇥
(RM

)

2

M ! RM
defined by

h(�

1

, ..., �

2

M ,y
1

, ...,y
2

M ) =

2

MX

i=1

�iyi (12)

and the measurable set-valued map H : [0,1) ◆ R2

M

�0

⇥
(RM

)

2

M

defined by

H(t) = Q⇥ F̃I(1)(x(t))⇥ ...⇥ F̃I(2M )

(x(t)) (13)

for all t 2 [0,1). We recall that F(x(t)) = c̄o

˜F(x(t)) =
[`2L ˜F`(x(t)) for all t 2 [0,1). Hence,

˙x(t) 2 g(t,H(t))

for a.e. t 2 [0,1), where g(t, z) = h(z) for all

z = (�

1

, ..., �

2

M ,y
1

, ...,y
2

M )

T 2 R2

M

�0

⇥ (RM
)

2

M

.

The map g(t, z) is a Carathéodory map, i.e., for every

t 2 [0,1) the map z 7! g(t, z) is continuous and

for every z 2 R2

M

�0

⇥ (RM
)

2

M

the map t 7! g(t, z)
is measurable. Then it follows from the Inverse image
theorem [2][Theorem 8.2.9] that there exists a measur-

able map t 7! (�

1

(t), ..., �

2

M (t),y
1

(t), ...,y
2

M (t))

T
such

that

˙x(t) = g(t, (�

1

(t), ..., �

2

M (t),y
1

(t), ...,y
2

M (t))

T
) =

h(�

1

(t), ..., �

2

M (t),y
1

(t), ...,y
2

M (t)) for a.e. t 2 [0,1).

From this the result follows.

Remark IV.4. Henceforth, in the following results, when we
refer to the functions �+

v : [0,1) ! R
+

, ��
v : [0,1) ! R

+

for v 2 V , we will mean measurable functions such that
equation (11) in Lemma IV.3 is satisfied for a given solution
x(t) of the DI (9).

In the following lemma, we establish some monotonicity

properties of the solutions of the DI (9). Particularly, if the

agent density in a given state is below the desired value

over a certain time interval, then it is non-decreasing since

the outflow of agents from the state is zero over that time

interval. This lemma lies at the heart of the proof of the main

stability theorem (Theorem IV.8).

Lemma IV.5. Suppose that x : [0, T ] ! P(V) is a local
viable solution of the DI (9) for a given T > 0, and that
xv(t) < x

eq
v for all t 2 [0, T ]. Then xv(t) is non-decreasing

over the time interval [0, T ].

Proof. Let x : [0, T ] ! P(V) be a local viable solution of

the DI (9). Then xv(t) is differentiable almost everywhere

on t 2 [0, T ]. Suppose ẋv(s) exists for some s 2 [0, T ].

Note that k

+

e (xv(t)) = k

�
e (xv(t)) = 0 for all t 2 [0, T ]

and for all e such that S(e) = v. This fact, along with

the assumption that xv(t) < x

eq
v for all t 2 [0, T ], implies

that ẋv(s) � 0. The result that xv(t) is non-decreasing for

t 2 [0, T ] follows by noting that xv(t) = x

0

v +
R t
0

ẋv(s)ds =P
p2{+,�}

P
w2N in

(v)

R t
0

�

p
w(⌧)k

p
(w,v)(xw(⌧))xw(⌧)d⌧ �

P
p2{+,�}

P
w2N out

(v)

R t
0

�

p
v(⌧)k

p
(v,w)

(xv(⌧))xv(⌧)d⌧ for

all t 2 [0, T ].

If the function ke is continuous at the origin, then the

stability theorem (Theorem IV.8) can be directly proved

using the above lemma. To account for the possibility of

discontinuity of ke(xv) at xv = 0 for some e 2 E , we prove

the following proposition.

Proposition IV.6. Let x : [T

1

, T

2

] ! P(V) be a local viable
solution of the system (3) such that xeq

v  xv(t) < x

eq
v +✏ for

all t 2 [T

1

, T

2

], for some T

2

> T

1

> 0, v 2 V , and ✏ > 0.
Additionally, assume that ce(0) > 0 for some (and hence
all) e 2 E such that S(e) = v. Suppose that there exists
z 2 N in

(v) such that
R T

2

T
1

�

+

z (⌧)k
+

(z,v)(xz(⌧))xz(⌧)d⌧ +

R T
2

T
1

�

�
z (⌧)k

�
(z,v)(xz(⌧))xz(⌧)d⌧ > 2✏. Then there ex-

ists a constant Cv > 0, which depends only on
v 2 V , such that

R T
2

T
1

�

+

v (⌧)k
+

(v,w)

(xv(⌧))xv(⌧)d⌧ +

R T
2

T
1

�

�
v (⌧)k

�
(v,w)

(xv(⌧))xv(⌧)d⌧ > Cv✏ for all w 2
N out

(v).

Proof. From the assumed bounds on xv(t) over the time-

interval [T

1

, T

2

], we can conclude that

R T
2

T
1

ẋv(⌧)d⌧  ✏.

Hence, it follows that

xv(T2

)� xv(T1

) =

Z T
2

T
1

ẋv(⌧)d⌧ =

X

p2{+,�}

X

w2N in

(v)

Z T
2

T
1

�

p
w(⌧)k

p
(w,v)(xw(⌧))xw(⌧)d⌧ �

X

p2{+,�}

X

w2N out

(v)

Z T
2

T
1

�

p
v(⌧)k

p
(v,w)

(xv(⌧))xv(⌧)d⌧ < ✏.

Since

R T
2

T
1

�

+

z (⌧)k
+

(z,v)(xz(⌧))xz(⌧)d⌧ +

R T
2

T
1

�

�
z (⌧)k

�
(z,v)(xz(⌧))xz(⌧)d⌧ > 2✏, we can conclude that

X

p2{+,�}

X

w2N out

(v)

Z T
2

T
1

�

p
v(⌧)k

p
(v,w)

(xv(⌧))xv(⌧)d⌧ > ✏.



From this, it follows that

max

w2N out

(v)

X

p2{+,�}

Z T
2

T
1

�

p
v(⌧)k

p
(v,w)

(xv(⌧))xv(⌧)d⌧

>

✏

|N out

(v)| ,

where |N out

(v)| represents the number of outgoing edges

from v. Let c

max

= max

w2N out

(v)
{k+

(v,w)

(1)} and c

min

=

min

w2N out

(v)
{k+

(v,w)

(x

eq
v )}. Then it follows that

X

p2{+,�}

Z T
2

T
1

�

p
v(⌧)k

p
(v,w)

(xv(⌧))xv(⌧)d⌧ >

c

min

c

max

✏

|N out

(v)|

for all w 2 N out

(v). Note that c

min

6= 0 due to the

assumption that ce(0) > 0 for some (and hence all) e 2 E
such that S(e) = v. Hence, we have our result.

The above proposition does not hold true if assumption

5 is not satisfied by all functions ce. This can happen only

when, for a given vertex v 2 V , the functions ce(y) are

discontinuous at y = 0 for some but not all outgoing

edges e from v. In fact, violation of this assumption can

create spurious equilibrium solutions of the DI (9). This is

highlighted in the following counterexample.

Example IV.7. Let V = {1, 2, 3} and E =

{(1, 2), (2, 1), (2, 3), (3, 2)}. Suppose xeq
= [0.5 0.5 0]

T .
Let c

(1,2) be an arbitrary function with the appropriate
domain and range satisfying assumptions 1-5. The other
functions ce are defined as

c

(2,1)(y) = y for all y 2 [0, 0.5]

c

(2,3)(y) = 1 for all y 2 [0, 0.5]

c

(3,2)(y) = 1 for all y 2 [0, 1]

Then x = [0 0.5 0.5]

T is an equilibrium solution of the DI
(9), that is, 0 2 F(x). This is true because k

+

(1,2)(x1

) =

k

+

(2,1)(x2

) = 0 and k

+

(2,3)(x2

)x

2

� k

+

(3,2)(x3

)x

3

= 0. Hence,P
e2E

k

+

e (x)Bex = 0. Note that x is not an equilibrium point

of the original system (3) because
P
e2E

ke(x)Bex 6= 0.

Now, we are ready to prove our main result.

Theorem IV.8. Let x0

,xeq 2 P(V). Then a global viable
solution x : [0,1) ! P(V) of the DI (9) exists. More-
over, the equilibrium point xeq is asymptotically stable with
respect to all global viable solutions of the DI (9).

Proof. The existence of global viable solutions has been

already established (Theorem IV.2). Lyapunov stability of

the equilibrium point xeq
follows from Lemma IV.5 and by

noting that x(t) 2 P(V) for all t � 0. Suppose, for the sake

of contradiction, that the limit condition lim

t!1
kx(t)�xeqk =

0 is not satisfied by a global viable solution. Then there exists

v

1

2 V such that lim

t!1
xv

1

(t) 6= x

eq
v
1

. Since x(t) 2 P(V)
for all t � 0, and from the monotonicity property of the

components of the solution proved in Lemma IV.5, we can

assume that the vertex v

1

2 V is such that xv
1

(t) > x

eq
v
1

for all t � T , for some T � 0. Then there exists an

increasing sequence of positive numbers (Tn)
1
n=1

such that

lim

n!1
Tn = 1 and xv

1

(Tn) > x

eq
v
1

+ ✏

0

for all n 2 Z
+

for

some ✏

0

> 0 independent of n. Note that |ẋv
1

(t)|  Cu

max

for a.e. t 2 [0,1), for some constant C > 0. Hence,

there exists �T > 0 such that xv
1

(t) > x

eq
v
1

+

✏
0

2

for all

t 2 [Tn, Tn + �T ] and all n 2 Z
+

. Now we consider a

subsequence of (Tn)
1
n=1

. We use the same notation (Tn)
1
n=1

to denote this new subsequence, and choose this subsequence

such that Tn+1

� Tn > �T for all n 2 Z
+

. Let

˜

Tn =

Tn + �T for all n 2 Z
+

. From this and the assumption

that ce is non-decreasing on [0, 1 � x

eq
v
1

], it follows that

P
p2{+,�}

R
˜Tn

Tn
�

p
v
1

(⌧)k

p
e(xv

1

(⌧))xv
1

(⌧)d⌧ > ✏

1

for some

✏

1

> 0, for all e 2 E such that S(e) = v

1

, and for all

n 2 Z
+

.

Next, let µ = (ei)
m
i=1

be a directed path from the

node S(e

1

) = v

1

to some node T (em) = vm+1

such

that lim

t!1
xvm+1

(t) < x

eq
vm+1

and lim

t!1
xvg (t) = x

eq
vg with

vg = S(eg) for all g 2 {2, ...,m}. Since the graph

G is strongly connected, and from the result in Lemma

IV.5, such a path necessarily exists. Now, there are two

possibilities. Either there exists some j 2 {2, ...,m} such

that k

+

ej (x
eq
S(ej)

)x

eq
S(ej)

= 0 for some j 2 {2, ...,m},

or such a j does not exist. We will consider the first

possibility and show that such a j cannot exist due to

the assumption made on the path µ, and then consider

the second possibility. Let j be the smallest element of

{2, ...,m} such that k

+

ej (x
eq
S(ej)

)x

eq
S(ej)

= 0. We know that

P
p2{+,�}

R
˜Tn

Tn
�

p
v
1

(⌧)k

p
e
1

(xv
1

(⌧))xv
1

(⌧)d⌧ > ✏

1

for some

✏

1

> 0 and for all n � N . It follows from Proposition IV.6

that if N is large enough, then since lim

t!1
xv

2

(t) = x

eq
v
2

, we

have that

P
p2{+,�}

R
˜Tn

Tn
�

p
v
2

(⌧)k

p
e
2

(xv
2

(⌧))xv
2

(⌧)d⌧ > ✏

2

for some ✏

2

> 0 depending only on ✏

1

, for all n � N . Using

the same argument, it follows that if N is large enough,

then since lim

t!1
xvg (t) = x

eq
vg for all g = {3, ..., j � 1}, we

have that

P
p2{+,�}

R
˜Tn

Tn
�

p
w(⌧)k

p
e(xvg (⌧))xvg (⌧)d⌧ > ✏g

for some ✏g > 0 depending only on ✏

1

, for all n � N

and for all g = {2, ..., j� 1}. This implies that if N is large

enough,

Z
˜Tn

Tn

ẋw(⌧)d⌧ = (14)

X

p2{+,�}

X

a2N in

(w)

Z
˜Tn

Tn

�

p
a(⌧)k

p
(a,w)

(xa(⌧))xa(⌧)d⌧

�
X

p2{+,�}

X

a2N out

(w)

Z
˜Tn

Tn

�

p
w(⌧)k

p
(w,a)(xw(⌧))xw(⌧)d⌧

> ✏j�1

� �n

for all n � N , with w = S(ej). Here,

�n > 0 is an n-dependent constant, yet

to be defined, that satisfies the inequality



P
p2{+,�}

P
a2N out

(w)

R
˜Tn

Tn
�

p
w(⌧)k

p
(w,a)(xw(⌧))xw(⌧)d⌧ <

�n for all n 2 Z
+

. Since k

+

(w,a)(x
eq
w )x

eq
w = 0 for all

a 2 N out

(w) and lim

t!1
xw(t) = x

eq
w , we know that

�n can be chosen such that lim

n!1
�n = 0. This last

observation and the inequality (14) lead to a contradiction

that xw(
˜

Tn) > ✏j�1

� �n > 0 for all n � N if N

is large enough. Hence, the second possibility must

be true; i.e., that there exists no j 2 {2, ...,m} such

that k

+

ej (x
eq
vj )x

eq
vj = 0. This implies that kej must be

discontinuous at x

eq
S(ej)

, with k

+

ej (x
eq
vj )x

eq
vj > 0 for each

j 2 {2, ...,m}. Then Proposition IV.6 implies that

P
p2{+,�}

R
˜Tn

Tn
�

p
vg (⌧)k

p
eg (xvg (⌧))xvg (⌧)d⌧ > ✏g for some

✏g > 0 depending only on ✏

1

, for all g 2 {2, ...,m}, and

for all n � N if N is large enough. This contradicts the

assumption that lim

t!1
xvm+1

(t) < x

eq
vm+1

for all t � 0. Hence,

it must be true that lim

t!1
xv

1

(t) = lim

t!1
xv

1

(t) = x

eq
v
1

.

V. MEAN-FIELD LIMIT

Our analysis in the previous section focused on the mean-

field (ODE) model (3). We recall that a sequence {Zn} of

random variables converges in probability to the random

variable Z if for all " > 0, limn!1 P
�
|Zn � Z| > "

�
= 0.

When the right-hand side of system (3) is Lipschitz con-

tinuous, then the corresponding N -agent stochastic process

{Xi(t)}Ni=1

converges in probability to the ODE model [8].

In this case, the use of control laws designed for the ODE

model (3) as control policies for individual agents would be

justified because, in the limit N ! 1, sample paths of the

stochastic process converge in probability to the solution of

the ODE model. However, since the right-hand side of system

(9) is an inclusion, the convergence result of [8] cannot be

applied. In [3], [17], the authors tackle a general problem

of constructing approximating stochastic processes whose

sample paths converge to solutions of differential inclusions

(DIs). The following definitions and theorem are borrowed

from [17]. After stating them, we will construct the N -agent

stochastic process, and use this theorem to prove convergence

of sample paths of this stochastic process to solutions of the

DI (9).

Let V : Rn ◆ Rn
be a set-valued map that defines the

following DI,

˙x 2 V(x). (15)

This DI is good upper semicontinuous if V is nonempty,

convex-valued, bounded, and upper semicontinuous (USC).

Let X be a compact convex subset of Rn
. If C(R�0

, X)

denotes the set of continuous functions from R�0

to X , let

S

x

⇢ C(R�0

, X) be the set of solutions of DI (15) with

initial condition x(0) = x. Let the set-valued system induced

by the DI be denoted by � : R�0

⇥X ◆ X and defined by

�(t,x) := {x(t) : x 2 S

x

}. Finally, let S

�

:= [
x2XS

x

be

the set of all solutions of the DI.

Next, a class of approximating stochastic processes defined

on a probability space (⌦,F ,P) is introduced. Here, ⌦ is

the sample space, F is the sigma algebra on ⌦, and P

is the probability measure. Let � > 0 be a positive real

number. Then

˜V�
: Rn ◆ Rn

is the set-valued map

defined by

˜V�
(x) := {z 2 Rn | 9y 2 BRn

(x, �) such that

dist(z,V(y)) < �}.

Definition V.1. [17] For a sequence of values " approaching
0, let {L"}">0

be a family of operators acting on bounded
functions f : X ! R according to the formula

L

"
f(x) =

1

"

Z

Rn

(f(x+ "x)� f(x))µ"
x

(dz), (16)

where {µ"
x

}">0

x2X is a family of positive measures on Rn such
that

1) the function x 7! µ

"
x

(A) is measurable for each Borel
set A ⇢ Rn;

2) the support of µ"
x

is contained in the set {z 2 Rn
: x+

"x 2 X} as well as in some compact set independent
of x and ";

3) for any � > 0, there exists an "

0

> 0 such that for all
"  "

0

and all x 2 X ,

v

"
(x) :=

Z

Rn

zµ"
x

(dx) 2 e
V

�
(x).

Let the Markov processes {Y"
(t)}">0

t�0

solve the martingale
problems for {L"} [8]. We call this collection of processes
a family of Markov continuous-time generalized stochastic
approximation processes (GSAPs) for the DI (15).

We now state the main theorem, which gives a finite-

horizon approximation to the solutions S

�

of the DI (15).

Theorem V.2. [17] Suppose that {Y"}">0 is a family of
Markov continuous-time GSAPs. Then for any T > 0 and
↵ > 0, we have

lim

"!0

P( inf

z2S
�

sup

0sT
||Y"

(s)� z(s)|| � ↵ | Y"
(0) = x) = 0

uniformly in x 2 X .

We first rename the variables above according to our

notation. The set-valued map V is F in definition (5), the

state space dimension n is M , and the subset X of Rn

on which the states evolve is P(V). We now describe a

procedure to compute the generator of the N -agent CTMC

according to [12], in which convergence is proved for the

case when the right-hand side of system (3) is smoother

(H¨older continuous) and altered as per our requirement for

the case of discontinuous right-hand sides using Theorem

V.2.

We recall the setting described in Section III, in which

N agents are to be distributed over M states. The state

space for each agent is given by the finite set {1, ...,M}.

Let x 7! Q(x) = (Q

ij
(x)) be a family of M ⇥ M tran-

sition rate matrices or Q-matrices; i.e., non-diagonal terms

are non-negative and diagonal elements are �
P

j Q
ij
(x).

Note the dependence of Q on x. This is because, in our

scenario Q(x) =

P
e ke(xS(e))Bex from (3). For any

fixed x 2 P(V), Q(x) defines a Markov chain on the

state space {1, ...,M} with the generator (Q(x)f)n =



P
m 6=n Q

nm
(x)(fm � fn), where f = [f

1

, ..., fM ]. For the

case of N interacting agents, it is appropriate to consider

the state space as ZM
�0

, the set of M non-negative integers

S = (n

1

, ..., nM ), where each ni denotes the number of

agents in state i and N = n

1

+ ... + nM . For example, in

the case of 2 agents and 2 states, the state space would be

{(2, 0), (1, 1), (0, 2)}. In general, the size of this state space

is

�N+M�1

N

�
. The family of Q(x) matrices induces a CTMC

{YN
(t)}t�0

on the state space ZM
�0

. For i 6= j and a state

S, let S

ij
be the state obtained by removing one agent from

state i and adding an agent to state j, that is, ni and nj

change to ni � 1 and nj + 1, respectively. The interacting

system or CTMC {YN
(t)}t�0

, specified by Q, is defined as

the Markov process on ZM
�0

given by the generator,

L

N
f(S) =

MX

i,j=1

niQ
ij
(

S

N

)[f(Sij)� f(S)]. (17)

Let " = 1/N . Normalizing the states to S/N 2 P(V) \
ZM
�0

/N leads to the following generator on P(V) \ ZM
�0

/N

of an equivalent Markov chain {Y

N
(t)

N }t�0

on a normalized

state space:

L

N
f

�
S

N

�
=

MX

i,j=1

ni

N

NQ

ij
�
S

N

�⇥
f(

Sij

N

)� f(

S

N

)

⇤
. (18)

The above generator can be extended to define a generator

of a stochastic process { ˜YN
(t)}t�0

on the continuous state

space P(V). First, we define Z = {�ei+ej : 1  i, j  M},

where ei and ej are the standard basis vectors with 1 at the

i

th

and j

th

positions, respectively. Then for z 2 Z , we define

the generator of the process { ˜YN
(t)}t�0

,

L

N
f(x) = N

MX

i,j=1

xiQ
ij
(x)

⇥
f(x+

z

N

)� f(x)

⇤
. (19)

Note that YN
(t)/N =

˜YN
(t) whenever YN

(0)/N =

YN
(0). A probabilistic description of the CTMC

{YN
(t)}t�0

can be given as follows. The population

of agents starts in some state S. Each agent waits an

exponentially distributed random amount of time with

parameter Q

ii
(S/N), independent of the other agents. If the

shortest amount of waiting time happens to be for an agent

that is in state i, then the agent makes a decision to switch

to a state j with probability distribution (Q

ij
/|Qii|)(S/N).

Thus, the agent in state i makes the transition to j with

this distribution and at rate |Qii|(S/N). This process starts

anew after every such transition. Note that the probability

of two agents deciding to switch states at the same time is

o(h).

We will now show that { ˜YN
(t)}t�0

converges to a

solution of the DI (9).

Theorem V.3. The Markov process { ˜YN
(t)}t�0

is a GSAP
for the DI (9). Then for any T > 0 and ↵ > 0, we have

lim

N!1
P
�
inf

z2S
�

sup

0sT
|| ˜YN

(s)�z(s)|| � ↵ | ˜YN
(0) = x

�
= 0

uniformly in x 2 P(V).

Proof. Comparing condition 1 of Definition V.1 with equa-

tion (19), we observe that µ

N
x

, for every fixed x 2 P(V), is

a measure on Z; and in our case µ

x

=

P
z2Z xiQ

ij
(x)�

z

,

where z = �ei + ej and �

z

is the Dirac measure on z given

by �

z

(A) = 1 if z 2 A, 0 otherwise, for all Borel sets

A ⇢ RM
. Hence, it follows that the function x 7! xiQ

ij
(x)

is measurable with respect to the Borel sigma algebra on

RM
due to the assumptions 3-4. The first part of condition 2

of Definition V.1 follows from the definition of µ

x

. For the

second part, note that {z 2 Z : x+"z 2 P(V)} is an element

of the tangent space T

x

P(V) (see definition (8)). Since ke(y)

is bounded by u

max

for all e 2 E and all y 2 [0, 1], it follows

that µ

✏
x

is supported on a compact subset of T

x

P(V) for all

x 2 P(V). For condition 3 of Definition V.1, observe that

Z

Rn

zµ"
x

(dz) =
X

i,j2V
xiQ

ij
(x)� xiQ

ij
(x)

which by definition lies in the set-valued map (5). The DI

(9) is also a good USC differential inclusion, and so the

collection { ˜YN
(t)}t�0

is a family of Markov continuous-

time GSAPs. Lastly, since L

N
defined in equation (19) is

the generator of the process { ˜YN}, it solves the martingale

problem [8].

VI. NUMERICAL SIMULATIONS

In this section, we numerically verify the effectiveness of

our decentralized feedback strategy in two scenarios with

different graph topologies and agent population sizes. In the

first scenario, we redistribute N = 60 agents over a directed

6-vertex cycle graph with V = {1, ..., 5}, E = {(v, v +

1) : v 2 V} [ {(6, 1)}. The initial distribution of agents

was set to x0

= [0.2 0.1 0.2 0.15 0.2 0.15]

T
, and the

target distribution was xeq
= [0.25 0 0.25 0 0.25 0.25]

T
.

Note that the target fractions of agents are zero for two states.

Figs. 1a and 1b compare the solution of the mean-field model

(3) to a stochastic simulation of the CTMC characterized by

expression (1) for two different control laws that we design

according to equation (4).

In Fig. 1a, we have used a discontinuous control law

{ke(·)} by setting ce(y) = 1/S(e) for all y 2 [0, 1� x

eq
S(e)].

We call this control law controller 1. As shown in the figure,

the transitions exhibit chattering behavior that is typical of

discontinuous control laws. Also, as a consequence of the

transition rates not tending to zero near the equilibrium, the

agents can transition between states with a high probability

even near equilibrium. On the other hand, in Fig. 1b, we have

used a Lipschitz continuous law {ke(·)} by setting ce(y) = y

for all y 2 [0, 1 � x

eq
S(e)]. We call this control law con-

troller 2. The fractions of agents in each state exhibit fewer

fluctuations. The figures show that the stochastic simulation

follows the mean-field model solution fairly closely for both

feedback controllers. In addition, the fractions of agents in

each state remain constant after some time.

To demonstrate the scalability of our control approach,

we also considered a scenario in which we redistribute
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(a) Closed-loop system with controller 1, N = 60
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(b) Closed-loop system with controller 2, N = 60

Fig. 1: Trajectories of the mean-field model (thick lines) and the corresponding stochastic simulations (thin lines).
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Fig. 2: Stochastic simulation with N = 10

4

agents. Left:
Snapshot at time t = 10

4

s; Right: target distribution.

N = 10

4

agents over a bidirected 100-vertex graph with a

two-dimensional grid structure. All the agents start in a single

state (the bottom left grid cell). The target distribution is

shown in the right subfigure of Fig. 2: the agents are required

to distribute equally among the yellow cells, and no agents

should end up in the dark blue cells. The left subfigure of Fig.

2 shows a snapshot at t = 10

4

s of a stochastic simulation

with controller 2 as the feedback controller. We observe that

this distribution is very close, but not exactly equal, to the

target distribution. This is because the actual distribution

converges to the target distribution only as t ! 1.

VII. CONCLUSION

We have constructed a general class of density feed-

back laws that stabilize a system of interacting CTMCs,

associated with a strongly connected graph, to any target

probability distribution. Moreover, the constructed control

laws are decentralized and require each agent to know the

density of agents only in its current state. In future work, we

will investigate methods to compute and improve the rate

of convergence of the solution to the desired equilibrium

distribution.
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