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Mean-Field Stabilization of Markov Chain Models
for Robotic Swarms: Computational Approaches

and Experimental Results
Vaibhav Deshmukh, Karthik Elamvazhuthi, Shiba Biswal, Zahi Kakish, and Spring Berman

Abstract—In this paper, we present two computational ap-
proaches for synthesizing decentralized density-feedback laws
that asymptotically stabilize a strictly positive target equilibrium
distribution of a swarm of agents among a set of states. The
agents’ states evolve according to a continuous-time Markov
chain on a bidirected graph, and the density-feedback laws are
designed to prevent the agents from switching between states
at equilibrium. First, we use classical Linear Matrix Inequality
(LMI)-based tools to synthesize linear feedback laws that (locally)
exponentially stabilize the desired equilibrium distribution of
the corresponding mean-field model. Since these feedback laws
violate positivity constraints on the control inputs, we construct
rational feedback laws that respect these constraints and have the
same stabilizing properties as the original feedback laws. Next, we
present a Sum-of-Squares (SOS)-based approach to constructing
polynomial feedback laws that globally stabilize an equilibrium
distribution and also satisfy the positivity constraints. We val-
idate the effectiveness of these control laws through numerical
simulations with different agent populations and graph sizes and
through multi-robot experiments on spatial redistribution among
four regions.

Index Terms—Swarms, Multi-Robot Systems, Distributed
Robot Systems, Optimization and Optimal Control, Probability
and Statistical Methods

I. INTRODUCTION

IN recent years, there has been much work on developing
mean-field models of robotic swarms with stochastic be-

haviors, e.g. [2], [14], [18], [5], [16], [12], [1], and using these
models to design swarm control strategies that are scalable
with the number of robots and robust to robot failures. In
this paper, we consider such an approach for controlling
a swarm of robots to allocate among a set of states in a
decentralized fashion, that is, using only information that the
robots can obtain from their local environment. We model
the time evolution of each robot’s state as a continuous-time
Markov chain (CTMC) and frame the control problem in terms
of the forward equation, or mean-field model, of the system.
Our goal is to algorithmically construct identity-invariant robot
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control laws that guarantee stabilization of the swarm to a
target state distribution.

In existing approaches to this problem that use Markov
chain models [5], [1], the robots continue switching between
states at equilibrium, which could unnecessarily expend en-
ergy, even though the swarm distribution among states in
the mean-field model is stabilized. This continued switching
at equilibrium is due to the time- and density-independence
of the control laws considered in these works. To address
this problem, [11] constructed density-feedback laws that use
quorum-sensing strategies to stabilize a swarm to a desired
distribution and reduce the amount of switching between
states at equilibrium. In [17], the authors pose this as a
problem of controlling the variance of the agent distribution at
equilibrium using density-feedback laws. For the case where
the agents’ states evolve according to a discrete-time Markov
chain (DTMC), this problem has been addressed in [3], [7],
[4] by allowing the control laws to depend on time.

Recently, we considered this problem for the case where
agents’ states evolve according to CTMCs [10]. As in [17],
we proposed density-feedback laws that stabilize a swarm
of agents to a strictly positive target distribution. However,
differently from [17], we considered feedback laws that are
linear or polynomial functions of the state; that do not violate
positivity constraints; and that converge to zero at equilibrium,
preventing further switching between states. We constructively
proved the existence of these stabilizing linear and polynomial
control laws by presenting two specific examples of such
control laws.

The two feedback controllers that we proposed in [10] could
yield poor system performance in practice. In this paper, we
develop a principled approach to designing density-feedback
controllers with desired performance characteristics. Toward
this end, we present algorithmic procedures for constructing
linear and polynomial feedback controllers that stabilize the
mean-field model from [10] to a strictly positive target distri-
bution with no state transitions occurring at equilibrium. These
procedures can incorporate additional constraints to improve
the properties of the closed-loop system response. The first
procedure adapts Linear Matrix Inequality (LMI)-based tools
from linear systems theory to synthesize locally exponentially
stabilizing rational feedback laws from linear control laws.
Since these control laws are only locally stabilizing and can
take unbounded values away from the equilibrium, we also de-
velop a second procedure for control synthesis using Sum-of-
Squares (SOS)-based techniques. Using the MATLAB toolbox
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SOSTOOLS [19], we construct nonlinear polynomial control
laws that are globally asymptotically stabilizing. Moreover,
in contrast to the control approaches presented in [4], [7],
all computations for control synthesis are done offline in our
procedures rather than onboard the robots in real-time, which
reduces the robots’ computational burden. We validate both
the linear and nonlinear feedback laws through numerical
simulations and through experiments with mobile robots that
redistribute themselves among four spatial regions.

II. PROBLEM FORMULATION
A. Notation

We denote by G = (V, E) a directed graph with M vertices,
V = {1, 2, ...,M}, and a set of NE edges, E ⇢ V⇥V . We say
that e = (i, j) 2 E if there is an edge from vertex i 2 V to
vertex j 2 V . We define a source map S : E ! V and a target
map T : E ! V for which S(e) = i and T (e) = j whenever
e = (i, j) 2 E . We assume that (i, i) /2 E for all i 2 V .
The graph G is said to be bidirected if e = (S(e), T (e)) 2 E
implies that ẽ = (T (e), S(e)) also lies in E . In this paper, we
will only consider bidirected graphs.

B. Problem Statement

Consider a swarm of N autonomous agents whose states
evolve in continuous time according to a Markov chain with
finite state space V . As an example application, V can repre-
sent a set of spatial locations that are obtained by partitioning
the agents’ environment. The graph G determines the pairs
of vertices (states) between which the agents can transition.
We define ue : [0,1) ! R+ as a transition rate for each
e = (i, j) 2 E , where R+ is the set of positive real numbers.
The evolution of the N agents’ states over time t on the state
space V is described by N stochastic processes, Xk(t) 2 V ,
k = 1, ..., N . Each stochastic process Xk(t) evolves according
to the following conditional probabilities for every e 2 E :

P(Xk(t+ h) = T (e)|Xk(t) = S(e)) = ue(t)h+ o(h). (1)

Here, o(h) is the little-oh symbol and P is the underlying
probability measure defined on the space of events ⌦ (which
will be left undefined, as is common) that is induced by the
stochastic processes {Xk(t)}Nk=1. Let P(V) be the (M � 1)-
dimensional simplex of probability densities on V , defined
as P(V) = {y 2 RM

+ :

P
i yi = 1}. Let x(t) =

[x1(t) ... xM (t)]T 2 P(V) be the vector of probability
distributions of the random variable Xk(t) at time t, that is,

xi(t) = P(Xk(t) = i), i 2 V. (2)

The evolution of probability distributions is determined by
the Kolmogorov forward equation, which can be cast in an
explicitly control-theoretic form as a bilinear control system,

˙

x(t) =
X

e2E
ue(t)Bex(t), x(0) = x

0 2 P(V), (3)

where Be, e 2 E , are control matrices with entries

Bij
e =

8
><

>:

�1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.
(4)

Here, Bij
e denotes the element in row i and column j of the

matrix Be.
Using these definitions, we can now state the main problem

addressed in this paper.

Problem II.1. Given a strictly positive desired equilibrium
distribution x

eq 2 P(V), compute transition rates ke :

P(V) ! R+, e 2 E , such that the closed-loop system

˙

x(t) =
X

e2E
ke(x(t))Bex(t) (5)

satisfies limt!1 kx(t)�x

eqk = 0 for all x0 2 P(V), with the
additional constraint that ke(xeq

) = 0 for all e 2 E . Moreover,
the density feedback should have a decentralized structure, in
that each ke must be a function only of densities xi for which
i = S(e) or i = S(ẽ), where T (ẽ) = S(e).

We specify that each agent knows the desired equilibrium
distribution x

eq . This assumption is used in other approaches
to stabilizing solutions of the mean-field model of a swarm to
desired probability distributions, e.g. [1], [5], [11], [17].

III. CONTROLLER DESIGN
In this section, we present two algorithmic approaches to

obtaining sets of linear and nonlinear feedback control laws
ke(x) that solve Problem II.1. In Section III-A, we adapt
Linear Matrix Inequality (LMI) techniques from linear system
theory to our problem in order to compute decentralized linear
control laws. In Section III-B, we present a Sum-of-Squares
(SOS) based approach for the synthesis of decentralized non-
linear control laws.

A. Linear LMI-Based Controller
To synthesize linear controllers, we use a linearization-

based approach for controller design. The control system (3)
is linearized about the desired equilibrium state x

eq and the
equilibrium control inputs ke(xeq

). Since we require the agents
to stop switching between states at equilibrium, we set the
equilibrium control inputs to be ke(x

eq
) = 0 for each e 2 E .

Let I : E ! {1, 2, ..., NE} be a bijective map, i.e., an
ordering of E , and let �uI(e) = ue � ke(x

eq
) = ue for

each e 2 E . Defining �x(t) = x(t) � x

eq and �u(t) =

[�u1(t) ... �uNE (t)]
T , we obtain the linearized control system

� ˙x(t) = ˜

B�u(t), �x(0) = x

0 � x

eq, (6)

in which column i = I(e) of the matrix ˜

B is equal to ˜Bi =

Bex
eq . To ensure that system (3) is sufficiently stabilizable, we

assume that the equilibrium state is strictly positive, i.e. xeq
i >

0 for each i 2 V . If the graph G is strongly connected, then
it follows from Perron-Frobenius theorem that the system (6)
has M�1 controllable eigenvalues and a single uncontrollable
eigenvalue at 0. This is true because x

eq is assumed to be
have all positive elements, and hence ˜

B has rank M � 1. The
eigenvalue at 0 is uncontrollable because the simplex P(V )

is invariant for the system (5). This follows from the fact that
each column of Be sums to 0, which implies that the sumP

i2V xi(t) remains constant for all t � 0. Moreover, the off-
diagonal terms of Be are non-negative, and hence xi(t) � 0

for all t � 0 and all i 2 V .
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We now discuss the algorithmic construction of decentral-
ized linear control laws that exponentially stabilize the lin-
earized system (6), and therefore locally stabilize the original
system (5). The linear control laws ke(x) that we construct will
always violate the positivity constraints at some point in P(V).
To see this explicitly, suppose that ✏ = [✏1 ... ✏M ]

T 2 RM is a
nonzero element such that xeq ± ✏ 2 P(V), and suppose that
ke(x) is a linear control law. Then the control law has the form
ke(x) =

P
i2V aiexi+be, where aie and be are gain parameters.

Since the control inputs must take the value 0 at equilibrium,
we must have that be = �

P
i2V aiex

eq
i . Suppose, for the

sake of contradiction, that this linear control law satisfies the
positivity constraints; that is, the range of ke(x) is [0,1)

for some e 2 E . Then we must have that ke(x
eq

+ ✏) =P
i2V aie(x

eq
i + ✏i) + be =

P
i2V aie✏i > 0. This must imply

that ke(xeq�✏) =
P

i2V aie(x
eq
i �✏i)+be = �

P
i2V aie✏i < 0,

which contradicts the original assumption that the control law
ke(x) satisfies the positivity constraints. Hence, to ensure
that the control laws satisfy the positivity constraints, we
replace them with rational feedback control laws ce(x) that
produce the same closed-loop system trajectories but respect
the positivity constraints, as desired. We show that this is
possible in the following theorem from our prior work [10].

Theorem III.1. [10] Let G be a bidirected graph. Let ke :

RM ! (�1,1) be a map for each e 2 E such that there
exists a unique global solution of the system (5). Additionally,
assume that x(t) 2 int(P(V)) for each t 2 [0,1). Consider
the functions mp

e : RM ! {0, 1} and mn
e : RM ! {0, 1},

defined for each e 2 E and for all y 2 RM as

mp
e(y) = 1 if ke(y) � 0, 0 otherwise;

mn
e (y) = 1 if ke(y)  0, 0 otherwise. (7)

Let ce : RM ! [0,1) be given by

ce(y) = mp
e(y)ke(y)�mn

ẽ (y)kẽ(y)
yT (e)

yS(e)
. (8)

Then the solution ˜

x(t) of the following system,

˙

˜

x =

X

e2E
ce(x̃(t))Bex̃(t), t 2 [0,1) (9)

x̃(0) = x

0 2 P(V),

is unique, defined globally, and satisfies x̃(t) = x(t) for all
t 2 [0,1).

The following result [9] is widely used in the literature on
LMI-based tools for construction of linear control laws:

Theorem III.2. Let A 2 RM⇥M and B 2 RM⇥NE , where
NE is the number of control inputs. Consider the linear control
system

˙

x(t) = Ax(t) +Bu(t). (10)

Then a static linear state feedback law, u = �Kx, stabilizes
the system (10) if and only if there exist matrices P > 0 and
Z such that

K = ZP

�1, (11)

PA+BZ+PA

T
+ Z

T
B

T < 0. (12)

This result can be used to construct state feedback laws
for a general linear system. The theorem is attractive from a
computational point of view since the constraints, P > 0 and
Equation (12), are convex in the decision variables Z and P. In
order to ensure that the resulting control law is decentralized,
we need to impose additional constraints. Toward this end,
let D ⇢ RM⇥M be the subset of diagonal positive definite
matrices. Additionally, let Z = {Y 2 RNE⇥M

: Y ij
= 0 if

i 6= j and (i, j) 2 V⇥V�E}. Then the additional constraints

Z 2 Z, P 2 D, (13)

which can be expressed as LMIs, can be imposed to achieve
the desired decentralized structure in the controller. These two
constraints are convex and can be expressed as LMIs. Hence,
state-of-the-art LMI solvers can be used to construct control
laws. Note that, for a general linear control system, the LMI
(12) with the additional constraints (13) might not admit any
solution P, Z. However, for the particular system (3), we have
constructively established the existence of solutions in [10].

A necessary and sufficient condition for LMIs (12), (13)
to be feasible is that the system (A,B) (Equation (10)) is
stabilizable. This system is not stabilizable on RM , since as
noted earlier, the uncontrollable eigenvalue is at zero and the
set P(V) is invariant for system (3). However, we require
stability only on P(V). To deal with the lack of stabilizability
on RM , one possibility is to use a model reduction approach
by designing a lower-dimensional system that is controllable.
This approach would be difficult, however, since it would
not be possible to impose the structural constraints (13) on
the controller matrix K in the original system, only on the
controller matrix that is designed for the reduced-order system.
Hence, we develop a simple alternative way to construct
decentralized controllers, in which we artificially place the
uncontrollable eigenvalue of the linear system in the open left
half of the complex plane. To see this explicitly, let (A,B) be
a partially controllable system. Then there exists a nonsingular
matrix T 2 RM⇥M such that

˜

A = TAT

�1
=


˜

A11
˜

A12

0

˜

A22

�
, ˜

B = TB =


˜

B

0

�
. (14)

In our case, ˜

A = A = 0. However, this transformation is
needed to convert ˜

B into the desired form. In order to design
a controller for the system (A,B), we can instead design a
controller for another artificial system,

˜

A✏ = TAT

�1
=


˜

A11
˜

A12

0 �✏I

�
, ˜

B = TB =


˜

B

0

�
(15)

for some ✏ > 0, where I is the identity matrix of appropriate
dimension. Note that the new artificial system, ( ˜A✏, ˜B), has
the same controllable eigenvalues as the original system,
(

˜

A, ˜B), and all its uncontrollable eigenvalues are stable.
We can perform the inverse transformation to represent the
artificial system in the original coordinates:

A✏ = T

�1
˜

A✏T. (16)
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Now let F be the gain matrix of a feedback control law that
stabilizes the system (A✏,B). Then the following relation is
satisfied, where �(M) is the spectrum of matrix M:

�(A+BF)\�( ˜A22) = �(A✏ +BF)\{✏}.

This relation is advantageous from a computational point of
view, since one can now directly impose the constraint of
decentralized structure on the gain matrix F by designing
the controller for the stabilizable artificial system (A✏,B) and
then implementing it on the original system.

Combining the LMIs (12), (13), we obtain the following
system of LMIs that need to be tested for feasibility:

P 2 D, Z 2 Z, P > 0,

PA✏ +BZ+PA

T
✏ + Z

T
B

T < 0. (17)

The solution to the above LMIs yields the stabilizing feedback
law �u = F�x, where F = ZP

�1.
It is straightforward to extend this approach to synthesize

linear controllers with additional design specifications. For
example, if it is necessary to impose limits on the norms
of input signals or error signals, then constraints on system
norms such as H1 and H2 norms can be applied using the
techniques in [9] for the design of linear controllers using
LMIs. Additionally, controllers can be designed to achieve
a desired rate of convergence to the equilibrium x

eq . For
example, suppose that we want the system (A✏,B) with
feedback gain matrix F = ZP

�1 to exhibit a minimum decay
rate ↵, a minimum damping ratio cos ✓, and a maximum
undamped natural frequency r sin ✓. We can design such a
controller using the concept of D-stability control [8, p. 108]:

Theorem III.3. Suppose that there exist matrices P > 0 and
Z such that

M = A✏P+BZ, N = (A✏P+BZ)

T ,
�rP M

N �rP

�
< 0,

M+N+ 2↵P < 0,
(M+N) sin ✓ (M�N) cos ✓
(N�M) cos ✓ (M+N) sin ✓

�
< 0, (18)

Then if F = ZP

�1, the pole locations z 2 C of the matrix
A✏ +BF satisfy |z|  r and Re z  �↵.

B. Nonlinear Polynomial Controller

In [10], we showed that the set of decentralized nonlinear
control laws that solve Problem II.1 is nonempty by explicitly
constructing one such control law. To prove its stability,
we demonstrated that the following function is a Lyapunov
function for system (5):

V (x) =

1

2

�
x

T
Dx� (x

eq
)

T
Dx

eq
�
, (19)

where D = diag([1/xeq
1 1/xeq

2 ... 1/xeq
M ]). This Lyapunov

function is commonly used in multi-agent consensus protocols
[15]. Here, we present an algorithmic procedure for construct-
ing other nonlinear control laws that solve Problem II.1, using
the function (19) in the construction. This procedure allows us

to introduce additional constraints to improve the performance
of the closed-loop system, as in the linear controller design
procedure. We will construct control laws that are polynomial
functions of the system state. This allows us to frame Problem
II.1 as a polynomial optimization problem that can be solved
using SOSTOOLS [19], a MATLAB toolbox for solving sum-
of-squares (SOS) programs. SOSTOOLS is widely used to
provide algorithmic solutions to problems with polynomial
non-negativity constraints that are otherwise difficult to solve.
The non-negativity constraints are relaxed to a test for the
existence of an SOS decomposition, and this test is performed
using semidefinite programming. We note that our procedure
is just one possible method for constructing the control laws.

We first pose Problem II.1 as an optimization problem.

Problem III.4. Let R[x] denote the set of polynomials (not
necessarily positive), and let ⌃s denote the set of SOS poly-
nomials. Given system (5) with the matrix Be defined as
in (4), and given the function V (x) in Equation (19), find
ke(x) 2 R[x] such that

ke(x) � 0, (20)
k(xeq

) = 0, (21)
rV (x)

TF (x)  0 (22)

for all x 2 P(V), where F (x) =

P
e2E ke(x)Bex.

In Problem III.4, the candidate Lyapunov function V (x) is
fixed, and an appropriate control law is constructed such that
V (x) is indeed a Lyapunov function for the closed-loop system
(5). We can easily confirm that V (x) = 0 at the equilibrium
x

eq , and simple algebraic manipulation shows that V (x) > 0

for all x 2 P(V)\{xeq}. However, establishing the local
negative definiteness of the gradient of V (x) on the simplex
P(V), as specified by the inequality (22), is a relatively
difficult constraint to encode in SOSTOOLS. We enforce this
constraint by using the theory of positivestellansatz [6]: Given
a function f(z), where z 2 Rn, and a set S ⇢ Rn, is f(z) � 0

(or, alternatively, is f(z) < 0) for every z 2 S? In this
formulation, S is a semialgebraic set, which is defined as:

S := {z 2 Rn | pi(z) � 0, qj(z) = 0, i, j 2 N}, (23)

where pi and qi are polynomial functions of the state variable
z and N is the set of natural numbers. S may also include
constraints of the form pi(z) < 0 and qj(z) 6= 0.

Schmudgen’s positivestellansatz [20], stated below, gives
sufficient conditions for the positivity of f(z) on a compact
semialgebraic set S ⇢ Rn.

Theorem III.5. Suppose that the semialgebraic set (23) is
compact. If f(z) � 0 for all z 2 S, then there exist tj 2 R[z]
and s0, si, sij , sijk, ... 2 ⌃s such that

f =

X

j

tjqj + s0 +
X

i

sipi +
X

i,j:i 6=j

sijpipj+

X

i,j,k:i 6=j 6=k

sijkpipjpk + ... (24)

In our case, the simplex P(V) is a compact semialgebraic
set in RM of the form (23), in which the inequalities pi �
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Fig. 1: Six-vertex bidirected graph.

0, i = 1, ...,M , are given by x1 � 0, ... , xM � 0, and
the equality q1 = 0 is given by 1 � x1 � ... � xM = 0.
Thus, according to Theorem III.5, verifying the inequality (22)
for all x 2 P(V) reduces to searching for t1 2 R[x] and
s0, si, sij , sijk, ... 2 ⌃s such that

�rV (x)

TF (x) = t1q1 + s0 +
X

i

sipi +
X

i,j:i 6=j

sijpipj + ...

(25)
We can use SOSTOOLS to find polynomials t1 and
s0, si, sij , ... that satisfy Equation (25).

We note that Problem III.4 could alternatively be formulated
to search for both the Lyapunov function and the control
law simultaneously. Since this would render the optimization
problem bilinear in the variables V (x) and ke(x), it would be
possible to solve the problem by iterating between these vari-
ables. However, this approach does not guarantee convergence
to a solution.

IV. NUMERICAL SIMULATIONS
We computed linear and nonlinear feedback controllers

for the closed-loop system (5) to redistribute populations
of N = 20 and N = 1200 agents on the six-vertex
bidirected graph in Fig. 1. The linear controller was com-
puted using the method described in Section III-A with
the LMIs (17), (18). In the LMIs (18), we set ↵ = 1,
cos(✓) = 0.707, and r = 1.5 for desired transient response
characteristics. The nonlinear controller was constructed by
using SOSTOOLS to solve Problem III.4, as described in
Section III-B. For both controllers, the initial distribution
was x

0
= [0.2 0.1 0.2 0.15 0.2 0.15]T , and the desired

distribution was x

eq
= [0.1 0.2 0.05 0.25 0.15 0.25]T .

The solution of the mean-field model (5) with each of
the two controllers and the trajectories of a corresponding
stochastic simulation are compared in Fig. 2. For ease of
comparison, the total agent populations were normalized to
1 in both the mean-field model and the stochastic simulation.
We observe from the plots that both controllers drive the agent
distributions to the desired equilibrium distribution, with the
nonlinear controller yielding much slower convergence to this
equilibrium than the linear controller. This is because the in-
equalities in problem III.4 only guarantee asymptotic stability
of the system (5). We note that if faster convergence is desired,
then this could be encoded as constraint in SOSTOOLS.

The underlying assumption of using the mean-field model
(5) is that the swarm behaves like a continuum. That is, the
ODE (5) is valid as the number of agents N ! 1 [13]. Hence,
it is imperative to check the performance of the feedback
controller for different agent populations. We observe that the

stochastic simulation follows the ODE solution closely in all
four simulations, and that the stochastic simulation exhibits
smaller fluctuations about the ODE solution when the agent
population is increased from N = 20 to N = 1200. In
addition, in all simulations, the numbers of agents in each state
remain constant after some time; in the case of 20 agents, the
fluctuations stop earlier than in the case of 1200 agents.

The linear controllers are computationally less expensive to
construct than the nonlinear ones, and hence they can be more
easily scaled with the number of states and control inputs. To
illustrate this scalability, we computed a linear controller to
redistribute N = 5000 agents on a 65-vertex graph with a
two-dimensional grid structure to spell out the letters ACS,
and we ran a stochastic simulation of the resulting control
system. Fig. 3a shows the initial distribution of the agents on
a two-dimensional domain, in which each partitioned region
corresponds to a vertex in the graph. Initially, 1800 agents
are in a single state (the bottom left region), and the rest
are distributed equally among the other 64 states. We assume
that agents switch between regions instantaneously once they
decide to execute a transition. Fig. 3b shows that at time
t = 1000 s, the agent distribution closely matches the desired
equilibrium distribution. A movie of the agent redistribution
is shown in the Video attachment.

V. MULTI-ROBOT EXPERIMENTAL RESULTS

A. Experimental Testbed

We evaluated our linear and nonlinear controllers in a
scenario in which a group of small differential-drive robots
must reallocate themselves among four regions. For these
experiments, we used ten Pheeno mobile robots [21], each
equipped with a Raspberry Pi 3 computer, a Teensy 3.1
microcontroller board, a Raspberry Pi camera, six IR sensors
around its perimeter, and a bottom-facing IR sensor. Pheeno
is compatible with ROS, the Robot Operating System, which
facilities the implementation of advanced algorithms with our
multi-agent system.

For the experiments, we used a 2 m ⇥ 2 m confined arena,
shown in Fig. 4, that was divided into four regions of equal
size. These regions were labeled 1, 2, 3, and 4 according to
the green numbers in Fig. 5. Each region corresponds to a
vertex of a bidirected graph that defines the robots’ possible
transitions between the regions. Robots can move between
adjacent regions but not diagonally; i.e., there are no edges
between vertices 1 and 4 and between vertices 2 and 3. The
walls along the borders of regions 1, 2, 3, and 4 are colored
purple, cyan, green, and red, respectively, as shown in Fig. 4.
In addition, regions 1 and 4 have a black floor, and regions 2
and 3 have a white floor. These color features were included to
enable each robot to identify its current state (region) through
image processing and IR measurements.

A Microsoft LifeCam camera was mounted over the testbed
to obtain overhead images of the experiments. The robots
were marked with identical yellow square tags, which were
detected using the camera (see the red circles in Fig. 5). A
central computer processed images obtained by the camera
and communicated with all the robots over WiFi. The robots
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(a) Linear controller with N = 20 agents
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(b) Linear controller with N = 1200 agents
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(c) Nonlinear controller with N = 20 agents
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(d) Nonlinear controller with N = 1200 agents

Fig. 2: Trajectories of the mean-field model (thick lines) and the corresponding stochastic simulations (thin lines).
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Fig. 3: Snapshots of N = 5000 agents redistributing over a 65-vertex graph during a stochastic simulation of the closed-loop
system with a linear controller.
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Fig. 4: Multi-robot experimental testbed.

Fig. 5: Overhead camera view of the testbed during an
experimental trial.

did not have access to information about their positions in a
global frame.

B. ROS Setup

The entire setup utilized ROS middleware. The central
computer runs the ROS Master and two ROS nodes: an
overhead camera node to process images of the testbed from
the overhead camera, and a transition control node to initiate
or end an iteration. The overhead camera node calculates
the number of robots in each region. This calculation does
not require the identification of individual robots; instead,
the node uses color detection to count the number of yellow
identification tags inside each region on the testbed. These
numbers are then converted into robot densities in each state
and are published on a ROS topic. The transition control
node monitors the state transition iterations. The node ends
an iteration when every robot has reached its desired state.

Each robot runs three ROS nodes: a sensor node, a camera
node, and a controller node. The sensor node publishes data
from all the robot’s IR sensors on their corresponding topics
and drives the robot’s motors by subscribing to movement
command topics. The camera node publishes raw images from
the robot’s onboard cameras. Finally, the controller node runs
the motion control scheme for the robot, described in Section
V-C. This node receives the state densities from the central
computer’s overhead camera node. The robot computes the
next desired state using the controller input and has to decide
whether to stay in its current region or transition to another
one.

C. Robot Motion Controller

Each robot starts in one of the four regions (states), ac-
cording to the specified initial condition, and is programmed
with the desired equilibrium distribution x

eq and the set of
transition rates ke(x) that have been designed by the central
computer using one of the procedures described in Section
III. The robots know their initial region and update their
region after each iteration. At the start of each iteration, the
robots receive state feedback x, the current robot densities
in each region, from the overhead camera node. Using this
information, each robot computes its probability ke(x)�t,
where �t = 0.1, of transitioning to an adjacent spatial region
T (e) within the next iteration. This stochastic decision policy
is executed by the robot using a random number generator. If a
robot decides to transition to another region, it searches for the
color on the wall of that region. As soon as it finds the color,
it moves ahead along a straight path. If an encountered object
obstructs its path, the robot avoids it and reorients itself toward
the target region. Since the robot’s onboard camera is unable
to detect changes in depth, we assigned each region to have
a white or black floor, which can be identified by a bottom-
facing IR sensor on each robot. The robot detects that it has
entered the target region when it identifies a change in the floor
color. The robot then moves forward a small distance, which
prevents robots from clustering on the region boundaries, and
stops moving. Finally, the robot sends a True signal to the
transition control node. This node initiates the next iteration
once it receives a True signal from all the robots. The entire
process is repeated until the desired distribution is reached by
the robots.

D. Results

We computed linear and nonlinear feedback controllers
for the experiments in the same way that we computed the
controllers in Section IV for the simulations. The controllers
were designed to redistribute a population of N = 10 robots
on the four-vertex bidirected graph corresponding to the arena.
The initial distribution was defined as x

0
= [0.5 0.5 0 0]

T .
For the linear controller, the desired distribution was x

eq
=

[0.2 0.3 0.3 0.2]T , and for the nonlinear controller, it was
x

eq
= [0.3 0.2 0.2 0.3]T .

Fig. 6 shows the solution of the mean-field model (5) with
each of the two controllers and the corresponding robot popu-
lations in each state from the experiments, averaged over five
trials. For ease of comparison, the total robot populations were
normalized to 1. The plots show that the robots successfully re-
distribute themselves to the target distribution, as predicted by
the mean-field model. As in the numerical simulations in Fig.
2, the nonlinear controller produces a slower convergence rate
to equilibrium than the linear controller. Movies of the robot
experiments with both the linear and nonlinear controllers are
shown in the Video attachment.

VI. CONCLUSION
In this paper, we have presented computational procedures

for constructing decentralized state feedback controllers which
stabilize a swarm of agents to a target distribution among a
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(b) Nonlinear controller with N = 10 robots

Fig. 6: Trajectories of the mean-field model (thick lines) and the robot population fraction in each state, averaged over five
experimental trials (thin lines).

set of states. The agents switch stochastically between states
according to a continuous-time Markov chain. We designed
linear controllers using LMI-based techniques and nonlinear
controllers using results from polynomial optimization. We
validated these controllers through numerical simulations with
different numbers of agents and graph sizes and through
physical experiments with ten robots. In future work, we
will investigate the design of linear feedback controllers that
are globally asymptotically stabilizing. We will also design
nonlinear feedback controllers that are optimized for a fast
convergence rate to the desired equilibrium.
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