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Abstract— In this paper, we present several novel results on

controllability and stabilizability properties of the Kolmogorov

forward equation of a continuous time Markov chain (CTMC)

evolving on a finite state space, using the transition rates as

the control parameters. First, we characterize all the station-

ary distributions that are stabilizable using time-independent

control parameters. We then present a result on small-time

local and global controllability of the system from and to

strictly positive equilibrium distributions when the underlying

graph is strongly connected. Additionally, we show that any

target distribution can be reached asymptotically using time-

varying control parameters. For bidirected graphs, we construct

rational and polynomial density feedback laws that stabilize

strictly positive stationary distributions while satisfying the

additional constraint that that the feedback law takes zero

value at equilibrium. This last result enables the construction

of decentralized density feedback controllers, using tools from

linear systems theory and sum-of-squares based polynomial

optimization, that stabilize a swarm of agents modeled as a

CTMC to a target state distribution with no state-switching at

equilibrium. We validate the effectiveness of the constructed

feedback laws with stochastic simulations of the CTMC for

finite numbers of agents and numerical solutions of the corre-

sponding mean-field models.

I. INTRODUCTION

In this paper, we address the problem of redistributing a
large number of homogeneous agents among a set of states,
such as tasks to be performed or spatial locations to occupy.
This problem has many applications in swarm robotics, for
example, such as environmental monitoring, surveillance,
disaster response, and autonomous construction. In recent
years, approaches to this problem have been developed in
which the agents are programmed to switch stochastically
between states at tunable transition rates. In some of these
approaches [5], [19], [20], the agents’ states evolve according
to a continuous time Markov chain (CTMC), and their state
distribution is controlled using the corresponding mean-field
model, given by the Kolmogorov forward equation. Similar
approaches in [1], [2] specify that the agents’ dynamics
evolve in discrete time, in which case their state evolution is
described by a discrete time Markov chain (DTMC). These
methods enable the scalable design of robot controllers due
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to the independence of the control methodology from the
number of agents.

Various methods for control synthesis in this framework
have been proposed not only for applications in swarm
robotics, but also in the context of mean-field games and
optimal transport theory. The works [5] and [8] address an
open-loop optimal control problem for the Kolmogorov for-
ward equation, in which the control parameters, which are the
transition probabilities or rates of the associated CTMC, are
constrained to be time-invariant. These approaches have also
been extended to the case of time-varying control parameters
[3], [22], [15]. In [2], [11], [20], feedback controllers are
designed to drive a Markov chain to a target distribution. In
contrast to traditional control approaches for Markov chains
that use only the agent states as feedback [21], these works
use the densities of agents in different states as feedback
and continuously recompute the control parameters such that
the target distribution is stabilized. To avoid requiring agents
to have global information on these densities, decentralized
control approaches were developed either by a priori restrict-
ing the controller to have a decentralized structure [20] or by
designing a centralized controller and then using estimation
algorithms to estimate the global density of the swarm in a
decentralized manner [11]. There has also been some related
recent work on mean-field games, in which Hamilton-Jacobi-
Bellman (HJB) based methods are used for control synthesis
[17]. However, unlike HJB based methods in classical control
theory, approaches based on mean-field games do not result
in density feedback controllers unless analytical solutions can
be derived. The synthesized control inputs are open-loop in
nature and yield the desired behavior only for predefined
fixed initial conditions of the mean-field model [4].

In this paper, we present novel results on the controllability
and stabilizability of the mean-field control problem for
CTMCs. We study local and global controllability properties
of the forward equation when the control inputs are required
to be zero at equilibrium. The case when control inputs are
not constrained to be zero at equilibrium is comparatively
much easier, since local controllability follows directly from
linearization-based arguments, so we do not consider this
case here. We also demonstrate that it is possible to com-
pute density-independent transition rates of a CTMC that
make any probability distribution with a strongly connected
support (to be defined later) invariant and globally stable.
Similar work in [1] has characterized the class of stabilizable
stationary distributions for DTMCs with control parameters
that are time- and density-invariant; we characterize this class
of distributions for CTMCs with the same type of control



parameters (see Theorem IV.5). We show that this result can
be further strengthened by employing time-varying control
parameters that make the system asymptotically controllable
to any feasible probability distribution.

In addition, we address the stabilization of mean-field
models using decentralized density feedback laws under the
constraint that the transition rates are required to be zero at
equilibrium. Such a constraint is needed in swarm robotic
applications to prevent robots from constantly switching
between states at equilibrium. The problem of unnecessary
state-switching was previously addressed for CTMCs in
[20] as a variance control problem, and for DTMCs in
[3] using a decentralized density estimation strategy that
implements centralized feedback laws and ensures that the
transition matrix is the identity matrix at equilibrium. In
this paper, we investigate the CTMC case in more detail. In
contrast to [20], we explicitly show that any (strictly positive)
distribution is stabilizable using a decentralized feedback
law, and we impose the additional constraint that transition
rates must be zero at equilibrium. Moreover, the controller
in [20] was proved to be stabilizing with the assumption
that negative transition rates are admissible, and was then
implemented with a saturation condition in order to avoid
negative rates, in which case the stability guarantees are
lost. We show how this issue can be resolved with a linear
controller by interpreting a negative flow from one state
to another as a positive flow of appropriate magnitude in
the opposite direction. While the algorithmic construction of
linear controllers has low computational complexity, these
controllers violate positivity constraints on the control inputs.
To realize linear controllers in practice for our problem, we
show that for bidirected graphs, we can implement linear
controllers with rational feedback laws that mimic their
behavior. However, since this approach results in unbounded
controls, we also propose a feedback law that is a positive
polynomial function of the densities and therefore guarantees
the global boundedness of the controls.

The proofs of the results presented in this paper will be
made available in a forthcoming manuscript [13]. Prelimi-
nary versions of these proofs are given in [14], [6].

II. NOTATION

We first define the notation that will be used to formulate
the problems addressed in this paper. We denote by G =

(V, E) a directed graph with a set of M vertices, V =

{1, 2, ...,M}, and a set of NE edges, E ⇢ V ⇥ V . An
edge from vertex i 2 V to vertex j 2 V is denoted by
e = (i, j) 2 E . We define a source map S : E ! V and a
target map T : E ! V for which S(e) = i and T (e) = j

whenever e = (i, j) 2 E . There is a directed path of length
s from node i 2 V to node j 2 V if there exists a sequence
of edges {ei}si=1 in E such that S(e1) = i, T (es) = j, and
S(ek) = T (ek�1) for all 1  k < s � 1. A directed graph
G = (V, E) is called strongly connected if for every pair of
distinct vertices v0, vT 2 V , there exists a directed path of
edges in E connecting v0 to vT . We assume that (i, i) /2 E

for all i 2 V . The graph G is said to be bidrected if e 2 E
implies that ẽ = (T (e), S(e)) also lies in E .

We denote the M -dimensional Euclidean space by RM .
RM⇥N will refer to the space of M ⇥N matrices, and R+

will refer to the set of positive real numbers. Given a vector
x 2 RM , xi will refer to the i

th coordinate value of x.
The 2�norm of the vector x 2 RM is denoted by kxk2 =pP

i x
2
i . For a matrix A 2 RM⇥N , Aij will refer to the

element in the i

th row and j

th column of A. For a subset
B ⇢ RM , int(B) will refer to the interior of the set B.

III. PROBLEM FORMULATION
We consider a swarm of N autonomous agents whose

states evolve in continuous time according to a Markov chain
with finite state space V = {1, ...,M}, the vertex set of a
given graph G. As an example application of interest, V
can represent a set of spatial locations that are obtained
by partitioning the agents’ environment. The agents must
reallocate among the states to achieve a target population
distribution at equilibrium. The edge set E of G defines
the pairs of vertices (states) between which the agents can
transition. Denoting the set of admissible control inputs by
U ⇢ R, the agents’ transition rules are determined by the
control parameters ue : [0,1) ! U for each e 2 E , and
are known as the transition rates of the associated CTMC.
An agent in state v1 at time t decides to switch to state
v2 at probability per unit time ue(t), e = (v1, v2). We will
mostly focus on the case where U ⇢ R+, i.e., the ue(t)

obey positivity constraints, since transition rates must always
be positive for a CTMC. However, we will also consider
the case where transition rates may be negative, in order to
facilitate analysis of the case with positivity constraints. The
state of each agent i 2 {1, ..., N} is defined by a stochastic
process Xi(t) that evolves on the state space V according to
the conditional probabilities

P(Xi(t+ h) = T (e)|Xi(t) = S(e)) = ue(t)h+ o(h) (1)

for each e 2 E . Here, o(h) is the little-oh symbol and P is
the underlying probability measure induced on the the space
of events ⌦ (which will be left undefined, as is common)
by the stochastic processes {Xi(t)}Ni=1. Let P(V) = {y 2
RM

+ ;

P
v yv = 1} be the simplex of probability densities on

V . Corresponding to the CTMC is a set of ordinary differ-
ential equations (ODEs) which determines the evolution of
the probability densities P(Xi(t) = v) = xv(t) 2 R+. Since
{Xi}Ni=1 is a set of independent and identically distributed
random variables, the Kolmogorov forward equation can be
represented by a single linear system of ODEs,

˙

x(t) =

X

e2E
ue(t)Bex(t), t 2 [0,1), (2)

x(0) = x

0 2 P(V),

where Be are control matrices whose entries are given by

B

ij
e =

8
><

>:

�1 if i = j = S(e),

1 if i = T (e), j = S(e),

0 otherwise.
(3)



The focus of this paper is to study controllability and sta-
bilizability properties of the control system (2). To describe
the controllability problem of interest, we first recall some
controllability notions from nonlinear control theory [7].

Definition III.1. Given U and x

0 2 P(V), we define
R

U
(x

0
, t) to be the set of all y 2 P(V) for which there

exists an admissible control, u = {ue}e2E , taking values
in U such that there exists a trajectory of system (2) with
x(0) = x

0, x(t) = y. The reachable set from x

0
at time T

is defined to be

R

U
T (x

0
) = [0tTR

U
(x

0
, t). (4)

Definition III.2. The system (2) is said to be small-time lo-

cally controllable (STLC) from an equilibrium distribution
x

d 2 P(V) if the set of reachable states R

U
T (x

d
) contains

a neighborhood of xd 2 P(V) in the subspace topology of
P(V) (as a subset of RM ) for any T > 0.

Here, we have defined local controllability in terms of the
subspace topology of P(V). This is because the set P(V) is
invariant for the system (2) of controlled ODEs, and hence
one cannot expect controllability to a full neighborhood of
x

d. Informally, this just means that, due to conservation of
mass, one cannot create or destroy agents by manipulating
their rates of transitioning from one vertex to another.

Our first problem of interest can be framed as follows:

Problem III.3. Given x

d 2 P(V), determine if the system
(2) is STLC from x

d 2 P(V).

The above problem allows the control inputs to be time-
varying. We now pose a problem in which the control inputs
are constrained to be time-independent.

Problem III.4. Given x

d 2 P(V), determine if there exist
positive control parameters {ue}e2E for the system (2) such
that limt!1 kx(t)� x

dk = 0 for all x0 2 P(V).

We provide a complete characterization of the stationary
distributions that are stabilizable for this case. Although
density- and time-independent transition rates of CTMCs
have been previously computed in an optimization frame-
work [5], the question of which equilibrium distributions
are feasible has remained unresolved for the case where
the target distribution is not strictly positive on all vertices.
While only strictly positive target distributions have been
considered in previous work on control of swarms governed
by CTMCs [5], we address the more general case in which
the target densities of some states can be zero. This question
was addressed in [1] for swarms governed by DTMCs.
The problem has also been investigated in the context of
consensus protocols [9] for strictly positive distributions,
where what is referred to as “advection on graphs” is in
fact the forward equation corresponding to a CTMC. In our
controller synthesis, we will relax the assumption of strict
positivity for desired target distributions.

Next, we consider the feedback stabilization problem for

system (2). Consider the following system:

˙

x(t) =

X

e2E
ke(x(t))Bex(t), t 2 [0,1), (5)

x(0) = x

0 2 P(V).

Problem III.5. Given x

d 2 P(V), determine whether there
exists a decentralized feedback law, defined as a collection
of maps ˜

ke : R2 ! R+ where ke(y) =
˜

ke(yS(e), yT (e)) for
each e 2 E and y 2 RM , such that for the closed-loop
system (5), xd is asymptotically stable and ke(x

d
) = 0 for

each e 2 E .

We note that we were able to describe the state evolution
of the agents by system (2) when the transition rates were
density-independent because the agents’ states were inde-
pendent and identically distributed (i.i.d.) random variables
in that case. However, when the density feedback control
law {ue(x)}e2E is used, the independence of the stochastic
processes Xi(t) is lost. This implies that the evolution of
the probability distribution cannot be described by system
(2). However, if we invoke the mean-field hypothesis and
take the limit N ! 1, then we can model the evolution of
the probability distribution according to a nonlinear Markov
chain. In this limit, the discrete number of agents Nv(t,!) in
state v 2 V at time t 2 [0, T ], where ! is used to emphasize
that Nv is a measurable function of the sample path ⌦,
converges to the continuous agent population xv(t) in an
appropriate sense, provided that solutions of system (5) are
defined until a given final time T > 0. A rigorous process for
taking this limit in a stochastic process setting is described
in [16], [18].

IV. ANALYSIS
A. Controllability

In this section, we state several results on controllability
that address Problems III.3 and III.4.

Intuitively, if the graph G is not strongly connected, then
we should not have local controllability. This is formalized
in the following proposition.

Proposition IV.1. If the graph G = (V, E) is not strongly
connected, then the system (2) is not locally controllable.

When the graph is strongly connected, we can transport
a small amount of mass from one vertex to another using
a sequence of control inputs that are associated with the
edges of the graph. This observation enables us to state the
following STLC property of system (2):

Proposition IV.2. Let U = [0, ✏] for some ✏ > 0. If the
graph G = (V, E) is strongly connected, then the system (2)
is STLC from every point in int(P(V)).

Note that Proposition IV.2 does not immediately follow
from classical conditions for controllability such as the
Kalman rank condition in linear systems theory or the Lie
Bracket conditions in geometric control theory, due to the
positivity constraints on the control inputs and the fact that
0 does not lie in the interior of the set of control inputs U .



The constructive nature of the proof of Proposition IV.2 is
largely due to the sparse structure of the matrix Be defined
in (3), which enables an explicit representation of the matrix
exponential exp(tBe). For any edge e = (i, j) 2 E , the
exponential of the control matrix Be is a stochastic matrix
with entries given by

(exp tBe)
k`

=

8
>><

>>:

1 if k = ` 6= S(e)

e

�t if k = ` = S(e)

1� e

�t if k = T (e) and ` = S(e)

0 otherwise.
(6)

Rather than deriving a general formula for the correspond-
ing product on the group for arbitrary edges (i, j), (j, `) 2 E ,
we state the product for the special case of V = {1, 2, 3} and
edges e = (1, 2) and e

0
= (2, 3) as an illustration:

e

tBe0
e

sBe
=

0

@
e

�s
0 0

e

�t
(1� e

�s
) e

�t
0

(1� e

�t
)(1� e

�s
) 1� e

�t
1

1

A
. (7)

Despite the assumption that G is strongly connected, there
are some limitations on the controllability of system (2) due
to the nature of its control vector fields. In particular, global
controllability can only be guaranteed for target densities
that lie in the interior of the domain of the simplex P(V),
as stated in the theorem below.

Theorem IV.3. If the graph G = (V, E) is strongly con-
nected, then the system (2) is small-time globally controllable
from every point in the interior of the simplex P(V).

In fact, we can state the following broader result. If
G is strongly connected, then the system (2) is also path
controllable: given any trajectory �(t) in P(V) that is defined
over a finite time interval [0, T ] and is once differentiable
with respect to the time variable t, there exists a control
law u : [0, T ] ! [0,1)

NE such that the solution of the
control system (2) satisfies x(t) = �(t) for all t 2 [0, T ].
This is true because conical combinations of the collection of
vectors {Bey}e2E span the tangent space of P(V) whenever
y lies in the interior of P(V). For example, given a strongly
connected graph G, if (i, j) 2 E and there exists a directed
path µ from j to i, then �B(i,j)1 =

P
e2µ Be1.

It would be desirable to extend the above result to in-
clude target distributions that lie on the boundary of P(V).
However, as stated previously, one cannot expect to reach
target distributions on the boundary in finite time. The
boundary of P(V) is unreachable if the initial condition of
system (2) starts from the interior of P(V), even if one
uses possibly unbounded but measurable inputs with finite
Lebesgue integral. The following counterexample clarifies
this point.

Example IV.4. Consider system (2) for a bidirected graph
G with two vertices:

ẋ1(t) = �u(1,2)(t)x1(t) + u(2,1)x2(t), (8)
ẋ2(t) = u(1,2)(t)x1(t)� u(2,1)x2(t),

x1(0) = x

0
1, x2(0) = x

0
2.

Let u(1,2), u(2,1) 2 L

1
+(0, 1), the set of positive-valued

measurable inputs with finite integrals over the time interval
(0, 1). Then the solution, x(t) = [x1(t) x2(t)]

T , satisfies:

x1(t) = x

0
1 �

Z t

0
(u(1,2)(⌧)x1(⌧)� u(2,1)(⌧)x2(⌧))d⌧, (9)

x2(t) = x

0
2 +

Z t

0
(u(1,2)(⌧)x1(⌧)� u(2,1)(⌧)x2(⌧))d⌧, (10)

such that x0
1 2 (0, 1) and x

0
2 = 1� x

0
1. We assume, without

loss of generality, that x1(t) > 0 for all t 2 [0, 1). Then for
each T 2 [0, 1), Equations (9) and (10) imply that:

x1(T ) = x

0
1 �Z T

0

✓
u(1,2)(⌧) + u(2,1)(⌧)�

u(2,1)(⌧)

x1(⌧)

◆
x1(⌧)d⌧.

From this equation, we can conclude that

x1(1) � x

0
1 �

Z 1

0
(u(1,2)(⌧) + u(2,1)(⌧)x̃1(⌧))d⌧ (11)

= exp

✓
�
Z 1

0
(u(1,2)(⌧) + u(2,1)(⌧))d⌧

◆
x

0
1,

where x̃1 is the solution of the differential equation

˙

x̃1(t) = �(u(1,2)(t) + u(2,1)(t))x̃1(t), (12)
x̃1(0) = x

0
1.

Therefore, it must be true that
exp (�

R 1
0 (u(1,2)(⌧) + u(2,1)(⌧))d⌧)x

0
1  0, which yields a

contradiction since x

0
1 6= 0.

The above observation is not a significant disadvantage,
since each point in P(V) is at least asymptotically control-
lable. Before demonstrating why this is true, we address
Problem III.4 and hence give a complete characterization
of the class of equilibrium stationary distributions that are
stabilizable using time-independent control inputs.

Theorem IV.5. Let G be a strongly connected graph. Sup-
pose that x0 2 P(V) is an initial distribution and x

d 2 P(V)
is a desired distribution. Additionally, assume that x

d has
strongly connected support. Then there is a set of parameters,
ae 2 [0,1) for each e 2 E , such that if ue(t) = ae for all
t 2 [0,1) and for each e 2 E in system (2), then the solution
x(t) of this system satisfies kx(t) � x

dk  Me

��t for all
t 2 [0,1) and for some positive parameters M and � that
are independent of x0.

Now we are ready to state the asymptotic controllability
result referred to previously.

Theorem IV.6. Let G be a strongly connected graph. Sup-
pose that x

0 2 P(V) is the initial distribution, and x

d 2
P(V) is the desired distribution. Then for each e 2 E , there
exists a set of time-dependent control parameters ue : R+ !
R+, e 2 E , such that the solution x(t) of the controlled ODE
(2) satisfies limt!1 x(t) = x

d.

The above result can be proved for control inputs that are
globally bounded in time. Hence, it follows that any point in



P(V), including those lying on the boundary of P(V), can
be stabilized using a full-state feedback controller [10].

B. Stabilization

Now we investigate the stabilizability properties of the
system (2). Note that stabilizability using centralized feed-
back follows from the controllability result in Theorem IV.3.
Hence, our focus in this section is to establish stabilizability
using decentralized control laws.

Lemma IV.7. Let G be a strongly connected graph. Suppose
that xd 2 int(P(V)). Let ke : RM ! (�1,1) be given by
ke(y) = x

d
T (e)yS(e) �x

d
S(e)yT (e) in system (5), for each e 2

E and each y 2 RM . Then for this system, the equilibrium
point xd is locally exponentially stable on the space P(V),
i.e., there exists r > 0 such that kx0 � x

dk2 < r and x0 2
P(V) imply that the solution x(t) of the system satisfies the
inequality

kx(t)� x

dk2  M0e
��t (13)

for all t 2 [0,1) and for some parameters M0 > 0 and
� > 0 that depend only on r.

The above lemma implies that if negative transition rates
are admissible, then there exists a linear feedback law,
{ke}e2E , such that ke(x

d
) = 0 for each e 2 E and the

desired equilibrium point is locally exponentially stable.
A desirable property of the control system (2) is that

stabilization of the desired equilibrium can be achieved using
a linear feedback law that satisfies positivity constraints away
from equilibrium and is zero at equilibrium. However, any
stabilizing linear control law that is zero at equilibrium
must in fact be zero everywhere. On the other hand, in
the next theorem we show that whenever G is bidirected,
any feedback control law that violates positivity constraints
can be implemented using a rational feedback law of the
form k(x) = a(x) + b(x)

f(x)
g(x) , such that k(x) satisfies the

positivity constraints and is zero at equilibrium.

Theorem IV.8. Let G be a bidirected graph. Let ke : RM !
(�1,1) be a map for each e 2 E such that there exists a
unique global solution of the system (5). Additionally, assume
that x(t) 2 int(P(V)) for each t 2 [0,1). Consider the
functions m

p
e : RM ! {0, 1} and m

n
e : RM ! {0, 1},

defined as follows for each e 2 E:

m

p
e(y) = 1 if ke(y) � 0, 0 otherwise; (14)

m

n
e (y) = 1 if ke(y)  0, 0 otherwise. (15)

Let ce : RM ! [0,1) be given by

ce(y) = m

p
e(y)ke(y)�m

n
ẽ (y)kẽ(y)

yT (e)

yS(e)
. (16)

Then the solution ˜

x(t) of the following system,

˙

˜

x =

X

e2E
ce(˜x(t))Be˜x(t), t 2 [0,1), (17)

˜

x(0) = x

0 2 int(P(V)),

is unique, defined globally, and satisfies ˜

x(t) = x(t) for all
t 2 [0,1).

In the above theorem, it is required that x(t) 2 int(P(V))
for all t � 0. This assumption on the initial distribution can
be avoided if one uses polynomial feedback instead, as in
the following theorem.

Theorem IV.9. Let G be a bidirected graph. Suppose that
x

d 2 int(P(V)). Let ke : RM ! [0,1) be given by ke(y) =

(yS(e)�x

d
S(e))

2
+(yT (e)�x

d
T (e))

2 in system (5), for each e 2
E and each y 2 RM . Then for this system, the equilibrium
point xd is globally asymptotically stable.

V. NUMERICAL SIMULATIONS

In this section, we numerically verify the effectiveness
of the decentralized feedback controllers that are defined
in Lemma IV.7 (the linear controller) and Theorem IV.9
(the nonlinear controller). The controllers were constructed
to redistribute populations of N = 80 and N = 1200

agents on the six-vertex bidirected graph shown in Fig.
1. In all cases, the initial distribution of agents was set
to x

0
= [0.2 0.1 0.2 0.15 0.2 0.15]

T , and the desired
distribution was x

d
= [0.1 0.2 0.05 0.25 0.15 0.25]

T .
For both feedback controllers, the numerical solution of the
mean-field model (5) was compared to stochastic simulations
of the CTMC characterized by expression (1). This CTMC
was simulated using an approximating DTMC that evolves in
discrete time. The probability that an agent i in state (vertex)
S(e), e 2 E , at time t transitions to state T (e) at time t+�t

was set to:

P(Xi(t+�t) = T (e)|Xi(t) = S(e)) = ke

✓
1

N

N

p
(t)

◆
�t.

Here, {ke}e2E is the set of feedback laws and N

p
(t) =

[N

p
1 (t) N

p
2 (t) ... N

p
M (t)]

T , where N

p
v (t) is the number of

agents in state v 2 V at time t. We assume that each agent
can measure the agent populations in its current state and in
adjacent states.

In Figs. 2 and 3, we compare simulations of the closed-
loop system (5) with the feedback controllers to simulations
of the open-loop system (2). The controller for the open-
loop system was constructed by setting the right-hand side
of system (2) equal to Gx = �L(G)Dx, where L(G) is the
Laplacian matrix of the graph G and D is a diagonal matrix
with entries D

ij
= 1/x

d
i if i = j, D

ij
= 0 otherwise.

This makes the desired distribution x

d invariant for the
corresponding CTMC. The transition rates (control inputs)
for this controller were defined as ue(t) = G

T (e)S(e) for
all t 2 [0,1), e 2 E . Fig. 2 shows that the open-loop
controller produces large variances in the agent populations
at steady-state. As an expected consequence of the law of
large numbers, these variances are smaller for N = 1200

agents than for N = 80 agents. In comparison, the variances
are much smaller when the feedback controllers are used,
as shown in Fig. 3. This is due to the property of the
feedback controllers that as the agent densities approach
their desired equilibrium values, the transition rates tend to



Fig. 1: Six-vertex bidirected graph.

zero. This property reduces the number of unnecessary agent
state transitions at equilibrium. Using open-loop control, the
agents’ states keep switching and never reach steady-state
values. In contrast, using the feedback controllers, the agents’
states remain constant after a certain time.

As discussed in Section III, the underlying assumption
of using the mean-field models (2) and (5) is that the
swarm behaves like a continuum. That is, the ODEs (2)
and (5) are valid as number of agents N ! 1. Hence,
it is imperative to check the performance of the feedback
controllers for different agent populations. We observe in
Figs. 3b and 3d that in the case of N = 1200 agents, the
stochastic simulation follows the mean-field model solution
quite closely for both feedback controllers. In addition, in
all simulations, the numbers of agents in each state remain
constant after some time; in the case of N = 80 agents, the
fluctuations stop earlier than in the case of N = 1200 agents.

Lastly, we observe that the nonlinear controller produces a
significantly slower convergence rate to equilibrium than the
linear controller. Figs. 3c and 3d show that the mean-field
model with the nonlinear controller converges asymptotically
to the desired equilibrium, and hence still exhibits a small
discrepancy from the stochastic simulations at time t = 500

s. This discrepancy is absent when the linear controller
is used. We could increase the convergence rate for the
nonlinear controller by encoding it as a constraint in our
algorithmic procedure, described in [12], for constructing the
linear and nonlinear feedback controllers.

VI. CONCLUSION

In this paper, we have presented several fundamental
results on controllability properties of forward equations of
CTMCs that are associated with strongly connected graphs.
We showed asymptotic controllability of distributions that
are not strictly positive, with target densities equal to zero
for some states. In addition, we constructed decentralized,
density-dependent rational and polynomial feedback laws
that stabilize the corresponding mean-field model, with con-
trol inputs that equal zero at equilibrium. In future work,
we plan to investigate the design of polynomial feedback
laws that improve the stability of the closed-loop system
beyond asymptotic stability and optimize the convergence
rate to equilibrium. Another direction of future work is to
characterize the effect of noise in estimates of the agent
densities on the convergence properties of the proposed
control laws.
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(a) Open-loop system, N = 80
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(b) Open-loop system, N = 1200

Fig. 2: Trajectories of the mean-field model (thick lines) and the corresponding stochastic simulations (thin lines).
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(a) Closed-loop system with linear controller, N = 80
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(b) Closed-loop system with linear controller, N = 1200
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(c) Closed-loop system with nonlinear controller, N = 80
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(d) Closed-loop system with nonlinear controller, N = 1200

Fig. 3: Trajectories of the mean-field model (thick lines) and the corresponding stochastic simulations (thin lines).


