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Abstract— We consider the problem of controlling the spa-
tiotemporal probability distribution of a robotic swarm that
evolves according to a reflected diffusion process, using the
space- and time-dependent drift vector field parameter as the
control variable. In contrast to previous work on control of
the Fokker-Planck equation, a zero-flux boundary condition
is imposed on the partial differential equation that governs
the swarm probability distribution, and only bounded vector
fields are considered to be admissible as control parameters.
Under these constraints, we show that any initial probability
distribution can be transported to a target probability dis-
tribution under certain assumptions on the regularity of the
target distribution. In particular, we show that if the target
distribution is (essentially) bounded, has bounded first-order
and second-order partial derivatives, and is bounded from
below by a strictly positive constant, then this distribution can
be reached exactly using a drift vector field that is bounded in
space and time. Our proof is constructive and based on classical
linear semigroup theoretic concepts.

I. INTRODUCTION

In recent years, there has been much work on the modeling

and control of swarms of homogeneous agents using mean-

field models. These mean-field models are typically defined

by a system of partial differential equations (PDEs) that

describe how an initial probability measure is pushed forward

under the action of an ordinary differential equation (ODE)

or a stochastic differential equation (SDE). In this context,

spatial information on the agent positions is modeled using

probability measures, and the mean-field control problem is

to design parameters of the system of PDEs so that these

probability measures evolve in a desirable manner.

This perspective has led to a number of works on optimal

control of PDEs with the goal of optimizing swarm behavior.

In [22], the authors use a maximum principle for control

of infinite-dimensional systems to design optimal switching

parameters that achieve target swarm densities. The work

in [2] addresses the problem of optimal control of the

Fokker-Planck equation to ensure that its solution tracks

a predefined time-dependent reference density. A similar

approach is used for mean-field games and mean-field type

controls in [5], [17], which consider controlled versions of

Vlasov-Mckean type SDEs whose coefficients are coupled to

the distribution of the stochastic process. While most prior
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work has considered the case where there is noise in the

agent dynamics, there has also been some recent work on

the noise-less case where each agent evolves according to

an ODE [7], [16] rather than an SDE.

The literature on control of mean-field models has mostly

focused on the synthesis of optimal control strategies. How-

ever, there has been some work on questions of stabi-

lization and controllability of such models. For example,

the design of output feedback laws for designing globally

stable invariant distributions of stochastic processes was

considered in [21]. Control of swarm protocols governed

by the kinetic Cucker-Smale model was addressed in [24]

to produce flocking behavior. The Benamou-Brenier fluid

dynamic formulation of optimal transport problems [4] can

also be interpreted as a problem of optimal control and

controllability of the continuity equation. See also the work

by Brockett [9] on related problems on the control of

Liouville equations. Closer to the work in this paper are

the studies [6], [12], [26] on controllability of Fokker-Planck

equations. In [6] and [12], it was proven that solutions of the

Fokker-Planck equation evolving on Rn
can be controlled

to a large class of target distributions. This result has been

extended to the case where the agent dynamics are governed

by general linear SDEs and the initial and target distributions

are Gaussian [10], [11]. Poretta [26] considered the problem

of controllability of the Fokker-Planck equation when the

solutions evolve on a torus, along with the well-posedness

of an associated mean-field game problem.

In this work, we consider controllability of the Fokker-

Planck equation on a bounded one-dimensional domain with

zero-flux boundary condition. This problem is of practical

importance for swarm robotic applications in which the

agents’ spatiotemporal behavior can be modeled by the

Fokker-Planck equation and the agents are constrained to

evolve in a bounded domain [13], [15], [22], [27]. Specif-

ically, we prove (see Theorem IV.10) that when the target

probability density is sufficiently regular, it can be reached

from any square-integrable initial probability distribution

in a given finite time using bounded control inputs. Our

arguments are entirely based on linear operator semigroup

theoretic concepts and make a straightforward exploitation

of the fact that the exponential convergence rate to the target

equilibrium can be increased arbitrarily using an appropriate

density-feedback law. This approach differs from those in

[6] and [12], which are based on probabilistic and stochastic

control theoretic concepts, and the approach in [26], which

uses observability inequality type arguments. Although it

might be possible to adapt these methods for our scenario, the



constraint of the vector field being bounded is not imposed in

these works, which is more relevant for practical scenarios of

interest to us. On the other hand, unlike the works [12], [6],

[26], we do not address any issue regarding the optimality

of the control laws. We note that although we restrict our

analysis in this paper to the case of one-dimensional (1-

D) domains for the sake of simplicity, our approach has

natural extensions to the more practical multi-dimensional

case, which will be the subject of our future work.

II. PROBLEM FORMULATION

Consider a swarm of n agents deployed on the 1-D

domain [0, 1]. The position of each agent, indexed by

i 2 {1, 2, ..., n}, evolves according to a stochastic process

Zi(t) 2 [0, 1], where t denotes time. Since the random

variables that correspond to the dynamics of each agent

are independent and identically distributed, we can drop

the subscript i and define the problem in terms of a single

stochastic process, Z(t) 2 [0, 1]. The deterministic motion

of each agent is defined by a vector field v(x, t) 2 R, where

x 2 [0, 1]. This motion is perturbed by the Wiener process

W (t), which models noise. This process can be a model

for stochasticity arising from inherent sensor and actuator

noise. Alternatively, noise could be actively programmed

into the agents’ motion to implement more exploratory agent

behaviors and to take advantage of the smoothening effect

of the process on the agents’ probability densities. Given the

parameter v(x, t), the stochastic process Z(t) satisfies the

following SDE [28]:

dZ(t) = v(Z, t)dt+
p
2dW (t) + d (t), (1)

Z(0) = Z0,

where d (t) 2 R is called the reflecting function, a stochastic

process that constrains Z(t) to the domain [0, 1].

Problem II.1. Given T > 0 and f : [0, 1] ! R+ such thatR 1
0 f(x)dx = 1, determine if there exists a feedback control

law v : [0, 1]⇥ [0, T ] ! R such that the process (1) satisfies
P(Z(T ) 2 �) =

R
� f(x)dx for each Borel subset � ⇢ [0, 1].

The Kolmogorov forward equation corresponding to the

SDE (1) is given by [25]:

yt = yxx � (vy)x in (0, 1)⇥ [0, T ]

y(·, 0) = y0 in (0, 1)

(yx � vy)(0, ·) = (yx � vy)(1, ·) = 0 in [0, T ]

(2)

The solution y(x, t) of this equation represents the probabil-

ity density of a single agent occupying position x 2 [0, 1]
at time t, or alternatively, the density of a population of

agents at this position and time. The PDE (2) is related to

the SDE (1) by the relation P(Z(t) 2 �) =

R
� y(x, t)dx

for all t 2 [0, T ] and all measurable �. Problem II.1 can be

reframed in terms of equation (2) as a PDE controllability

problem as follows:

Problem II.2. Given T > 0, y0 : [0, 1] ! R+, and
f : [0, 1] ! R+ such that

R 1
0 y0(x)dx =

R 1
0 f(x)dx = 1,

determine whether there exists a space- and time-dependent
parameter v : [0, 1]⇥ [0, T ] ! R such that the solution y of
the PDE (2) satisfies y(·, T ) = f .

III. PRELIMINARIES AND NOTATION

We define L2
(0, 1) as the Hilbert space of square-

integrable real-valued functions over the unit interval,

(0, 1) ⇢ R. The Hilbertian structure of L2
(0, 1) is induced by

the standard inner product, h·, ·i2 : L2
(0, 1)⇥L2

(0, 1) ! R,

given by:

hp, qi2 =

Z 1

0
p(x)q(x)dx (3)

for each p, q 2 L2
(0, 1). The norm k·k2 on the space L2

(0, 1)
is defined as

kpk2 = hp, pi1/22 (4)

for all p 2 L2
(0, 1). For a function r 2 L2

(0, 1) and a given

constant c, we write r � c to imply that r(x) � c for almost

every x 2 (0, 1).
We define the Sobolev space H1

(0, 1) =
�
z 2 L2

(0, 1) :
zx 2 L2

(0, 1)
 

. We equip this space with the usual Sobolev

norm k · kH1
, given by

kpkH1
=

⇣
kpk22 + kpxk22

⌘1/2

for each p 2 H1
(0, 1). We will also need the space

H2
(0, 1) =

�
z 2 H1

(0, 1) : zxx 2 L2
(0, 1)

 
, which will

be equipped with the norm k · kH2
given by

kpkH2
=

⇣
kpk2H1 + kpxxk22

⌘1/2

for each p 2 H1
(0, 1). We define L1

(0, 1) as the space

of essentially bounded measurable functions on (0, 1). The

space L1
(0, 1) is equipped with the norm

kzk1 = ess supx2(0,1)|z(x)|, (5)

where ess supx2(0,1)(·) denotes the essential supremum
attained by its argument over the interval (0, 1). For a given

a 2 L1
(0, 1), L2

a(0, 1) will refer to the set of all functions

p such that Z 1

0
|p(x)|2a(x)dx < 1. (6)

The space L2
a(0, 1) is a Hilbert space with respect to the

weighted inner product h·, ·ia : L2
a(0, 1) ⇥ L2

a(0, 1) ! R,

given by:

hp, qia =

Z 1

0
p(x)q(x)a(x)dx (7)

for each p, q 2 L2
(0, 1). We also define the Sobolev spaces

W 1,1
(0, 1) =

�
z 2 L1

(0, 1) : zx 2 L1
(0, 1)

 
, (8)

W 2,1
(0, 1) =

�
z 2 W 1,1

(0, 1) : zxx 2 L1
(0, 1)

 
. (9)

The space C([0, T ];L2
(0, 1)) consists of all continuous

functions u : [0, T ] ! L2
(0, 1) for which

kukC([0,T ];L2(0,1)) := max

0tT
ku(t)k2 < 1.



We will need an appropriate notion of a solution of the

PDE (2). Toward this end, let A be a closed linear operator

on a Hilbert space X with domain D(A). For a given time

T > 0, a mild solution of the ODE

u̇(t) = Au(t); u(0) = u0 2 L2
(0, 1) (10)

is a function u 2 C([0, T ];L2
(0, 1)) such that u(t) =

u0 + A
R t

0 u(s)ds for each t 2 [0, T ]. Under appropriate

conditions satisfied by A, the mild solution is given by a

semigroup of linear operators, (T (t))t�0, that are generated
by the operator A. That is, the solution of the above ODE

is given by u(t) = T (t)u0 for each t 2 [0, T ].
The differential equations that we analyze in this paper

will be non-autonomous in general. Hence, we must adapt

the notion of a mild solution to these types of equations.

Let Ai be a closed linear operator with domain D(Ai) for

each i 2 Z+. For a certain time interval [0, T ], a piecewise

constant family of operators is given by a map, t 7! A(t),
for which there exists a partition of [0, T ] = [i2Z+ [ai, ai+1)

such that ai  ai+1 for each i 2 Z+ and A(t) = Ai for

each t 2 [ai, ai+1). Then a mild solution of the ODE

u̇(t) = A(t)u(t); u(0) = u0 2 X (11)

is a function u 2 C([0, T ];X) such that

u(t) = u0 +

X

i2Z+

Ai

Z min{t,a
i+1}

min{t,a
i

}
u(s)ds (12)

for each t 2 [0, T ]. There is in fact a more general notion

of mild solutions that arise from two-parameter semigroups

of operators generated by time-varying linear operators.

However, the definition in (12) will be sufficient for our

purposes, since one can construct solutions of the ODE (11)

by treating it as an autonomous system in each time interval

[ai, ai+1) and patching these solutions together to obtain the

solution u. Note that the mild solution is defined with respect

to an operator A or collection of operators A(t); when we

refer to such a solution, the associated operator(s) will be

clear from the context.

IV. CONTROLLABILITY ANALYSIS

In this section, we prove our main result, Theorem IV.10,

as a solution to Problem II.2. However, we first note the

following result on exponential stabilizability of equilibrium

distributions, which is also useful from the point of view

of multi-agent control problems and gives an approximate

result to the controllability problem II.2. Particularly, this

theorem gives a candidate time-independent vector field if

one desires convergence to a given target distribution at an

exponential rate. This is similar to our previous work [13],

where we used a spatially inhomogenous diffusion coefficient

to stabilize desired probability densities. However, one needs

to assume higher regularity on the target distributions in the

following scenario than the work in [13].

Theorem IV.1. Let y0 2 L2
(0, 1) and f 2 W 1,1

(0, 1)
such that y0 � 0, f � k > 0 for some strictly positive
constant k, and

R 1
0 y0(x)dx =

R 1
0 f(x)dx = 1. Suppose that

v(x, t) = fx(x)/f(x) for all t 2 [0,1) and almost every
x 2 (0, 1) in the PDE (2). Then a unique mild solution
y 2 C([0,1);L2

(0, 1)) of the PDE exists and satisfies the
estimate

ky(·, t)� fk2  Me��tky0 � fk2 (13)

for some positive constants M � 1, � and all t 2 [0,1).

The above result is a straightforward corollary of a result

well-known in mathematics and physics literature; namely,

that if v is the gradient of a potential function �, then e�

is the unique stationary distribution of the stochastic process

(1). From this, if one observes that fx/f = (ln f)x, then

it follows that any weakly differentiable function with a

strictly positive lower bound can be written as an exponential

distribution, f = e(ln f)
. Hence, any function f that is at

least once weakly differentiable can then be designed to be

the equilibrium distribution of the Fokker-Planck equation by

choosing the vector field to be the gradient of the potential

function, ln f . See remarks in [20], [1], and [3]. There

are multiple ways to establish the stability result. One such

approach is using optimal transport methods. Using this

approach, the above result follows when certain convexity

conditions on f are satisfied and the PDE (2) is framed as

a gradient flow for an appropriate energy functional on the

2-Wasserstein space [29]. This is shown in [20] and [1]. For

more general f as stated in the above theorem, the result

follows using classical functional analytic methods, which

might not be sufficient when the domain of the PDE is un-

bounded or infinite-dimensional as in the works [20] and [1],

respectively. Particularly, the operator (·)xx � (· f
x

f )x with

the zero-flux boundary condition is a self-adjoint, negative

semi-definite, closed and densely defined operator on the

weighted space L2
f (0, 1). L

2
f (0, 1) is isomorphic to the space

L2
(0, 1) due to the upper and lower bounds on f . Hence, the

spectrum of the generator, (·)xx�(

f
x

f )x, lies on the real line

and is bounded above by the principal eigenvalue. 0 is an

eigenvalue that has a positive eigenvector, f . This implies

that 0 is that principal eigenvalue. Principal eigenvalues of

elliptic operators are simple, and therefore the rest of the

spectrum lies to the left of some negative number, ��. From

this, the result on exponential stability of the steady-state

solution f follows. See also [3] for more details to establish

the spectral gap, �, using Poincar´e inequalities.

Next, we collect some preliminary results that will be

needed to prove our main theorem.

Theorem IV.2. Consider the PDE,

yt = ayxx in (0, 1)⇥ [0, T ]

y(·, 0) = y0 in (0, 1)

yx(0, ·) = yx(1, ·) = 0 in [0, T ]

(14)

Let a 2 W 2,1
(0, 1) be such that a � e for some strictly

positive constant e. Let y0 2 L2
(0, 1). Then a unique mild

solution y 2 C([0, T ];L2
(0, 1)) of the above PDE exists.



Additionally, if there exists a positive constant, c > 0, such
that y0 � c, then y(·, t) � c for each t 2 [0,1).

Proof. See appendix.

Now, we make some definitions which will be used

subsequently. Given a 2 W 2,1
(0, 1) such that a � e for

some strictly positive constant e, we define the operator

Aa : D(Aa) ! L2
(0, 1) by

Aau = (au)xx (15)

for each u 2 D(Aa) = {w 2 H2
(0, 1); (awx)(0) =

(aw)x(1) = 0}.

Corollary IV.3. Let a 2 W 2,1
(0, 1) be such that a � e for

some strictly positive constant e. Consider the PDE,

yt = (ay)xx in (0, 1)⇥ [0, T ]

y(·, 0) = y0 in (0, 1)

(ay)x(0, ·) = (ay)x(1, ·) = 0 in [0, T ]

(16)

Let y0 2 L2
(⌦). Then a unique mild solution y 2

C([0, T ];L2
(0, 1)) of the above PDE exists. Additionally, if

there exists a positive constant, c > 0, such that y0 � c, then
y(·, t) � d for each t 2 [0,1), for some strictly positive
constant d.

Proof. Both the existence of mild solutions of the PDE (16)

and the lower bound on solutions follow from Theorem

IV.2 by noting that the coordinate transformation u = ay
transforms the PDE (16) to the PDE,

ut = auxx in (0, 1)⇥ [0, T ]

u(·, 0) = u0 in (0, 1)

ux(0, ·) = ux(1, ·) = 0 in [0, T ]

(17)

In the following lemma, we will establish some estimates

on the rate of convergence of the solution, y, of the PDE

(16), assuming the initial condition is regular enough.

Lemma IV.4. Let y0 2 D(Aa) be such that y0 � 0.
Additionally, assume that a = 1/f , where f 2 W 2,1

(0, 1)

such that f � c > 0 for some constant c, and
R 1
0 f(x)dx =R 1

0 y0(x)dx. Then the mild solution, y 2 C([0,1);L2
(0, 1)),

of the PDE (16) satisfies y(·, t) 2 D(Aa) for each t 2 [0,1).
Moreover, the following estimates hold:

ky(·, t)� fk2  M0e
��t

(18)

kAay(·, t)k2  M1e
��t

(19)

for some strictly positive constants M0, M1, and �.

Proof. The first estimate is just a restatement of

[13][Theorem IV.4], where it was shown that f is the

eigenvector of Aa corresponding to the simple principal

eigenvalue 0, and the rest of the spectrum is in the left-half

complex plane, to the left of some negative number ��. For

this estimate, the assumption of the regularity of the initial

condition is not required.

For the second estimate, we consider the space (D(A)a, k·
kg) where k · kg is the graph norm given by

kzkg = kzk2 + kAazk2 (20)

for each z 2 D(Aa). Aa generates a semigroup of operators,

(T1(t))t�0, on the space (D(Aa), k · kg). Let (T (t))t�0 be

the semigroup of operators generated on the space L2
(0, 1)

by Aa. T1(t) is the restriction of the operator T (t), for each

t 2 [0,1), on the space (D(Aa), k · kg). T1(t) = (I �
Aa)

�1T (t)(I � Aa) for each t 2 [0,1). It follows that

T1(t) and T (t) are similar for each t 2 [0,1). Hence, the

spectrum and growth bounds of (T1(t))t�0 and (T (t))t�0

are the same. Therefore, it follows that we have

ky(·, t)� fkg  M1e
��t

(21)

for some M1 > 0 and for all t 2 [0,1). This implies the

estimate (19), since Aaf = 0.

Controllability of the PDE (2) will initially be established

with some assumptions on regularity conditions and lower

bounds satisfied by the initial conditions (Lemma IV.7). The

next two results will help us relax these assumptions further

ahead in the main Theorem IV.10.

Theorem IV.5. Let y0 2 L2
(0, 1) and f 2 W 2,1

(0, 1) be
such that f � k > 0 for some positive constant k. Suppose
that v(x, t) = fx(x)/f(x) for all t 2 [0,1) and almost
every x 2 (0, 1) in the PDE (2). If there exists a positive
constant, c > 0, such that y0 � c, then the unique mild
solution of the PDE satisfies the estimate y(·, t) � d for
each t 2 [0,1) and for some positive constant d.

Moreover, we have that D(Bf ) = D(Aa) whenever a =

1/f , Aa is the operator defined in equation (15), and Bf :

D(Bf ) ! L2
(0, 1) is the operator given by

Bfu = uxx �
✓
fx
f
u

◆

x

(22)

for each u 2 D(Bf ) = {w 2 H2
(0, 1); (wx � f

x

f w)(0) =

(wx � f
x

f w)(1) = 0}.

Proof. See appendix.

Lemma IV.6. Consider the heat equation with Neumann
boundary condition, that is, v ⌘ 0 in the PDE (2). Let y0 2
L2

(0, 1) be such that y0 � 0. Let y 2 C([0, T ];L2
(0, 1)) be

the unique mild solution. Then for each t 2 (0,1), there
exists a positive constant, ct > 0, such that y(·, t) � ct.

Proof. The solution y of the PDE (2) can be represented

using the Neumann heat kernel, K. That is, there exists a

measurable map K : (0,1)⇥ [0, 1]2 ! [0,1) such that the

mild solution, y, is related to K by the following relation:

y(x, t) =

Z 1

0
K(t, x, z)y0(x)dz (23)



for each t 2 (0,1) and almost every x 2 (0, 1). From

[18][Corollary 2.1], we know that the Neumann heat kernel,

K, satisfies the following lower bound:

K(t, x, z) � 1

(4⇡t)1/2
exp

✓
�(x� z)2

4t

◆
(24)

for each t > 0 and almost every x, z 2 (0, 1). From this, the

lower bound on y(·, t) follows.

Lemma IV.7. Let y0 2 D(Aa) be such that y0 � c for some
strictly positive constant, c. Suppose f 2 W 2,1

(0, 1) such
that f � s for some strictly positive constant s, a = 1/f ,
and

R 1
0 f(x)dx =

R 1
0 y0(x)dx. Let T =

P1
n=1

1
n2 be the

final time. Define the vector field v by

v(·, t) = yx
y

� ↵m
(ay)x
y

(25)

with a = 1/f in the PDE (2) whenever t 2
[

Pm�1
n=1

1
n2 ,

Pm
n=1

1
n2 ) and m 2 Z+. Here, we definePm

n=1
1
n2 = 0 if m = 0.

Then there exists an ↵ > 0 such that v 2
L1

(0, T ;L1
(0, T )) and the mild solution y of the PDE (2)

satisfies y(·, T ) = f .

Proof. Substituting v(·, t) =

y
x

y � ↵m (ay)
x

y whenever t 2
[

Pm�1
n=1

1
n2 ,

Pm
n=1

1
n2 ) in the PDE (2), it can be seen that the

solution of (2) exists over each time interval [0,
Pm

n=1
1
n2 )

for each m 2 Z+. This is true because this solution can be

constructed from mild solutions of the closed-loop PDE

ỹt = ↵m(aỹ)xx in (0, 1)⇥ [0,
1

m2
)

ỹ(·, 0) = ỹ0 = y(·,
Pm�1

n=1
1
n2 ) in (0, 1)

(aỹ)x(0, ·) = (aỹ)x(1, ·) = 0 in [0,
1

m2
)

(26)

and we get the relation y(·,
Pm�1

n=1
1
n2 +j) = ỹ(0, j) for each

j 2 [0, 1
m2 ) and each m 2 Z+. Then it follows from Lemma

IV.4 that

ky(·,
mX

n=1

1

n2
)� fkL2(⌦)  M0e

�↵�
P

m

n=1
n

n

2

= M0e
�↵�

P
m

n=1
1
n

for each m 2 Z+, for some strictly positive constants M0

and � independent of m. Since the summation

Pm
n=1

1
n is

diverging, we have that y(·, T ) = f if the solution is defined

over the interval [0, T ]. By continuity of y on [0, T ), it

follows that y 2 C([0, T );L2
(0, 1)) and can be extended

to a unique mild solution y 2 C([0, T ];L2
(0, 1)) defined

over the time interval [0, T ].
It is additionally required to prove that v 2

L1
(0, T ;L1

(0, 1)). As will be shown further on, these re-

sults will follow if ↵ > 0 is chosen to be large enough. More

specifically, it will be established that if ↵ is large enough,

we can get uniform bounds on 1/y(·, t), ↵m(ay)x(·, t), and

yx(·, t) as t is varied over the interval [0, T ).

First, we derive bounds on the term 1/y(·, t). Due to the

lower bound on the initial condition y0, and Corollary IV.3,

it follows that there exists a positive constant d > 0 such

that

y(·, t) � d (27)

for all t 2 [0, T ). This gives us the uniform upper bound

1/d on the term 1/y(·, t).
Next, we consider the term yx(·, t). We note that y0 2

D(Aa). Hence, we can apply the estimates in Lemma IV.4

to get

kyx(·,
mX

i=1

1

n2
)kH1  ˜Me�↵�

P
m

i=1
1
n

(28)

for some strictly positive constant

˜M . Here, we have implic-

itly used the fact that a is twice weakly differentiable and

the equivalence between the norm k·kg and the norm k·kH2
.

From this, it follows that kyx(·, t)k1 is uniformly bounded

on the interval [0, T ) due to the continuous embedding

H1
(0, 1) ,! L1

(0, 1) [8][Theorem 8.8].

Lastly, we need to bound the term ↵m(ay)x(·, t). As in the

estimates for yx(·, t) in the above arguments, from Lemma

IV.4, we have the estimate

k↵m(ay)x(·,
mX

i=1

1

n2
kH1  ↵m ˜M1e

�↵�
P

m

i=1
1
n

(29)

for some strictly positive constant

˜M1. The right-hand side

in the estimate (29) is not uniformly bounded for arbitrary

↵ > 0 due to dependence on m. However, we note that

limm!1 �ln m+

Pm
i=1

1
n = �, where � > 0 is the Euler-

Mascheroni constant [14][Section 1.5]. Therefore, by setting

↵ � 1/�, the right-hand side becomes uniformly bounded

for all m 2 Z+.

From the estimates (27)-(29), it follows that if ↵ > 0 is

large enough, then v 2 L1
(0, T ;L1

(0, 1)). This concludes

the proof.

Remark IV.8. In the above lemma, the choice v(·, t) = y
x

y �
↵m (ay)

x

y is definitely not unique. In fact, any control law of
the form v(·, t) = y

x

y �↵m� (ay)
x

y for numerous other values
of � and ↵ will also achieve the desired objective, due to the
fact that an exponential function of a variable grows faster
than a polynomial function as the variable tends to infinity.
Additionally, we could also replace the parameter m with a
continuous function m(t) such that

R T

0 m(⌧)d⌧ = 1.

From the above lemma, the corollary below follows.

Corollary IV.9. Let y0 2 D(Aa) be such that y0 � c for
some strictly positive constant c. Suppose f 2 W 2,1

(0, 1)

such that f � s, a = 1/f , and
R 1
0 f(x)dx =

R 1
0 y0(x)dx

for some strictly positive constant s. Let T > 0 be the final
time. Then there exists v 2 L1

(0, T ;L1
(0, T )) such that

the mild solution, y, of the PDE (2) satisfies y(·, T ) = f .

The above corollary follows from Lemma IV.7 using a

straightforward scaling argument.



Now, we are ready to state and prove our main theorem,

where we relax the assumptions made in the previous corol-

lary on the initial condition y0. A few comments are due

before we prove this theorem. There are two main problems

with extending Corollary IV.9 with the same control as de-

fined in equation (25), for general positive initial conditions

y0 2 L2
(0, 1). Both issues can cause v to tend to 1 as

t ! 0. Firstly, with the same control law as in (25), y0
needs to have a strict lower bound, as assumed in Lemma

IV.7. Otherwise the term in the denominator, y, causes blow

up in v(·, t) =

y
x

y � ↵m (ay)
x

y near t = 0. Secondly, for

general y0 2 L2
(0, 1) the numerator terms (yx and (ay)x))

in v(·, t) =

y
x

y � ↵m (ay)
x

y also cause blow up near t = 0

because it might be true that y0 /2 D(Aa). These issues can

be remedied, as shown in the following proof, by modifying

the control in equation (25) appropriately.

Theorem IV.10. Let y0 2 L2
(0, 1) be such that y0 � 0 andR 1

0 f(x)dx = 1. Suppose that f 2 W 2,1
(0, 1). Let T > 0

be the final time. Then there exists v 2 L1
(0, T ;L1

(0, 1))
such that the unique mild solution, y, of the PDE (2) satisfies
y(T ) = f .

Proof. Set v(·, t) = 0 in (2) for each t 2 [0, ✏/2] where

✏ 2 (0, T ) is small enough. Then the PDE (2) is the heat

equation with Neumann boundary condition. From Lemma

IV.6, it follows that the solution, y, satisfies y(·, ✏) � c for

some strictly positive constant c. Then for each t 2 (✏/2, ✏],
let v(·, t) = f

x

f . Semigroups generated by elliptic operators

are analytic. Hence, from regularizing properties of analytic

semigroups [19][Theorem 2.1.1], it follows that y(·, ✏) 2
D(Bf ), where Bf : D(Bf ) ! L2

(0, 1) is the operator given

by

Bfu = uxx � (

fx
f
u)x (30)

for each u 2 D(Bf ) = {w 2 H2
(0, 1); (wx � f

x

f w)(0) =

(wx � f
x

f w)(1) = 0}. From Theorem IV.2, we know that

this implies y(·, ✏) 2 D(Aa). Then the result follows from

Corollary IV.9.

Remark IV.11. (The case when f 2 W 1,1
(0, 1)) Com-

paring Theorem IV.10 and Theorem IV.1, it is apparent that
there is a gap in the result we have obtained. That is,
while Theorem IV.1 states that any strictly positive, at least
once differentiable function can be reached asymptotically,
Theorem IV.10 requires the target densities to be at least
twice differentiable in order to be reachable in finite time.
However, this assumption can be relaxed by modifying the
argument in Lemma IV.7. Particularly, if f is only once
differentiable, then it is no longer true that D(Aa) is a subset
of H2

(0, 1), in general. However, even if u /2 H2
(0, 1) we

have that k(ay)xxk2 < 1. From this, and bounds on kayk2,
it follows that k(ay)xk1 < 1 and hence, using the product
rule, it follows that kyxk1 < 1.

However, Bf needs to be defined using its weak formula-
tion in this case to make sense of the term (

f
x

f u)x. We avoid

this issue for now and leave the more general case when
f 2 W 1,1

(0, 1) for future work.

As pointed out in the last remark, using the approach

in this paper, the requirement that f 2 W 2,1
(0, 1), can

be relaxed. On the other hand, it is not clear how much

regularity needs to be assumed when extending the technique

in this paper to the case when the diffusion process evolves

on a higher-dimensional Euclidean space, since embedding

results depend on the dimension of the domain. However, if

the constraint that v is bounded is relaxed to admit square-

integrable vector fields, then it is sufficient to establish the

bounds on kry(·, t)k2 and kr(ay)(·, t)k2, which immedi-

ately follow from estimates such as those in equations (28)

and (29). Such estimates on the L2
norm of the control are

not dimension-dependent.

We would also like to point out that in proving controlla-

bility properties of the system (2), we have taken advantage

of the fact that diffusion enables infinite speed of propagation

of the solution y of the PDE (2) (Lemma IV.6). Hence, the

control laws constructed in this paper might need further

modification if implemented in practice, since robots have

limitations on their speed of movement. One possibility is

to introduce “virtual particles” that do propagate at infinite

speeds, hence avoiding the division-by-zero in the control

law (25). Another possibility is to have a more realistic model

of noise in the system.

V. CONCLUSION

In this paper, we proved controllability properties of the

Fokker-Planck equation with zero-flux boundary condition.

In contrast to previous work, we established controllability

with bounded control inputs. Our approach to establishing

controllability using spectral properties of the elliptic oper-

ators under consideration is also novel. In our opinion, this

provides a simpler approach to conclude controllability than

methods in previous similar works. Future work will focus on

extending the arguments in this paper to the case where the

diffusion process evolves on higher-dimensional domains.

VI. APPENDIX

A. Proof of Theorem IV.2 (See page 3)
Proof. We define the operator

˜Aa : D(

˜Aa) ! L2
(0, 1)

as

˜Aau = a(x)uxx for each u 2 D(

˜Aa) = {w 2
H2

(0, 1);wx(0) = wx(1) = 0}. Using the product rule for

functions in Sobolev spaces, we can represent the operator

˜A as

˜Au = (aux)x � axux for each u 2 D(

˜Aa).

The validity of the product rule of differentiation used

above, that is (pq)x = pxq + pqx whenever p, q 2 H1
(0, 1),

can be seen by constructing an approximating sequence pnx in

C1
(0, 1) converging to p in H1

(0, 1). Then it can be shown

that the integral �
R 1
0 pn(s)q(s)�x(s)ds =

R 1
0 (p

n
x(s)q(s) +

pn(s)qx(s))�(s)ds for each � 2 C1
(0, 1). Then taking the

limit n ! 1 gives us the validity of the product rule.

We define the bilinear form, b : H1
(0, 1)⇥H1

(0, 1) ! R,

corresponding to this operator by,

b(u,�) =
⌦
aux,�x

↵
2
+

⌦
axux,�

↵
2

(31)



for each u,� 2 H1
(0, 1). Aa is related to b, by

h ˜Aau,�i2 = �b(u,�) (32)

for all u 2 D(

˜Aa) and all � 2 H1
(0, 1). Using the above

representation of

˜Aa, from [23][Corollary 4.3] it follows

that since b is an accretive, closed and continuous bilinear

form on H1
(0, 1), the associated operator,

˜Aa generates a

positivity preserving semigroup, (S(t))t�0, on L2
(0, 1) such

that for each y0 2 L2
(0, 1) in (14), the unique mild solution

of the PDE can be represented by y(·, t) = S(t)y0. Note

that the above mentioned properties of the bilinear form

have been established in [23]. By positivity preserving we

mean that if y0 � 0 then S(t)y0 � 0 for each t 2 [0,1).

Additionally, we note that

˜Aa has a eigenvalue at 0. The

function 1, defined by 1(x) = 1 for almost every x 2 (0, 1),
is an eigenvector corresponding to this eigenvalue, 0. Hence,

if y0 � c > 0 for some strictly positive parameter, c. Then

S(t)y0 = S(t)(c1 + y0 � c1) = c1 + S(t)(y0 � c1), for

each t 2 [0,1). Since (S(t))t�0 is positivity preserving, it

follows that S(t)(y0�c1) � 0 and hence c is a lower bound

on the solution S(t)y0 if c is a lower bound on the initial

condition, y0.

B. Proof of Theorem IV.5 (See page 4)
Proof. We only prove that D(Bf ) = D(Aa). The proof for

the other statements follows the same line of arguments as

in Theorem IV.2.

The result, D(Bf ) = D(Aa), follows from the quo-

tient rule applied at the boundary. That is, (au)x(0) =�
fu

x

�uf
x

f2

�
(0) = 0 implies (ux�u f

x

f )(0) = 0. The quotient

rule for functions in Sobolev spaces can be seen to be true

by an argument similar to the one made in Theorem IV.2 for

verification of the product rule.
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