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Abstract—This paper presents a novel procedure for comput-

ing parameters of a robotic swarm that guarantee coverage

performance by the swarm within a specified error from a

target spatial distribution. The main contribution of this paper

is the analysis of the dependence of this error on two key

parameters: the number of robots in the swarm and the robot

sensing radius. The robots cannot localize or communicate with

one another, and they exhibit stochasticity in their motion and

task-switching policies. We model the population dynamics of

the swarm as an advection-diffusion-reaction partial differential

equation (PDE) with time-dependent advection and reaction

terms. We derive rigorous bounds on the discrepancies between

the target distribution and the coverage achieved by individual-

based and PDE models of the swarm. We use these bounds to

select the swarm size that will achieve coverage performance

within a given error and the corresponding robot sensing radius

that will minimize this error. We also apply the optimal control

approach from our prior work in [13] to compute the robots’

velocity field and task-switching rates. We validate our procedure

through simulations of a scenario in which a robotic swarm must

achieve a specified density of pollination activity over a crop field.

Index Terms—Swarm robotics, advection-diffusion-reaction

PDE, optimal control, stochastic systems.

I. INTRODUCTION

I

N recent years, there has been a growing interest in the
development of robotic swarms [7] for a range of applica-

tions, including environmental sensing, exploration, mapping,
disaster response, surveillance, cooperative manipulation, and
even nanomedicine [29]. Indeed, advances in manufacturing,
computing, sensing, actuation, control, and other technologies
have already enabled the development of a variety of low-cost
robotic platforms that can be deployed in large numbers, e.g.
[9], [16], [20].

While the technology to create robotic swarms is pro-
gressing, it remains a challenge to predict and control these
systems’ collective behaviors when they operate in uncertain,
unstructured, GPS-denied environments. Another constraint is
that inter-robot communication may need to be minimized or
excluded in order to conserve power and reduce the possibility
of detection by adversaries. Importantly, control policies and
verification methods for robotic swarms must accommodate
non-deterministic behaviors that arise in autonomous systems
[1]. Stochasticity in robots’ motion and decisions can arise
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from inherent sensor and actuator noise, especially in small,
highly resource-restricted platforms. Stochasticity may also be
intentionally introduced, for example when robots are pro-
grammed to perform random walks for probabilistic search and
tracking missions [28], or to switch probabilistically between
behavioral states or tasks in a manner similar to social insects.
Social insect colonies provide a useful paradigm for robotic
swarm control in that they display robust collective behaviors
that emerge from the decentralized decisions of numerous
individuals, which act on locally perceived information [6].

Control methodologies for robotic swarms should be scal-
able with the number of robots and reliant on limited human
supervision, since situational awareness decreases with large
robot populations. Toward this end, we employ a methodology
that is based on models of the robots’ decision-making and
motion at multiple levels of abstraction. The multi-level mod-
eling framework is adopted from the disciplines of stochastic
chemical kinetics and fluid dynamics, and it has been used by
the authors and others, e.g. in [13], [17], [27], to describe
the population dynamics of large numbers of robots. This
framework has also been used to model collective behaviors
in biological swarms, such as flocking, schooling, chemotaxis,
pattern formation, and predator-prey interactions [24].

In our modeling framework, the microscopic model is a
discrete model that represents the actions of individual robots.
We consider swarms of robots that display stochastic motion
and decision-making as described above, while also moving
according to a programmed deterministic velocity field. Each
robot’s stochastic movement can be modeled as a Brownian
motion with an associated diffusion coefficient. Since the
motion of each robot consists of a deterministic advection and
a stochastic Brownian walk, it is governed by a stochastic
differential equation (SDE). A robot’s stochastic transition
between two behavioral states can be modeled as a chemical
reaction with a programmable transition probability rate.

Implementations of the microscopic model can be computa-
tionally expensive to simulate, requiring exhaustive parametric
studies, and intractable for analysis as the number of robots
increases. To overcome these limitations, the microscopic
model can be abstracted to a lower-dimensional continuum
representation, the macroscopic model, which consists of a
set of advection-diffusion-reaction (ADR) partial differential
equations (PDEs). These equations govern the spatiotemporal
dynamics of density fields of robots in different behavioral
states. The macroscopic model enables a quantitative char-
acterization of population behaviors, since it is amenable to
analytical treatment and numerical experiments. In addition,
techniques for control and optimization of PDEs can be ap-
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plied to compute values of the model parameters that produce
a desired global objective. These parameters define the robots’
programmable control policies for motion and state transitions,
and the resulting collective behavior of the robots follows the
macroscopic model prediction in expectation. Scalability of
this “top-down” control approach is ensured by the fact that
the dimensionality of the macroscopic model is independent
of the number of robots. Human supervisory control can be
exercised in the specification of the global objective and the
set of tunable model parameters and state transitions.

In recent years, there have been various applications of
control-theoretic techniques to PDE macroscopic models of
multi-agent systems for the purpose of synthesizing agent
controllers that produce desired collective behaviors. ADR
PDE models in particular have been used by the authors
to design robot control policies that achieve target spatial
distributions of robot activity over a bounded domain [13]
and that drive the swarm to a distribution that is proportional
to a locally measured scalar field [12]. ADR PDEs have
also been used to control the probability density functions
of multi-dimensional stochastic processes [2], develop multi-
agent coverage and search strategies that are inspired by
bacterial chemotaxis [22], and maximize the probability of
swarm robotic presence in a desired region [23]. Other work on
PDE-based analysis and design of agent control laws includes
a study of multi-agent consensus protocols in an Eulerian
framework [8]; strategies for confining a population of agents,
represented as a continuum, with a few discrete leader agents
[10]; and an approach to flocking control for a group of agents
governed by the kinetic Cucker-Smale model [26].

The literature above addresses the problem of designing the
rules that govern robots’ behaviors and decisions. However,
there has been relatively little effort toward a principled
approach to determining the required number of robots and
optimal robot specifications, such as sensing and communica-
tion ranges, for a desired collective task. An impediment to
developing such an approach is the absence of a rigorous, gen-
eralizable analysis of the correspondence between continuum
and discrete models of a swarm [3]. Recent work on mean field
games [5], [15], [19] demonstrates the convergence of optimal
controls of a large number of agents to optimal controls of a
mean-field limit system. However, the work does not analyze
the convergence of the agent-based model to the mean-field
model for a fixed set of controls.

In this paper, we address this challenge for robotic swarms
that can be modeled as ADR PDEs at the macroscopic level.
We derive a rigorous error bound on the discrepancy between
the microscopic and macroscopic models, which depends on
the swarm population size (alternatively, the number of swarm
deployments), the robot sensing radius length, and the time
discretization of the microscopic and macroscopic models.
Our derivation employs a representation of each robot as a
circular “blob function” [11], [21] with a small parameter that
represents the robot’s maximum sensing radius. We formulate
the discrete density functions of robots in different states and
robots’ cumulative activity over the domain by summing all
of the corresponding blobs. We show that as the number
of robots approaches infinity, the discrete density functions

converge to the continuous solution of the macroscopic model.
We illustrate our approach for a simulated scenario in which
a swarm of micro-aerial vehicles must pollinate a crop field,
similar to the problem in [13]. We apply the optimal control
approach in [13] to compute vehicle control policies that
achieve a target spatial distribution of pollination. We also use
our derived error bound to estimate the required swarm size
that will achieve the target pollination distribution within a
specified percentage of accuracy. In addition, we demonstrate
the effect of the maximum sensing radius on the swarm
performance and show that an optimal radius length exists
for a given swarm size. Notably, the analysis performed here
can also be applied to other stochastic control strategies for
robotic swarms, such as [12], [17], [27].

In summary, the contribution of this paper is twofold:
1) We provide a rigorous analysis of the error bound be-

tween the aforementioned microscopic and macroscopic
models, which is still absent in the literature on stochastic
control of multi-agent systems with state transitions. This
analysis, together with our optimal control approach in
[13] which approximates the target distribution using
the macroscopic model, provides a formal mathematical
validation of our swarm control strategy.

2) Based on the scaling laws that are observed in the error
estimates, we propose a principled approach to determine
the required number of robots and optimal robot sensing
radius that will achieve a target distribution within a
specified error.

The paper is organized as follows. Section II describes our
task objective and the robot capabilities and behaviors, and
Section III outlines our design procedure for computing the
number of robots and the robots’ sensing radius, velocity, and
pollination rates. Section IV defines the microscopic model,
the blob function, and the actual density fields of robots and
their pollination activity, and Section V formulates the macro-
scopic model, an operator splitting method for numerically
solving this model, and the expected density fields. Section
VI summarizes our optimal control approach, first presented
in [13], to designing robot control policies for target spatial
coverage. In Section VII, we provide our convergence analysis
of the estimated error between the actual, expected, and target
density fields. We validate our analysis and design procedure
with simulations in Section VIII and conclude in Section IX.

II. TASK OBJECTIVE

In this section, we present the task objective of the robot
control scenario defined in [13], which is the basis of the
analysis in our paper. We consider a crop field ⌦ 2 R2 with
several rows of flowers to be pollinated by a swarm of N
micro-aerial vehicles. There are nf types of crops in the field,
and �j ⇢ ⌦ denotes the region of the field that is occupied by
crops of type j 2 {1, ..., nf}. The task objective, which must
be completed within time T , is to achieve a spatial distribution
of pollination activity over the field within a specified error
�d relative to a target pollination distribution ⇢⌦(x), where
x 2 ⌦.

The swarm originates from a location in the field called
the hive. The robots are assumed to have sufficient power
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to undertake brief flights from the hive, and they return to
the hive to recharge after a complete flight. Each robot is
equipped with a compass and thus can fly with a specified
heading. However, the robots’ stringent power constraints
make it infeasible for them to use inter-robot communication
or GPS sensors for global localization. A computer in the hive
serves as a supervisory agent and calculates the parameters of
the robots’ motion and state transitions prior to their flight.

Each robot i 2 {1, ..., N} performs the following actions
during a flight. Upon deploying from the hive, each robot
flies with a combination of a time-dependent velocity field
v(t) 2 R2 and a Brownian motion, which is characterized
by a diffusion coefficient parameter D > 0. We assume that
the flowers are distributed densely enough such that a robot
can always detect at least one flower within its sensing radius
� when it flies over the crop rows. The sensing radius can
be adjusted within a maximum radius, which is determined
by the capability of the robot. When a robot is flying over
crops of type j, it decides with a time-dependent probability
per unit time kj(t), the pollination rate, to pause at a flower
within its sensing range and hover for pollination. The robot
resumes flying with a fixed probability per unit time kf , which
determines the time taken to pollinate.

III. DESIGN PROCEDURE FOR TARGET PERFORMANCE
BOUNDS

Here we present a procedure for computing the number of
robots N , the robot velocity v(t), and the robot pollination
rates kj(t) and selecting the robot sensing radius � to achieve
the task objective defined in Section II. The details of certain
steps in the procedure are given in subsequent sections, as
referenced below. We illustrate this computational procedure
in Section VIII for an example pollination scenario.

1) Set values of the parameters nf , �j , T , ⇢⌦(x), �d, D,
and kf , defined in Section II, and �t, X0, defined in
Section IV.

2) Compute the robot control parameters v(t) and kj(t),
defined in Section II, by applying the optimal control
technique described in Section VI to the macroscopic
model, defined in Section V.

3) Choose a value of � and two values of N . Simulate
the microscopic model, defined in Section IV, for each
value of N with the chosen � and the computed control
parameters v(t) and kj(t).

4) For each value of N , compare the actual distribution
of pollination in the microscopic model to the target
distribution ⇢⌦(x) and compute the discrepancy between
them.

5) Use the convergence analysis in Section VII to estimate
the required N such that the discrepancy is less than �d.

6) Simulate the microscopic model for several values of �
with the estimate of the required N , and select the � that
yields the minimum discrepancy.

IV. MICROSCOPIC MODEL

A. Robot controller
We use the same robot controller as in our previous work

[13]. We discretize the time span of swarm deployment [0, T ]
into M equal time steps:

0 = t0 < t1 < ... < tM = T, tm = m�t. (1)

The controller that drives each robot is illustrated by the
state-transition diagram in Fig. 1. Robots switch stochastically
between two states, Flying and Hovering. We define the index
sets of robots in each state at time tm:

Fm = {i : Robot i is Flying}
Hj,m = {i : Robot i is Hovering over crops of type j}

All of the robots start from X0 2 ⌦ in the Flying state.
At the start of each time step �t, each Flying robot that
is over crops of type j switches to Hovering at a flower
with probability kj(tm)�t, and each Hovering robot returns
to Flying with probability kf�t. We choose �t to be small
enough such that kj(tm)�t  1 and kf�t  1, since these
probabilities can at most be 1. The robots’ state transitions
can be modeled as the following reactions, where � 2 [0, 1]
is a uniformly distributed random number:

i 2 Fm
if �kj(tm)�t���������! i 2 Hj,m+1

i 2 Hj,m
if �kf�t�������! i 2 Fm+1

(2)

After generating � and switching states if � satisfies the
condition associated with its possible reaction in (2), each
robot executes the motion controller that is defined for its
current state over the duration �t. We define the domain as
unbounded, and robots may exit and re-enter the bounded
subregion of the domain that represents the crop field. The
position of robot i at time tm, the beginning of the time step,
is denoted by X

i
m 2 R2. Each Hovering robot stays at the

location of the flower that it is pollinating, i.e.

X

i
m+1 = X

i
m 8i 2 [nf

j=1Hj,m+1. (3)

Each Flying robot moves according to the stochastic differen-
tial equation,

dX(t) = v(t)�t+
p
2DdB(t), (4)

where B(t) is the standard Brownian motion. We simulate
this motion using a first-order discretization of Eq. (4),

X

i
m+1 = X

i
m + v(tm)�t+

p
2D�t�Z

i
m 8i 2 Fm+1,

(5)
where �Z

i
m are independent, normally distributed random

variables with zero mean and unit variance in R2.

B. Density fields of robots and pollination activity
In this section, we define the density fields of the micro-

scopic model. During a deployment, when a Flying robot
switches to the Hovering state for pollination, it randomly
selects a flower that it identifies within its sensing radius �.
In order to compute the density fields of robots and their
pollination activity, we model the probability density function
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Fig. 1. State-transition diagram of robot controller for pollination. The
diagram outlines a program that would run on a single robot.

Fig. 2. A domain with three blob functions G�(x), where � = 0.15.

of the location that the robot chooses to pollinate as a blob
function G�(x). We define the blob function as:

G�(x) =

8
<

:

Cg

�2
exp

✓
1

|x|2/�2 � 1

◆
if |x| < �,

0 otherwise,
(6)

where Cg ⇡ 2.1436 so that
Z

R2

G�(x)dx = 1.

G� satisfies the following properties:

1) G� 2 C1
0 (R2

), and its support is {x : |x|  �};

2) 8x, |G�(x)|  Cge�1��2 < ��2;

3) 8x, |@xiG�(x)| = O(��3
) and |@xixjG�(x)| = O(��4

),
i, j = 1, 2.

Fig. 2 illustrates a domain with three blob functions, each with
the same sensing radius parameter �.

Remark IV.1. The blob function serves as a mean field ap-
proximation of pollination activity. That is, instead of modeling
a robot’s selection of a particular flower to pollinate, we
consider the probability density of the robot’s flower visits
over multiple deployments, or alternatively, the flower visits
by a large number of robots over a single deployment. Each
crop row is modeled as a continuum of possible pollination
locations, and thus a robot can choose to hover at any position
within the support of its corresponding blob function.

For all ⌃ ⇢ R2, we define the indicator function as

1⌃(x) =

⇢
1, if x 2 ⌃

0, otherwise.

We also define

dis(x,⌃) := inf{|x� y| : y 2 ⌃}
⌃

⇣
in := {x : dis(x,⌃c

) � ⇣} (7)

⌃

⇣
out := {x : dis(x,⌃)  ⇣} (8)

for some constant ⇣ > 0, where ⌃

c is the complement of ⌃.
From these definitions, ⌃⇣

in and ⌃

⇣
out are obtained by shrinking

and expanding, respectively, the boundary of ⌃ by a layer of
width ⇣. Hence, ⌃⇣

in ⇢ ⌃ ⇢ ⌃

⇣
out.

Let X(t) be a stochastic process in R2 that satisfies the
SDE (4). For all t > s � 0 and x,y 2 R2, we denote the
transition probability measure by P (⌃, t|y, s) = P (X(t) 2
⌃|X(s) = y) and the transition probability density function
(pdf) by pe(x, t|y, s). These functions satisfy

P (⌃, t|y, s) =
Z

⌃
pe(x, t|y, s)dx,

pe(x, t|y, s) = 1

4⇡D(t� s)
exp

(
� |x� y � R t

s
v(⌧)d⌧ |2

4D(t� s)

)
.

In our simulation of the microscopic model, we discretize the
velocity v(t), and hence the transition pdf from time tm to
time tm+1 is given by

p(x, tm+1|y, tm) =

1

4⇡D�t
exp

⇢
� |x� y � v(tm)�t|2

4D�t

�
.

(9)

We now define the actual density fields of Flying robots and
Hovering robots, respectively, at each location x 2 ⌦ and each
time tm as:

⇢�1(x, tm) :=

1

N

X

i2Fm

G�(x�X

i
m) (10)

⇢�2(x, tm) :=

1

N

nfX

j=1

X

i2Hj,m

G�(x�X

i
m). (11)

To confirm that these are robot density fields, note that
Z

⌃
G�(x�X

i
m)dx ⇡ 1⌃(X

i
m).

The above identity strictly holds only when X

i
m /2 ⌃

�
out�⌃

�
in;

otherwise, the range of the blob will exceed the boundary and
will cause coverage outflow, an error introduced in Section
VII. Hence

Z

⌃
⇢�1(x, tm)dx ⇡ 1

N

X

i2Fm

1⌃(X
i
m), (12)

Z

⌃
⇢�2(x, tm)dx ⇡ 1

N

nfX

j=1

X

i2Hj,m

1⌃(X
i
m), (13)

which are the numbers of Flying and Hovering robots, respec-
tively, that are in region ⌃ at time tm, divided by N .

We also define the actual density fields of Flying and
Hovering robots, respectively, that are present after robots
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execute state transitions according to reactions (2) but before
they execute their motion controllers during the time step �t:

⇢̄�1(x, tm) :=

1

N

X

i2Fm+1

G�(x�X

i
m)

⇢̄�2(x, tm) :=

1

N

nfX

j=1

X

i2Hj,m+1

G�(x�X

i
m).

(14)

Note that by Eq. (3), the positions of Hovering robots is
unchanged during the time step, and therefore

⇢̄�2(x, tm) = ⇢�2(x, tm+1). (15)

We denote the density of robot state transitions from Flying
to Hovering between times tm and tm+1 as FTH(x, tm),
and the density of transitions from Hovering to Flying as
HTF (x, tm). These densities can be expressed as:

FTH(x, tm) :=

1

N

nfX

j=1

X

i2Fm

Ii,j,mLj(X
i
m)G�(x�X

i
m),

HTF (x, tm) :=

1

N

nfX

j=1

X

i2Hj,m

Ji,j,mG�(x�X

i
m),

where Lj(x) = 1�j (x), and Ii,j,m, Ji,j,m are independent
random variables with

P (Ii,j,m = 1) = �t · kj,m, P (Ii,j,m = 0) = 1��t · kj,m,

P (Ji,j,m = 1) = �t · kf , P (Ji,j,m = 0) = 1��t · kf ,
with indices i = 1, ..., N , j = 1, ..., nf , and m = 1, ...,M and
kj,m := kj(tm). According to the reaction network (2),

⇢̄�1(x, tm) = ⇢�1(x, tm)� FTH(x, tm) +HTF (x, tm),

⇢̄�2(x, tm) = ⇢�2(x, tm) + FTH(x, tm)�HTF (x, tm).
(16)

At each time tm, the total number of state transitions from
Flying to Hovering in the region ⌃ is given by:
Z

⌃
FTH(x, tm)dx ⇡ 1

N

nfX

j=1

X

i2Fm

Ii,j,mLj(X
i
m)1⌃(X

i
m).

(17)

Since each transition from Flying to Hovering indicates a robot
pollination visit, FTH(x, tm) is also the actual density field
of pollination activity at time tm. Thus, the actual cumulative
density field of pollination activity by the swarm from time 0

to time tm is given by:

⇢�3(x, tm) =

m�1X

⌧=0

FTH(x, t⌧ ). (18)

We define the tuple of actual density fields as

⇢

�
(x, tm) =

�
⇢�1(x, tm), ⇢�2(x, tm), ⇢�3(x, tm)

�
. (19)

The goal of our analysis is to compare ⇢�3 to the expected
density field of pollination, which is defined in the next
section.

V. MACROSCOPIC MODEL

A. Definition
The macroscopic model consists of a set of advection-

diffusion-reaction (ADR) PDEs that describe the time evo-
lution of the expected spatial distribution of the swarm. The
model presented here was first defined in [13] for a similar
pollination scenario. The states of the macroscopic model are
⇢1(x, t), ⇢2(x, t), and ⇢3(x, t), the expected density fields of
Flying robots, Hovering robots, and cumulative pollination
from time 0 to t, respectively. Using the parameters v(t),
kj(t), j = 1, 2, ..., nf , kf , D, and Lj that are defined in the
microscopic model, the macroscopic model is given by
8
>>>>>>>>>><

>>>>>>>>>>:

@⇢1
@t

= �v ·r⇢1 +D�⇢1 �
nfX

j=1

kjLj⇢1 + kf⇢2,

@⇢2
@t

=

nfX

i=1

kjLj⇢1 � kf⇢2,

@⇢3
@t

=

nfX

i=1

kjLj⇢1,

(20)
with initial conditions specifying that all robots start in the
Flying state and are distributed according to a blob function
centered at X0:

⇢1(x, 0) = G�(x�X0), ⇢2(x, 0) = 0, ⇢3(x, 0) = 0. (21)

The initial conditions of the macroscopic model and micro-
scopic model are consistent, i.e.

⇢i(x, 0) = ⇢�i (x, 0), i = 1, 2, 3. (22)

We define the tuple of expected density fields as

⇢(x, t) = (⇢1(x, t), ⇢2(x, t), ⇢3(x, t)). (23)

B. Numerical solution
We use the operator splitting method to numerically solve

the macroscopic model with the same time discretization as
in Eq. (1). We define the following three operators:

ADVm(⇢) = ( � v(tm) ·r⇢1 , 0 , 0 ),

DIFF (⇢) = ( D�⇢1 , 0 , 0 ),
(24)

REACTm(⇢) =

✓
kf⇢2 �

nfX

j=1

kj,mLj⇢1,

nfX

j=1

kj,mLj⇢1 � kf⇢2,

nfX

j=1

kj,mLj⇢1

◆
.

We split the macroscopic model (20), (21) into three parts:
@⇢

@t
= ADVm(⇢), (25)

@⇢

@t
= DIFF (⇢), (26)

@⇢

@t
= REACTm(⇢). (27)

Denote the solution operators of Eq. (25), (26), and (27)
with respect to time step �t by H1(�t), H2(�t), and
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H3(�t), respectively. That is, ⇢(x, tm+1) = H1(�t)⇢(x, tm)

if ⇢(x, tm+1) is the solution of Eq. (25) with initial condition
⇢0(x) = ⇢(x, tm). Using these operators, we can compute
the expected density fields at time tm+1 as

⇢(x, tm+1) = H1(�t)H2(�t)H3(�t)⇢(x, tm). (28)

This is a first-order splitting method, i.e.
Z

R2

|⇢e(x, T )� ⇢(x, T )|dx  C��t, (29)

where ⇢e is the exact solution of model (20) and ⇢ is
defined by Eq. (28). We note that C� depends on � and that
lim�!0 C� = 1. We choose the values of �t and � based on
the numerical simulation results in Section VIII to ensure that
the above error is small.

We also define the expected density fields of Flying and
Hovering robots that are present after the reactions but before
robot motion during a time step,

⇢̄i(x, tm) := H3(�t)⇢i(x, tm), i = 1, 2, (30)

which correspond to ⇢̄�i (x, tm), i = 1, 2 in the microscopic
model. Equations (28) and (30) also yield

⇢i(x, tm+1) = H1(�t)H2(�t)⇢̄i(x, tm), i = 1, 2. (31)

From the definitions of H1(�t) and H2(�t), we have that

⇢1(x, tm+1) =

Z

R2

⇢̄1(y, tm)p(x, tm+1|y, tm)dy, (32)

⇢2(x, tm+1) = ⇢̄2(x, tm). (33)

Equation (32) holds because the transition pdf
p(x, tm+1|y, tm) is also the Green’s function of the
advection-diffusion equation (see Theorem 2.1 in [25]).

We numerically solve the three operators over a square
domain ¯

⌦ with Neumann boundary conditions. The domain
is defined to be large enough to contain all the robots almost
surely over the entire duration of the deployment. For the
advection operator (25), we use the Lax-Friedrichs scheme.
For the diffusion operator (26), we use the Crank-Nicolson
scheme and apply the discrete cosine transform to solve it.
Lastly, we solve the reaction operator (27) using the forward
Euler scheme.

VI. OPTIMAL CONTROL OF COVERAGE STRATEGIES

We briefly summarize the optimal control problem that is
solved in our previous work [13]. We use this approach to
compute the optimal robot velocity v(t) = [v1(t) v2(t)]T and
pollination rates kj(t), j = 1, ..., nf that minimize the error
between a target distribution ⇢⌦ and the expected pollination
field ⇢3 at a given time T . Note that the performance of the
optimal control method is not the focus of this paper.

For an open subset X ✓ R2, L2
(X) refers to the space of

real-valued, square-integrable functions. The norm k · kL2(X)

is defined as kfkL2(X) =

� R
X
|f(x)|2dx�1/2 for each f 2

L2
(X). The notation

⌦·, ·↵
L2(X)

refers to the inner product on
L2

(X), defined as
R
X
f(x)g(x)dx for each f, g 2 L2

(X).
For a natural number m, k · kL2(X)m and

⌦·, ·↵
L2(X)m

refer
to the natural extension of the norm and inner product on the

product space L2
(X)

m. The vector of control parameters is
defined as

u := (u1, u2, ..., unf+2),

where u1 = v1, u2 = v2, and uj+2 = kj for j = 1, ..., nf .
Then the optimal control problem is the following:

min

(⇢,u)2Y⇥Uad

J(⇢,u) =

1

2

k⇢3(·, T )� ⇢⌦k2L2(R2)

+

�

2

kuk2L2(0,T ) ,  = nf + 2

(34)

subject to Eq. (20), (21). Hence, this is a PDE-constrained op-
timization problem. Here, Y = C([0, T ], L2

(R2
)

3
) is the space

of vector-valued continuous functions f : [0, T ] ! L2
(R2

)

3,
and Uad is the set of admissible control inputs given by

Uad = {u 2 L2
(0, T )nf+2

: umin
i  ui(t)  umax

i

8t 2 (0, T )},
where umin

i and umax
i are real-valued scalars defining the

lower and upper bounds on the control parameters. These
bounds are determined by the physical limitations on the
robots, such as their maximum velocity. The bounds on the
pollination rates kj , j = 1, ..., nf , additionally depend on the
time step �t, according to the constraint kj(t)�t  1.

The necessary conditions for optimality are used to derive
a gradient descent method for numerically computing the
optimal robot control parameters. Appendix A gives details
on the directional derivatives that are used in this method.

VII. L1-CONVERGENCE ANALYSIS

In this section, we present the main result of this paper: a
rigorous convergence analysis to estimate the error between
the expected density field ⇢ from the macroscopic model and
the actual density field ⇢

� from the microscopic model. Our
result shows that the error depends on the number of robots
N , the time discretization �t, and the sensing radius �.

In our analysis, we use the L1 norm, which is the most
natural norm for particle transportation, to quantify the degree
of coverage by the swarm. This is because the L1 norms of
⇢�1 and ⇢�2 directly measure the numbers of Flying robots and
Hovering robots, respectively (see Eq. (12), (13)), and the L1

norm of ⇢�3 measures the cumulative number of crop visits
(see Eq. (17), (18)), which is the metric of interest in the
application. Note that in the optimal control method in Section
VI, we use the L2 norm in the objective function since it
is convenient for optimal control. This is due to the inner-
product structure of L2 spaces, which makes them self-dual;
L1 function spaces lack this structure. Since our domain is a
finite region, bounding the L2 norm also bounds the L1 norm
according to the Cauchy-Schwarz inequality k · k1  Ck · k2.

The error bound that we derive in this section consists of
four components: the time-discretization error, the coverage
outflow, the coverage insufficiency, and the sampling error.
The time-discretization error arises from our time-splitting
method. The coverage outflow happens at the boundary of the
region of crop rows �j , j = 1, 2, ..., nf : if a robot is pollinating
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in a row �j at a position that is very close to the boundary
of �j , then part of the corresponding blob may exceed �j ,
which generates some loss of coverage. Coverage insufficiency
arises when there are too few robots in the swarm to cover
the entire field, given the size of �, and can be improved by
deploying more robots. The most significant error component
is the sampling error, which arises from the stochasticity in
the robot motion and task switching. The error bound indicates
the existence of an optimal � for a fixed swarm size, which
we verify in simulation in Section VIII.

Let ⇢�
(x, tm) and ⇢(x, tm) be defined as in Eq. (19) and

(28), respectively. We also define the L1 norm of a function
f : R2 ⇥ [0, T ] ! R and the error functions as follows:

kf(·, t)k1,⌃ :=

Z

⌃
|f(x, t)|dx, 8⌃ ⇢ R2

ei(x, tm) := ⇢i(x, tm)� ⇢�i (x, tm), i = 1, 2, 3

Em := max{ke1(·, tm)k1, ke2(·, tm)k1}.
Theorem VII.1. Assume that v(t) 2 C1

([0,1]), D > 0, and
ki(t) 2 C([0,1]), i = 1, ..., nf . Suppose that ¯

⌦ ⇢ R2 is a
large enough square such that ⌦ ⇢ ¯

⌦, and 9⇣ > 0 such that

X

i
m 2 ¯

⌦

2⇣
in 8m = 1, ...,M, i = 1, ..., N

almost surely, and � < ⇣, �t ⌧ ⇣. We define |¯⌦| as the area
of ¯

⌦, C as an independent constant, � as [nf

j=1�j , and �

�
in

and �

�
out as in Eq. (7) and (8). We also set

K = kf +

nfX

j=1

max

t2[0,T ]
kj(t),

P� = max

m
P
�
X

i
m 2 �

�
out � �

�
in

�
= O(�).

Then when N is sufficiently large, the following estimates are
true with a probability greater than

1� CT

�t
N [

� 1
3 (lnN)�t2+2

] . (35)

(i) (Error in distributions of Hovering and Flying robots)

kei(·, tm)k1  CeKT


��4

p
D|¯⌦| lnNp

N
+ P� +�t

�
, i = 1, 2

(36)

uniformly in m.

(ii) (Error in distribution of cumulative pollination)

ke3(·, tm)k1  CKTeKT


��4

p
D|¯⌦| lnNp

N
+ P� +�t

�

(37)

uniformly in m.

Remark VII.2. In the inequalities (36) and (37), the error
terms are interpreted in the following way.

1) lnNp
N

: Sampling error;

2) ��4: Coverage insufficiency;

3) P�: Coverage outflow;

4) �t: Time-discretization error.

The sampling error is the main source of error in this model,
due to the significant stochasticity in the robot motion and
state transitions. The time-discretization error arises from the
diffusion of the blob functions outside of ¯⌦ in the macroscopic
PDE model. This error is not as significant as the other errors,
since ¯

⌦ is chosen to be large enough to contain the entire
swarm almost surely throughout the selected time span [0, T ].

Note that the task-switching and the motion of the robots
depend on each other, i.e. the motion depends on which state a
robot is in, and the task-switching depends on whether a robot
is above a crop region. We formulate the error of motion as

EM(x) =

Z

R2

⇢̄�1(y, tm)p(x, tm+1|y, tm)dy � ⇢�1(x, tm+1).

(38)
The first term is the expected density of Flying robots at tm+1

based on the actual density that is present after the reaction
at tm, and the second term is the actual density at tm+1. We
also formulate the error of reaction as

ER(x) = ��t

nfX

j=1

kj,mLj(x)⇢
�
1(x, tm) + FTH(x, tm)

+�tkf⇢
�
2(x, tm)�HTF (x, tm). (39)

Here, FTH(x, tm) and HTF (x, tm) are the actual densi-
ties of robot state transitions between Flying and Hovering,
whereas the other two terms are the expected densities of state
transitions. To prove Theorem VII.1, we track the iteration of
the error Em over the time span [0, T ] using the following
proposition.

Proposition VII.3 (Iteration of error). For all m = 0, ...,M�
1, we have that

Em+1  (1 +�tK)Em + kER(·)k1 + kEM(·)k1. (40)

Proof of Proposition VII.3. We can decompose the error in
the following way. First, using Eq. (32), we derive the in-
equality:

|e1(x, tm+1)| = |⇢1(x, tm+1)� ⇢�1(x, tm+1)|
=

����
Z

R2

⇢̄1(y, tm)p(x, tm+1|y, tm)dy � ⇢�1(x, tm+1)

����


����
Z

R2

[⇢̄1(y, tm)� ⇢̄�1(y, tm)]p(x, tm+1|y, tm)dy

����

+ |EM(x)|.

(41)

Then by taking the L1 norm of both sides of Eq. (41), we
obtain

ke1(·, tm+1)k1  k⇢̄1(·, tm)� ⇢̄�1(·, tm)k1 + kEM(·)k1. (42)

For abbreviation, we omit (x, tm). By Eq. (16) and the
definition of ER(x) in (39),

k⇢̄1 � ⇢̄�1k1  ��
(⇢̄1 � ⇢1)� (⇢̄�1 � ⇢�1)

��
1
+ k⇢1 � ⇢�1k1


������
FTH ��t

nfX

j=1

kj,mLj⇢1 +�tkf⇢2 �HTF

������
1

+ Em
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������
�t

nfX

j=1

kj,mLj(⇢1 � ⇢�1)

������
1

+ k�tkf (⇢2 � ⇢�2)k1

+ kER(·)k1 + Em

 (1 +�tK)Em + kER(·)k1. (43)

Now we combine Eq. (42) and (43) to obtain

ke1(·, tm+1)k1 (1 +�tK)Em + kER(·)k1 + kEM(·)k1.
(44)

Similarly, by Eq. (15) and (33),

ke2(·, tm+1)k1 = k⇢2(·, tm+1)� ⇢�2(·, tm+1)k1
= k⇢̄2(·, tm)� ⇢̄�2(·, tm)k1
 k(⇢̄2 � ⇢2)� (⇢̄�2 � ⇢�2)k1 + k⇢2 � ⇢�2k1
 (1 +�tK)Em + kER(·)k1.

(45)

Combining Eq. (44) and (45), we arrive at

Em+1  (1 +�tK)Em + kER(·)k1 + kEM(·)k1.

In the remainder of this section, we will focus on estimating
kER(·)k1 and kEM(·)k1. To estimate the L1 norm, we utilize
a spatial discretization. Denote ¯

⌦ by [a0, af ]⇥ [b0, bf ], where
bf � b0 = af � a0 =

p
|¯⌦|. Select a spatial resolution to be

h =

p
|¯⌦|

dpNe , (46)

and discretize ¯

⌦ into cells of size h⇥ h as follows:

¯

⌦h = {(a0 + ih, b0 + jh) 2 ¯

⌦ : 0  i, j < d
p
Ne}. (47)

We note that there is no spatial discretization in the simulation
of the microscopic model, but the selection of h matters in the
analysis. The choice of h involves a trade-off: smaller h yields
a more accurate estimate, while larger h provides a higher
probability that the estimate is true. By Eq. (46), there are
dpNe2 cells in all, and hence each cell contains one robot on
average. For F (x) : R2 ! R2

= (f1(x), f2(x)), we introduce
the infinity norm

kF (·)k1 := sup{|f1(x)|, |f2(x)| : x 2 R2}.
Then we have the following quadrature error.

Lemma VII.4 (Quadrature error). Suppose that f 2 C1
(R2

).
Then the following inequality holds:

������
kf(·)k1,⌦̄ �

X

↵2⌦̄h

|f(↵)|h2

������
 2|¯⌦|krf(·)k1h.

The proof of Lemma VII.4 is based on the mean value
theorem. A similar estimate can be found in [21], Lemma 6.2.
In the rest of the paper, we always assume that N is sufficiently
large for our estimates.

Claim VII.5 (Error of motion). There exists an independent
constant, C, such that

kEM(·)k1  C�t|¯⌦|
p
D��4 lnNp

N
+�t2

with probability greater than 1�N [

� 1
3 (lnN)�t2+2

].

Proof of Claim VII.5. We note that

kEM(·)k1 = kEM(·)k1,⌦̄ + kEM(·)k1,⌦̄c .

First, we estimate kEM(·)k1,⌦̄. We define the error of motion
for the ith robot:

Yi(x) :=
1

N

Z

R2

G�(y �X

i
m)p(x, tm+1|y, tm)dy

� 1

N
G�(x�X

i
m+1) if i 2 Fm+1, (48)

and Yi(x) = 0 if i 2 [jHj,m+1. Then by Eq. (10), (14), and
the definition of EM(x) in Eq. (38), we have

EM(x) =

NX

i=1

Yi(x).

Note that the robots are independent of one another, and thus
Yi(x), i = 1, ..., N , are independent random variables for any
fixed x. These random variables have zero mean, i.e.

E(Yi(x)) = 0. (49)

The proof of Eq. (49) is given in Appendix B, Claim B.1.
Now we apply Bennett’s inequality to obtain an upper bound

for |EM(x)|.
Lemma VII.6. (Bennett’s inequality) Let Yi be independent
bounded random variables with E(Yi) = 0, V ar(Yi) = �2

i ,
and |Yi|  M0. Let S =

P
i Yi and V � P

i �
2
i . Then for

⌘ > 0,

P{|S| � ⌘}  2 exp


� 1

2

⌘2V �1B(M0⌘V
�1

)

�
, (50)

where B(�) = 2��2
[(1 + �) ln(1 + �) � �], � > 0,

lim�!0+ B(�) = 1, and B(�) ⇠ 2��1
ln� as � ! 1.

The proof of Lemma VII.6 can be found in [4], [18]. A
direct computation yields

|Yi(x)|  1

N�2
,

NX

i=1

V ar(Yi(x))  1

N�4
.

We set ⌘ =

�t lnNp
N�2

, M0 = N�1��2, and V = N�1��4 in
Bennett’s inequality to obtain the following estimate.

P

✓
|EM(x)| � �t

lnNp
N�2

◆

 2 exp


� 1

2

⌘2V �1B(M0⌘V
�1

)

�

= 2 exp


� 1

2

(lnN)

2
�t2B

✓
�t

lnNp
N

◆�

 2 exp


� 1

3

(lnN)

2
�t2

�
= 2N� 1

3 (lnN)�t2 ,

(51)

where we used the fact that B
⇣
�t lnNp

N

⌘
� 2

3 when N is
sufficiently large. Hence we have

X

↵2⌦̄h

|EM(↵)|h2  �t|¯⌦| lnNp
N�2

(52)
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with probability greater than 1�2N [

� 1
3 (lnN)�t2+2

]. Next, by
Lemma VII.4,
������
kEM(·)k1,⌦̄ �

X

↵2⌦̄h

|EM(↵)|h2

������

 2|¯⌦|krEM(·)k1h  2|¯⌦|
NX

i=1

krYi(·)k1h.

(53)

We claim that for each i = 1, ..., N ,

krYi(·)k1  C2

N

p
D�t��4

lnN (54)

with probability greater than 1� exp

⇥� 1
2�t(lnN)

2
⇤
, where

C2 is an independent constant. The proof of this claim is given
in Appendix B, Claim B.2.

Combining inequalities (52), (53) and (54), and plugging in
the choice of h given by Eq. (46), we obtain

kEM(·)k1,⌦̄  �t��2|¯⌦| lnNp
N

+ C2|¯⌦|3/2
p
D�t��4 lnNp

N

 C�t|¯⌦|
p
D��4 lnNp

N
(55)

with probability greater than 1�2N [

� 1
3 (lnN)�t2+2

], where C
is an independent constant.

Next, we consider kEM(·)k1,⌦̄c . This error is caused by
diffusion: in the macroscopic model, the density of Flying
robots diffuses immediately to the entire R2, whereas in the
microscopic model, the actual density of Flying robots always
stays in ¯

⌦.
We claim that:

kEM(·)k1,⌦̄c  �t2. (56)

The proof of this claim is given in Appendix B, Claim B.3.
Now we combine Eq. (55) and (56) to obtain

kEM(·)k1  C�t|¯⌦|
p
D��4 lnNp

N
+�t2

with probability greater than 1 � N [

� 1
3 (lnN)�t2+2

]. This
completes the proof of Claim VII.5.

Claim VII.7 (Error of reaction). There exists an independent
constant, C, such that

kER(·)k1  CK�t��3|¯⌦| lnNp
N

+ �tKP�

with probability greater than 1� CN [

� 1
3K (lnN)�t+2

].

Proof of Claim VII.7. Define an intermediate term

FTH 0
(x, tm) :=

1

N

nfX

j=1

X

i2Fm

�tkj,mLj(X
i
m)G�(x�X

i
m).

Omitting (x, tm), we have

|ER(x)|

=

������
��t

nfX

j=1

kj,mLj(x)⇢
�
1 +�tkf⇢

�
2 + FTH �HTF

������

 |SE(x)|+ |OF (x)|,

where

SE(x) =

⇥
(FTH � FTH 0

) + (�tkf⇢
�
2 �HTF )

⇤
(x, tm),

OF (x) =

0

@
�t

nfX

j=1

kj,mLj(x)⇢
�
1 � FTH 0

1

A
(x, tm).

Notably, FTH and FTH 0 are supported in �

�
out, while

kj,mLj(x)⇢�1 is supported in �. Therefore, OF (x) measures
the coverage outflow at the boundary of �. FTH and HTF
are the actual densities of robot state transitions between
Flying and Hovering, whereas FTH 0 and �tkf⇢�2 are the
expected densities of these state transitions; therefore, SE(x)

measures the sampling error of reaction.
First we estimate kOF (·)k1. We define L(x) = 1�(x).

Note that by the definitions of Lj(x) and L(x), we have that

L(x) =

nfX

j=1

Lj(x).

Now using the definition of ⇢�1 from Eq. (10), we obtain

OF (x) =

�t

N

X

i2Fm

nfX

j=1

kj,m(Lj(x)� Lj(X
i
m))G�(x�X

i
m).

Let us define

Zi :=8
>><

>>:

1

N

nfX

j=1

kj,mk(Lj(·)� Lj(X
i
m))G�(·�X

i
m)k1 if i 2 Fm,

0 if i 2 [nf

j=1Hj,m,

and

Z 0
i := Zi � E(Zi).

Then Zi is coverage outflow of each individual robot, and

kOF (·)k1  �t
NX

i=1

Zi = �t
NX

i=1

(Z 0
i + E(Zi)) . (57)

From the fact that G�(x) is supported in {x : |x|  �}, it is
straightforward to see that (Lj(x)�Lj(X

i
m))G�(x�X

i
m) ⌘

0 if Xi
m /2 �

�
out � �

�
in. When X

i
m 2 �

�
out � �

�
in, we have

Zi  K

N

Z

R2

|(L(x)� L(Xi
m))G�(x�X

i
m)|dx

 1

N

Z

R2

G�(x�X

i
m)dx =

K

N
.

Hence,

E(Zi)  K

N
P
�
X

i
m 2 �

�
out � �

�
in

  K

N
P�. (58)

Note that Z 0
i are i.i.d random variables with E(Z 0

i) = 0, so
we can apply Bennett’s inequality (Lemma VII.6) again to
estimate |Pi Z

0
i|. We set ⌘ = K lnN/

p
N and compute M0

and V as follows: |Z 0
i|  K/N =: M0 and

P
i V ar(Z 0

i) 
NM2

0 = K2/N =: V . Plugging ⌘, M0, and V into Bennett’s
inequality, we arrive at

P

 �����

NX

i=1

Z 0
i

����� � K lnNp
N

!
 2 exp


� (lnN)

2

3

�
.

(59)
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Combining Eq. (57), (58), and (59), we obtain

kOF (·)k1  �tK
lnNp
N

+�tKP� (60)

with probability greater than 1� 2 exp

⇥� 1
3 (lnN)

2
⇤
.

Next we estimate kSE(·)k1. Since SE(x) is supported in
¯

⌦, we have that kSE(·)k1 = kSE(·)k1,⌦̄. We define

Wi(x) := 'iG�(x�X

i
m), i = 1, ..., N,

where

'i :=

8
>>><

>>>:

1

N

nfX

j=1

(�tkj,m � Ii,j,m)Lj(X
i
m) if i 2 Fm,

1

N
(Ji,j,m ��tkf ) if i 2 Hj,m.

It can be verified that for a fixed x, the random variables
Wi(x), i = 1, ..., N , are independent, and

SE(x) =

NX

i=1

Wi(x), E(Wi(x)) = 0

|Wi(x)|  1

N�2
and |SE(x)|  1

�2
,

V ar(Wi(x))  ��4V ar('i)  �tK

N2�4
.

Using the estimate of quadrature error (Lemma VII.4),
������
kSE(·)k1,⌦̄ �

X

↵2⌦̄h

|SE(↵)|h2

������
 2|¯⌦|krSE(·)k1h

 2|¯⌦|
NX

i=1

|'i|krG�(·�X

i
m)k1h  5|¯⌦|��3

NX

i=1

|'i|h.
(61)

Next we claim that
NX

i=1

|'i|  2�tK (62)

with probability greater than 1�2 exp [�C1�tKN/2], where
C1 is an independent constant. The proof of this claim is given
in Appendix B, Claim B.4. Now we apply Bennett’s inequality
again to estimate SE(↵). Setting ⌘ = �t lnNp

N�2
, M0 =

1
N�2 ,

V =

�tK
N�4 and plugging these parameters into Eq. (50), we

obtain

P

✓
|SE(↵)| � �t

lnNp
N�2

◆
 2N [

� 1
3K (lnN)�t

]

Hence,

P

0

@
X

↵2⌦̄h

|SE(↵)|h2  �t��2|¯⌦| lnNp
N

1

A

� 1� 2N [

� 1
3K (lnN)�t+2

].

(63)

Combining Eq. (61), (62), and (63), and noting that
exp(�N) ⌧ N�(lnN)�t+2, we find that

kSE(·)k1  10�t��3K
|¯⌦|3/2p

N
+�t|¯⌦|��2 lnNp

N

 C2�tK��3|¯⌦| lnNp
N

(64)

with probability greater than 1�C3N [

� 1
3K (lnN)�t+2

], where
C2 and C3 are independent constants. Finally, by combining
Eq. (60) and (64), we conclude that

kER(·)k1  CK�t��3|¯⌦| lnNp
N

+ �tKP�

with probability greater than 1 � CN [

� 1
3K (lnN)�t+2

], which
completes the proof of Claim VII.7.

We now show how Theorem VII.1 follows from Proposition
VII.3, Claim VII.5, and Claim VII.7.

Proof of Theorem VII.1. Set � = 1 + K�t. By combining
the inequalities in Proposition VII.3, Claim VII.5, and Claim
VII.7, we find that

Em+1  �Em + C 0K


�t��4

p
D|¯⌦| lnNp

N
+�tP� +�t2

�

(65)

with probability greater than 1� C 0N [

� 1
3 (lnN)�t2+2

], where
C 0 is an independent constant. Note that E0 = 0. Iterating
over m by using Eq. (65), we obtain

Em+1  C 0K�t
�m+1 � 1

� � 1


��4

p
D|¯⌦| lnNp

N
+ P� +�t

�

 C 0eKT


��4

p
D|¯⌦| lnNp

N
+ P� +�t

�

uniformly in m with probability greater than

1� C 0T

�t
N [

� 1
3 (lnN)�t2+2

]. (66)

Replacing C 0 with C, this proves part (i) of the theorem.
To prove part (ii), we start with the following inequality:

k⇢3(·, tm)� ⇢�3(·, tm)k1

=

������

m�1X

⌧=0

nfX

j=1

kj,⌧�tLj(·)⇢1(·, t⌧ )�
m�1X

⌧=0

FTH(·, t⌧ )
������
1

 �t

������

m�1X

⌧=0

nfX

j=1

kj,⌧Lj(·)(⇢1(·, t⌧ )� ⇢�1(·, t⌧ ))
������
1

+

������

m�1X

⌧=0

nfX

j=1

�tkj,⌧Lj(·)⇢�1(·, t⌧ )�
m�1X

⌧=0

FTH(·, t⌧ )
������
1

:= ⇤1 + ⇤2.

Here, ⇤1 is the cumulative error in the positions of the Flying
robots, and ⇤2 is the cumulative error in reactions. We have
that

⇤1  �tK
m�1X

⌧=0

E⌧

 �tK
m�1X

⌧=0

C 0eKT


��4

p
D|¯⌦| lnNp

N
+ P� +�t

�

= C 0TKeKT


��4

p
D|¯⌦| lnNp

N
+ P� +�t

�
.

(67)
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Next we estimate ⇤2. We have

⇤2 
m�1X

⌧=0

�����

nfX

i=1

�tkj,⌧Lj(·)⇢�1 � FTH(·, t⌧ )
�����
1

.

We note that the term
Pnf

i=1 �tkj,⌧Lj(x)⇢�1 � FTH(x, t⌧ )
comprises part of the error of reaction ER(x), according to
Eq. (39). Using an argument similar to the one in Claim VII.7,
we obtain

⇤2 
m�1X

⌧=0


CK�t��3|¯⌦| lnNp

N
+ �tKP�

�

= T


CK��3|¯⌦| lnNp

N
+ KP�

�
. (68)

Combining Eq. (67) and (68), we arrive at our conclusion:

ke3(·, tm)k1  C 00KTeKT


��4

p
D|¯⌦| lnNp

N
+ P� +�t

�

uniformly in m with probability greater than expression (66).
Replacing C 00 with C, this completes the proof of Theorem
VII.1.

Thus far, we have presented an estimate of the L1 error
between the expected density field ⇢3 and the actual density
field ⇢�3. We can compute the relative error between these
density fields as:

REL =

k⇢3(·, T )� ⇢�3(·, T )k1
k⇢3(·, T )k1 . (69)

In practice, however, we would want to compare ⇢�3 to the
target distribution ⇢⌦. Moreover, since the user will be sat-
isfied as long as the crops are sufficiently pollinated, we can
consider the over-pollinated portion as an inefficiency rather
than an error. Hence, we only count insufficient pollination as
error. We define the discrepancy � and efficiency as

� =

k⇢�3(·, T ) ^ ⇢⌦(·)� ⇢⌦(·)k1
k⇢⌦(·)k1 , (70)

Efficiency =

k⇢�3(·, T ) ^ ⇢⌦(·)k1
k⇢�3(·, T )k1

, (71)

where ⇢�3(x, T ) ^ ⇢⌦(x) = min{⇢�3(x, T ), ⇢⌦(x)}. We also
define the intrinsic discrepancy, which does not depend on N
and �, as

�⌦ =

k⇢3(·, T ) ^ ⇢⌦(·)� ⇢⌦(·)k1
k⇢⌦(·)k1 . (72)

Note that we do not analyze the error between the target
distribution and the macroscopic model in this paper, since
the optimal control is already studied in [13]. Given a desired
discrepancy �d, our goal is to select N and � such that

�  �d. (73)

Toward this end, we present the following corollary.

Corollary VII.8. Under the same assumptions as in Theorem
VII.1, we have that

�  �⌦ + C4

✓
� +�t+ (1 + ��4

)

lnNp
N

◆
(74)

with probability greater than 1� CT
�t N

[

� 1
3 (lnN)�t2+2

]. Here,
C4 is a constant that depends on kj(t), D, �j , T , and ¯

⌦.

Proof. Since |min{a, c}�min{b, c}|  |a� b|,
k⇢�3 ^ ⇢⌦(·, T )� ⇢⌦(·)k1
k⇢3 ^ ⇢⌦(·, T )� ⇢⌦(·)k1 + k⇢�3 ^ ⇢⌦(·, T )� ⇢3 ^ ⇢⌦(·, T )k1
k⇢3 ^ ⇢⌦(·, T )� ⇢⌦(·)k1 + k⇢�3(·, T )� ⇢3(·, T )k1.
Hence,

�  �⌦ +

k⇢�3(·, T )� ⇢3(·, T )k1
k⇢⌦(·)k1 .

By Theorem VII.1, 9 an independent constant C 0
4 > 0 such

that

k⇢�3(·, T )� ⇢3(·, T )k1  C 0
4

✓
� +�t+ (1 + ��4

)

lnNp
N

◆
.

Divide both sides by k⇢⌦(·)k1 and apply it to the previous
inequality, and Eq. (74) is proved.

VIII. SIMULATION RESULTS

In this section, we illustrate the design procedure in Section
III for a simulated crop pollination scenario. Simulation results
beyond those required for the design procedure are also
presented to validate our convergence analysis.

1) Set the parameter values.

We set the example crop field to be a unit square, ⌦ =

[0, 1]2, which has five rows of nf = 2 different types of crops.
The regions of type 1 crops and type 2 crops are defined, re-
spectively, as �1 = {(x1, x2) : x1 2 [0.05, 0.15][[0.45, 0.55][
[0.85, 0.95], x2 2 [0.05, 0.95]} and �2 = {(x1, x2) : x1 2
[0.25, 0.35] [ [0.65, 0.75], x2 2 [0.05, 0.95]}. Let the target
pollination distribution be

⇢⌦(x) = 6 · 1�1(x) + 12 · 1�2(x), (75)

which is shown in the top left of Fig. 4. The other simulation
parameters are X0 = (0.4, 0.2), T = 240, kf = 0.2, D =

0.0005, �d = 0.25, vmin
1 = vmin

2 = �0.01, vmax
1 = vmax

2 =

0.01, and �t = 0.5.
We note that our choice of �t = 0.5 is based on empirical

tests of a range of �t values, each of which satisfies the
CFL condition needed to solve the advection operator in the
macroscopic PDE model. We found that the numerical solution
of the macroscopic model does not change significantly for
�t 2 (0, 1.5]. This is because, as shown in Fig. 3, the robots’
optimized velocity components v1(t), v2(t) and pollination
rates k1(t), k2(t) do not display sharp variations over any time
period of 1.5 units, which means that the typical time scales
of v1(t), v2(t), k1(t), and k2(t) are much larger than the time
scale resolved with a choice of �t 2 (0, 1.5]. Furthermore, we
note that the choice of �t has little effect on the error bounds
(36) and (37), as explained in Remark VII.2.

2) Apply the optimal control technique to compute the robot
control policies.

Using the parameters above, we run the optimal control
technique described in Section VI to compute the robots’
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Fig. 3. Top: robot velocity field v(t) = (v1(t), v2(t)). Bottom: robot
pollination rates k1(t) and k2(t).

velocity v(t) and pollination rates k1(t) and k2(t), which are
plotted in Fig. 3.

3) Simulate the microscopic model.

We simulate the microscopic model with the optimized
values of v(t), k1(t), and k2(t) from Step 2 and the robot
sensing radius � = 0.015. While the design procedure only
requires simulations for two distinct values of the swarm size
N , here we simulate the microscopic model for all the values
of N shown in Table I. We run 100 simulation trials for each
value of N .

4) Compute the discrepancy � between the actual and target
pollination distributions.

For each simulation of the microscopic model, we compute
the resulting actual pollination density field, ⇢�3(x, T ), and
calculate the discrepancy � from Eq. (70), the relative error
REL from Eq. (69), and the efficiency from Eq. (71). Table I
shows the mean �, REL, and efficiency for each value of N
over 100 simulation trials.

Note that as the swarm size N increases, the mean values
of � and REL decrease. This is due to the convergence
of the actual pollination density ⇢�3(x, T ) to the expected
pollination density ⇢3(x, T ) with increasing N . We illustrate
this convergence in Fig. 4, which plots ⇢�3(x, T ) resulting from
several values of N (one simulation trial per N ) alongside
⇢3(x, T ) and the target distribution ⇢⌦(x). To obtain ⇢3(x, T ),
we numerically solved the macroscopic model over the domain
¯

⌦ = [�1, 2]2 with h = 0.006. The intrinsic discrepancy for
this scenario was computed to be �⌦ = 0.1413.

5) Estimate the required N such that the discrepancy � is
less than �d.

From Corollary VII.8, we have that

�  c01 + c02
lnNp
N

, (76)

TABLE I

N Mean � Mean REL Mean Efficiency
6400 0.1912 0.1968 0.8881
3200 0.2139 0.2636 0.8667
1600 0.2486 0.3601 0.8257
800 0.3065 0.4997 0.7615
400 0.3924 0.7017 0.6643
200 0.5284 0.9845 0.5177

Fig. 4. Top left: Target pollination distribution ⇢⌦(x). Top right: Expected
pollination distribution ⇢3(x, T ) from the macroscopic model. From middle
left to bottom right: Actual pollination distribution ⇢�3(x, T ) from the micro-
scopic model with � = 0.015 and N = 200, 400, 800, 1600 robots. The field
is [0, 1]2.

where c01 is the error determined by �t and �, and c02 is a
coefficient that depends on �. Since

lnN ⌧ N

when N is sufficiently large, we conjecture that

� = c1 + c2
1p
N

. (77)

In the bottom subfigure of Fig. 5, the linear fitting of mean �
against 1/

p
N verifies Eq. (77). This figure also shows that

there is a linear relationship between the mean value of REL
and 1/

p
N .

Now for �d = 0.25, we show how to select the number of
robots that are needed to achieve the specification (73). We
solve for c1, c2 in Eq. (77) using the mean � for N1 = 200,
N2 = 400 from Table I. The resulting two equations,

0.5284 = c1 + c2
1p
N1

, 0.3924 = c1 + c2
1p
N2

, (78)
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yield c1 = 0.06407, c2 = 6.567. We plug these coefficients
into Eq. (77) and choose the smallest N such that

�  �d = 0.25.

This yields N ⇡ 1249.

Remark VIII.1. The robots in this scenario act indepen-
dently of one another, since there are no interactions such
as communication. Hence, a swarm with a large population
N will achieve the same distribution of pollination over one
deployment as a swarm with a smaller population of ↵N ,
↵ 2 (0, 1), over ↵�1 deployments. This deployment strategy
can be used when the required value of N for some �d exceeds
the number of available robots.

6) Select the value of � that yields the minimum � for the
required N .

For the selected value of N , there exists an optimal value
of � that yields a minimum value of the discrepancy � for that
N . We illustrate this in Fig. 6, which plots the mean value of
� over 100 simulation trials with respect to different pairs of
� and N . We note that the range of � in our study and the
choice of �t = 0.5 yield a very small error (< 0.01) in the
operating splitting method (29).

Fig. 6 reflects a trade-off in choosing � that is predicted by
our error analysis: for a given swarm size N , small � yield
a low coverage outflow near the crop boundary but a high
coverage insufficiency, whereas large � yield a high coverage
outflow and a low coverage insufficiency. As the plot shows,
the optimal � becomes smaller as the swarm size N increases.
From Step 5, we find that N ⇡ 1249 is the smallest N
for which the discrepancy does not exceed �d. Thus, we can
choose any N > 1249, such as N = 1600. Then, from Fig. 6,
we can pick the optimal � for N = 1600 to further decrease
the discrepancy, which gives us � ⇡ 0.024 and � ⇡ 0.23. In
practice, the sensor limitations will impose an upper bound on
� that may be lower than the optimal value. For example, if we
choose N = 1600 and the possible range of � for the sensor
is [0, 0.020], then according to Fig. 6, we should choose � to
be 0.020 instead of 0.024.

We further illustrate the effect of � with the results in Fig.
7, which plots ⇢�3(x, T ) resulting from a relatively small robot
population N = 100 and several values of � (one simulation
trial per �) alongside the target distribution ⇢⌦(x). The figure
shows that when N is fixed at 100, the discrepancy � is
very large and coverage is fairly sparse when � = 0.015, and
increasing � to 0.030 yields a lower discrepancy and improved
coverage.

IX. CONCLUSION

In this work, we derived analytical bounds on the error
between a target spatial distribution of coverage activity and
the actual coverage distribution that is achieved by a swarm
of N robots whose population dynamics can be described by
an advection-diffusion-reaction PDE. We consider scenarios in
which the environment is known and the robots’ capabilities
are highly constrained, in that they have no inter-robot commu-
nication or global position information. The analytical bound
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Fig. 5. Top figure: Swarm size N vs. mean REL and mean �, both averaged
over 100 simulations of the microscopic model for each value of N . The
corresponding standard deviations are shown as error bars. Bottom figure:
1/
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N vs. mean REL and mean �. The solid and dashed lines are the linear

fittings of mean REL and mean �, respectively.
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Fig. 6. Relationship among �, N , and �. Each data point is averaged over
100 simulations of the microscopic model with the corresponding values of
N and �.

revealed an almost linear relationship between the coverage
error and N� 1

2 , thus providing a convenient way to choose
a swarm size that produces a coverage distribution within
a maximum allowable error. Our analysis also indicated the
existence of an optimal robot sensing radius that minimizes
the discrepancy between the actual and target coverage dis-
tributions for each swarm size, which provides a theoretical
basis for selecting a particular sensing range. We verified our
analytical results through simulations of a crop pollination
scenario. We hope that the detailed analysis presented here
will inspire the analysis and design of other distributed systems
with a significant stochastic component.

In future work, we are interested in extending our error
analysis to models of robotic swarms with pairwise interaction
rules between robots, such as collision avoidance maneuvers.
This extension will require additional interaction terms in the
macroscopic PDE model of the swarm dynamics.
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Fig. 7. Top left: Target pollination distribution ⇢⌦(x). From top right to
bottom right: Actual pollination distribution ⇢�3(x, T ) from the microscopic
model with N = 100 robots and � = 0.015, 0.020, 0.030. The discrepancy
� is shown for each value of �. The field is [0, 1]2.

APPENDIX A

We consider a reduced objective functional ˆJ corresponding
to J in the optimal control problem (34). We define the
following reduced problem:

⌅ : Uad ! Y, min

u2Uad

ˆJ(u) := J(⌅(u),u),

where ⌅ is a control-to-state mapping which maps a control,
u, to ⇢, the corresponding solution of the macroscopic model
(20), (21). The directional derivative of ˆJ is used in a gradient
descent method to numerically compute the optimal robot
control parameters. The expression for this derivative is given
in the following claim, which is proved in [13].

Claim A.1. The reduced objective functional ˆJ is directionally
differentiable along each h 2 L1

(0, T )nf+2, where L1
(0, T )

is the space of essentially bounded functions on the interval
(0, T ). The directional derivative of ˆJ has the form

d ˆJ(u)h =

Z T

0
h
nf+2X

i=1

hiBi⇢,yiL2(R2)3 + �hu,hiL2(0,T )nf+2 ,

where y is the solution of the backward-in-time adjoint equa-
tion

�@y1
@t

= v ·ry1 +D�y1 +

nfX

j=1

kjLj(�y1 + y2 + y3),

�@y2
@t

= kfy1 � kfy2,

�@y3
@t

= 0,

with the final time condition

y1(x, T ) = y2(x, T ) = 0, y3(x, T ) = ⇢3(x, T )� ⇢⌦(x)

and the input operators {Bi} defined as

B1 =

2

4
� @

@x1
0 0

0 0 0

0 0 0

3

5 , B2 =

2

4
� @

@x2
0 0

0 0 0

0 0 0

3

5 ,

Bi =

2

4
�Li�2 0 0

Li�2 0 0

Li�2 0 0

3

5 , 3  i  nf + 2.

The solution y of the above PDE plays the role of the
covector in optimal control theory. However, a straightforward
application of the maximum principle for finite-dimensional
control systems to infinite-dimensional systems is not possible
in general. Although there does exist a more general maximum
principle for infinite-dimensional control systems such as those
governed by PDEs [14], this result is not applicable to our
system due to the unboundedness of the control operators B1

and B2. An alternative approach to derive necessary conditions
based on the first-order derivative of the control-to-state map is
to use the Lagrange multiplier technique to formally derive the
optimality conditions, and then rigorously prove the necessity
of these conditions and the differentiability of the control-to-
state map. This approach is outlined in [30] and was applied
in our prior work [13].

APPENDIX B
Claim B.1. Let Yi(x) be defined as in Eq. (48). Then for each
i = 1, ..., N and each x,

E(Yi(x)) = 0.

Proof. Note that if i 2 Fm+1,

E
�
G�(x�X

i
m+1)

�

=E

⇢
E


G�

⇣
x�X

i
m � v(tm)�t�

p
2D�t�Zm

⌘ ����X
i
m

��

=E

Z

R2

G�

�
x�X

i
m � v(tm)�t� y

�
1

4⇡D�t
e�

|y|2
4D�t

dy

�

=E

Z

R2

G�(y
0 �X

i
m)

1

4⇡D�t
e�

|x�v(tm)�t�y

0|2
4D�t

dy

0
�

=E

Z

R2

G�(y �X

i
m)p(x, tm+1|y, tm)dy

�
,

where we applied the change of variable y

0
= x�v(tm)�y.

This proves our statement for i 2 Fm+1. In addition, Yi(x) =

0 for each i /2 Fm+1.

Claim B.2. For each i = 1, ..., N ,

krYi(·)k1  C

N

p
D�t��4

lnN

with probability greater than 1� exp

⇥� 1
2�t(lnN)

2
⇤
, where

C is an independent constant.

Proof. It is straightforward to see that for each i 2 [jHj,m+1,
rYi(x) = 0. For each i 2 Fm+1,

rYi(x) =
1

N

Z

R2

rG�(x
0 � y)p(y;�t)dy

� 1

N
rG�(x

0 �
p
2D�t�Zm),
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where

x

0
= x� v(tm)�t�X

i
m,

p(y;�t) =
1

4⇡D�t
exp

✓
� |y|2
4D�t

◆
.

Note that

|rYi(x)|  W1 +W2,

with

W1 =

1

N

Z

R2

|rG�(x
0 � y)�rG�(x

0 �
p
2D�t�Zm � y)|·

p(y;�t)dy

W2 =

1

N

����
Z

R2

rG�(x
0 �

p
2D�t�Zm � y)p(y;�t)dy

�rG�(x
0 �

p
2D�t�Zm)

����

Since �Zm = (�Z1
m,�Z2

m) ⇠ W (0, 1),

P (max

i=1,2
|�Zi

m| 
p
�t lnN) � 1� exp


�1

2

�t(lnN)

2

�
.

By the mean value theorem,

W1 =

1

N

Z

R2

����@
2G�(⇠1(x,y))

p
2D�t�Zmp(y;�t)

����dy

 2

p
2D�t

N
max

i,j=1,2
|@xixjG�|max

i=1,2
|�Zi

m| (79)

 C 0

N

p
D�t��4

lnN

with probability greater than 1 � exp

⇥� 1
2�t(lnN)

2
⇤
. Here

C 0 is an independent constant.
Now we estimate W2. It is straightforward to see that

W2  krG� ⇤ p�rG�k1.

By using a change of variable y =

p
�ty0, we obtain

G� ⇤ p(x;�t)�G�(x)

=

Z

R2


�@2G�(x)

p
�ty0

+

1

2

�t@3G�(⇠2(x,y
0
))|y0|2

�
·

p(y0
; 1)dy

0

Applying the facts that
Z

R2

y

0p(y0
; 1)dy

0
= 0, max

i,j,z=1,2
|@xixjxzG�|  C��5,

we have that

W2  krG� ⇤ p�rG�k1  C 00
�t��5, (80)

where C 00 is an independent constant. Combining Eq. (79) and
(80), and noting that N � ��1, we arrive at

krYi(·)k1  C

N

p
D�t��4

lnN

with probability greater than 1� exp

⇥� 1
2�t(lnN)

2
⇤
.

Claim B.3. The following inequality holds:

kEM(·)k1,⌦̄c  �t2.

Proof. By our assumptions in Theorem VII.1, 9⇣ > 0 such
that Xi

m 2 ¯

⌦

2⇣
in and � < ⇣ . Since G�(x) is supported in B� ,

G�(x�X

i
m) = 0 8x /2 ¯

⌦

⇣
in, 8m = 1, ...,M, i = 1, ..., N.

Therefore, we have

kYi(·)k1,⌦̄c =

1

N

Z

⌦̄c

Z

⌦̄⇣
in

G�(y �X

i
m)p(x, tm+1|y, tm)·

dydx.

By definition, 8x 2 ¯

⌦

c,y 2 ¯

⌦

⇣
in, |x � y| � ⇣. Thus, we

can choose �t small enough so that |x� y� v(tm)�t| � ⇣
2 .

Defining B⇣ = {x : |x|  ⇣}, we have

kYi(·)k1,⌦̄c

 1

N

Z

⌦̄⇣
in

G�(y �X

i
m)dy

Z

(B⇣/2)c

1

4⇡D�t
e�

|x|2
4D�t

dx

 1

N

Z 1

⇣/2

r

2D�t
e�

r2

4D�t
dr =

1

N
e�

⇣2

16D�t  �t2

N

since �t ⌧ ⇣. Hence,

kEM(·)k1,⌦̄c 
NX

i=1

kYi(·)k1,⌦̄c  �t2.

Claim B.4. The inequality
NX

i=1

|'i|  2�tK

is true with probability greater than 1�2 exp [�C�tKN/2],
where C is an independent constant.

Proof. We define

'0
i = |'i|� E(|'i|).

Then E('0
i) = 0 and E(|'i|)  �tKN�1. Applying

Bennett’s inequality (50) with ⌘ = �tK, M0 = N�1, and
V = �tKN�1, we obtain

P

 �����

NX

i=1

'0
i

����� � �tK

!
 2 exp [�B(1)�tKN/2] .

Hence,
NX

i=1

|'i| 
�����

NX

i=1

'0
i

�����+
NX

i=1

E(|'i|)  2�tK

with probability greater than 1�2 exp [�B(1)�tKN/2].
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