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Abstract— This paper studies the problem of reconstructing a
two-dimensional scalar field using measurements from a subset
of a network with local communication between nodes. We
consider the communication network of the nodes to form either
a chain or a grid topology. We formulate the reconstruction
problem as an optimization problem that is constrained by
first-order linear dynamics on a large interconnected system.
To solve this problem, we employ an optimization-based scheme
that uses a gradient-based method with an analytical compu-
tation of the gradient. The main contribution of the paper is a
derivation of bounds on the trace of the observability Gramian
of the system, which can be used to quantify and compare
the field estimation capabilities of chain and grid networks. A
comparison based on a performance measure related to the
H2 norm of the system is also used to study the robustness of
the network topologies. Our results are validated in simulation
using both Gaussian scalar fields and actual ocean salinity data.

Index Terms— Networked robotic systems, sensor networks,
field estimation.

I. INTRODUCTION

Large networks of robots or sensors, hereafter referred to
generally as nodes, can perform a range of distributed sensing
and estimation tasks such as environmental monitoring, field
surveillance and reconstruction, multi-target tracking, and
geo-scientific exploration [1], [2], [3]. The environment to
be sampled by the network may be remote or hazardous,
allowing measurements to be directly accessed from only
a subset of the nodes at any given time. Our primary
motivation in this paper is to quantify the fundamental
performance limitations that emerge in these scenarios due
to the chosen inter-node communication topology of the
network. This topology can be implemented in stationary
networks through the configuration of the nodes and enforced
in mobile networks using strategies such as formation control
[4] and traffic control for platoons [5].

Toward this end, we investigate the effect of network
topology on the accuracy and robustness of a method that
we devise for reconstructing a static scalar field from partial
observations. We note that our method can also be adapted
to estimate a time-varying scalar field whose dynamics are
slower than the network information dynamics. This method
uses temporal data collected by the accessible nodes in the
network to estimate the initial measurements of the field that
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were obtained by the full set of nodes. The nodes share
their measurements with their neighbors through a fixed
communication network. The network is assigned either a
grid or chain topology, which are common candidates for
approximating 1D and 2D domains in practical applications.
We specify that the information flow in the network is gov-
erned by a first-order linear dynamical model. This simple
model of information dynamics represents the case where no
data is stored in the nodes and a single item of information
is transmitted between nodes at a time. In addition, this
model yields diffusive information dynamics that eventually
approach a steady state, which allows us to determine a
time at which the data values at the nodes have largely
stabilized and thus gives a fixed time interval over which the
data can be retrieved. From a control theory perspective, the
estimation problem addressed by our method is equivalent
to finding the initial condition of a linear dynamical system
given its inputs and outputs. The solution to this problem is
associated with the observability of the system.

Although there is a great deal of literature on optimal
control, little work has addressed the optimal estimation of
initial conditions other than through the inversion of the
observability Gramian [6]. In general, the observability of
a linear dynamical system can be verified by using the
Kalman rank condition [7]. However, checking the rank
condition for large interconnected systems is computationally
intensive due to the high dimensionality of the observability
Gramian. For this reason, a less computationally intensive
graph-theoretic characterization of observability has been
more widely used than a matrix-theoretic characterization
for large complex networked systems. The observability of
complex networks is studied in [8] using a graph-based
approach, which presents a general result that holds true for
most of the chosen network parameters (the edge weights).
In [9], a graph-theoretic approach based on equitable par-
titions of graphs is used to derive necessary conditions for
observability of networks. Alternately, [10] uses a matrix-
theoretic approach to develop a maximum multiplicity theory
to characterize the exact controllability of a network in terms
of the minimum number of required independent controller
nodes based on the network spectrum.

We adopt a quantitative measure of observability, based
on the trace of the observability Gramian, that is similar
to [11], [12], [13], [14], [15], departing from the graph-
theoretic methods used in [9], [8], [16], [17]. Our analysis
makes use of necessary and sufficient conditions for the
observability spectral properties of chain and grid networks,
which are well-understood [16], [18]. In the main result of



this paper, we derive bounds on the trace of the observability
Gramian of an undirected network and use these bounds
to compare the estimation performance of networks with
either grid or chain topologies. We evaluate this performance
for our novel method of estimating the initial condition
of a large network with linear dynamics, which constitutes
another contribution of this paper. We use an optimization
framework to address this estimation problem and derive the
gradient required to solve it. A third contribution of the paper
is our characterization of a network’s robustness to noise
using a performance measure based on the H2 norm of the
system. We find that even with simple first-order information
dynamics, the topology of the network significantly affects
its estimation performance and its robustness to noise. We
illustrate our approach on both simulated and actual two-
dimensional scalar fields.

The paper is organized as follows. Section II introduces
relevant mathematical concepts and terminology. Section III
describes the problem statement and outlines the assumptions
made in its formulation. The network model is presented
in Section IV. Section V delineates how the scalar field
reconstruction can be posed as an optimization problem and
computes the analytical gradient required for its solution.
Simulation details and results are described in Section VI. We
derive bounds on the trace of the observability Gramian in
Section VII, which aids us in comparing network topologies.
Section VIII discusses a performance analysis of the network
topologies based on the H2 norm of the system. Finally,
Section IX concludes the paper and proposes future work.

II. MATHEMATICAL PRELIMINARIES

A graph G can be defined as the tuple (V(G ),E(G )),
where V(G ) is a set of N vertices, or nodes, and E(G ) =
{(i, j) : i 6= j, i, j 2 V(G )} is a set of M edges. Nodes i and j
are called neighbors if (i, j)2 E(G ). The set of neighbors of
node i is denoted by Ni = { j : j 2 V(G ),(i, j) 2 E(G )}. The
degree di of a node i is defined as |Ni|. We assume that G
is finite, simple, and connected unless mentioned otherwise.

A graph G is associated with several matrices whose
spectral properties will be used to derive our results. The
incidence matrix of a graph with arbitrary orientation is
defined as B(G ) = [bi j] 2 RN⇥M , where the entry bi j = 1
if i is the initial node of some edge j of G , bi j = �1 if
i is the terminal node of some edge j of G , and bi j = 0
otherwise. It can be shown that the left nullspace of B(G )
is c1N , c 2 R, where 1N is the N ⇥ 1 vector of ones [19].
The degree matrix D(G ) of a graph is given by D(G ) =
Diag(d1, ...,dN). The adjacency matrix A(G ) = [ai j]2RN⇥N

has entries ai j = 1 when (i, j) 2 E(G ) and ai j = 0 otherwise.
The graph Laplacian can be defined from these two matrices
as L(G ) = D(G )�A(G ). The Laplacian of an undirected
graph is symmetric and positive semidefinite, which implies
that it has real nonnegative eigenvalues li(G ), i = 1, ...n.
The eigenvalues can be ordered as l1(G )  l2(G )  ... 
lN(G ), where l1(G ) = 0. The eigenvector corresponding to
eigenvalue l1(G ) can be computed to be 1N . By Theorem
2.8 of [20], the graph is connected if and only if l2(G )> 0.
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(a) Chain topology
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(b) Grid topology

Fig. 1. Illustration of the chain and grid network topologies. The blue
circles are nodes and are labeled by numbers. Nodes in the yellow region
are accessible nodes.

Several other matrices will be defined as follows. An n1⇥
n2 identity matrix will be denoted by In1⇥n2 , and an n1 ⇥n2
matrix of zeros will be denoted by 0n1⇥n2 . The matrix JN is
defined as JN = 1T

N1N .

III. PROBLEM STATEMENT
Consider a set of N nodes with local communication

ranges and local sensing capabilities. The nodes are arranged
in a bounded domain as shown in Figure 1. Each node is
capable of measuring the value of a scalar field at its location
and communicating this value to its neighbors, which are
defined as the nodes that are within its communication
range. The nodes take measurements at some initial time
and transmit this information using a nearest-neighbor av-
eraging rule, which is described in Section IV. As shown
in Figure 1, we assume to have direct access only to the
measurements of a small subset of the nodes, which we call
the accessible nodes, which for instance may be closer to
a particular boundary of the domain. We also assume that
the node positions are predetermined and that the nodes
employ feedback mechanisms to regulate their positions in
the presence of external disturbances.

We address the problem of reconstructing the initial mea-
surements taken by all the nodes from the measurements of
the accessible nodes. This can be formulated as the problem
of determining whether the information flow dynamics in the
network are observable with respect to a set of given outputs.
As discussed in Section I, we restrict our investigation to



chain and grid communication topologies, whose structural
observability properties are well-studied [16], [17]. We will
focus on comparing the chain and grid topologies in terms
of their utility as communication networks to be used in
reconstructing an initial set of data.

IV. NETWORK MODEL
The communication network among the N nodes is rep-

resented by an undirected graph G = (V(G ),E(G )), where
vertex i 2 V(G ) denotes node i, and nodes i and j can
communicate with each other if (i, j) 2 E(G ). Let xi(t) 2 R
be a scalar data value obtained by node i at time t. We define
the information flow dynamics of node i as

dxi

dt
= Â

(i, j)2Ni

(x j � xi). (1)

The vector of all nodes’ information at time t is denoted by
X(t) = [x1(t) x2(t) ... xN(t)]T . Using Equation (1) to define
the dynamics of xi(t) for each node i, we can define the
information flow dynamics over the entire network as

Ẋ(t) = �L(G )X(t),

X(0) = X0, (2)

where X0 2 RN contains the unknown initial values of the
data obtained by the nodes at time t = 0, which is the
information that we want to estimate.

We define Id = {I1, I2, ..., Ik}✓V(G ) as the index set of the
accessible nodes. The output equation for the linear system
Equation (2) is given by

Y(t) = CX(t), (3)

where Y(t) 2 Rk and C = [ci j] 2 Rk⇥N is a sparse matrix
whose entries are defined as ci j = 1 if i = j and i 2 Id, ci j =
0 otherwise. If we number the nodes in such a way that
the first k output nodes are ordered from 1 to k, then C =⇥
Ik⇥k 0k⇥(N�k)

⇤
.

As previously discussed, we focus on the case where the
network has a chain or grid communication topology. The
type of topology affects the network dynamics through its
associated graph Laplacian L(G ). Let Gc and Gg represent
communication networks with a chain topology and a grid
topology, respectively. When the nodes in each network are
labeled as shown in Figure 1(a) and Figure 1(b), then it
can be shown that L(Gc) and L(Gg) [18] have the following
structures:

L(Gc) =

2
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1 �1 0 · · · · · · · · · · · · 0
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. . .

...
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(4)

and

L(Gg) =

2
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�I D2 �I
. . .

...
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, (5)

where

D1 =

2

66666664

2 �1 · · · · · · 0

�1 3 �1
...

...
. . . . . . . . .

...
... �1 3 �1
0 · · · · · · �1 2

3
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,

D2 =

2

66666664

3 �1 · · · · · · 0

�1 4 �1
...

...
. . . . . . . . .

...
... �1 4 �1
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.

Here, L(Gg) is a (l1l2)⇥ (l1l2) matrix and D1,D2 are both
l1⇥ l1 matrices, with l1l2 = N. Without loss of generality, we
assume that the grid is square, meaning that l1 = l2 = l. We
direct the reader to [21] for a numerical example of L(Gg).

The graph Laplacians L(Gc) and L(Gg) are constructed
based on the numbering of the vertex sets V(Gc) and V(Gg)
that is shown in Figure 1. Graphs that are constructed by
reordering the vertices of the graphs shown in Figure 1 are
isomorphic to the graphs in the figure. Isomorphic graphs
are also isospectral [22].

Since the system Equation (2) is linear, its solution is [7]

X(t) = e�L(G )tX0. (6)

By combining Equation (3) and Equation (6), we obtain
the map between the unknown initial data X0 and the
measured output Y(t) as

Y(t) = Ce�L(G )tX0. (7)

V. SCALAR FIELD RECONSTRUCTION
The problem of scalar field reconstruction can now be

framed as an inversion of the map given by Equation (7).
From linear systems theory, the property of observability
refers to the ability to determine an initial state X0 from
the inputs and outputs of a linear dynamical system [7]. For
systems defined by Equation (2) with an associated chain
or grid topology, the conditions for observability are well-
studied [16]. This ensures that the reconstruction problem
can be solved for the types of networks that we consider.



We solve the scalar field reconstruction problem by posing
it as an optimization problem. The optimization procedure
uses observed data Ŷ(t) from the accessible nodes over
the time interval t 2 [0 T ] to recover X0. The goal of the
optimization routine is to find the state X0 that minimizes
the normed distance between this observed data, Ŷ(t), and
the output Y(t) computed using Equation (7). Therefore, we
can frame our optimization objective as the computation of
X0 that minimizes the functional J(X0), defined as

J(X0) =
1
2

Z T

0

��Y(t)� Ŷ(t)
��2

2 dt +
l
2
kX0k2 , (8)

subject to the constraint given by Equation (7). Here, l is
the Tikhonov regularization parameter, which is added to the
objective function to prevent X0 from becoming large due to
noise in the data [23].

The convexity of J(X0) ensures the convergence of gradi-
ent descent methods to its global minima. We use one such
method to compute the X0 that minimizes this functional.
The method requires us to compute the gradient of J(X0)
with respect to X0. This is done by combining Equation (7)
and Equation (8), then taking the Fréchet derivative of the
resulting expression with respect to X0 [24]. Defining Y(t) =
Ce�L(G )t , the gradient of J(X0) can be computed in this way
as:

dJ(X0) =
Z T

0
(Y(t))⇤

�
Y(t)X0 � Ŷ(t)

�
dt +lX0, (9)

where (Y(t))⇤ is the Hermitian adjoint of Y(t), which in this
case is simply the Hermitian transpose [24].

The most computationally intensive part of calculating
Equation (9) is computing the matrix exponential in Y(t).
There has been a great deal of literature about approximate
computation of the matrix exponential [25], [26], which by
definition is an infinite matrix series. In general, finding the
matrix exponential is a computationally hard problem for
very large matrices and computing it can be error-prone
if not done carefully, especially if spectral decomposition
[27] of the matrix is not possible [28]. We can calculate
the gradient by noting that Y(t) = Y(t)X0 by Equation (7),
applying a change of variables t = T � t to the integral term
in Equation (9), and defining û(t)⌘ Y(T � t)� Ŷ(T � t):

Z T

0
(Y(t))⇤

�
Y(t)X0 � Ŷ(t)

�
dt

=
Z T

0
(Y(T � t))⇤

�
Y(T � t)� Ŷ(T � t)

�
dt

=
Z T

0
e�L⇤(G )(T�t)C⇤û(t)dt.

This expression can be thought of as the solution P(t) of
the following differential equation at time t = T [7]:

dP
dt

=�L⇤(G )P(t)+C⇤û(t), P(0) = 0. (10)

Using this result, the gradient Equation (9) can be written as

dJ(X0) = P(T )+lX0. (11)

To compute the gradient, we can solve Equation (10) forward
to find P(T ).
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Fig. 2. Gaussian function estimation using 100 nodes with a chain
communication topology. Temporal data is acquired from 30 nodes over
a time period of 50 sec.
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Fig. 3. Gaussian function estimation using 100 nodes with a grid
communication topology. Temporal data is acquired from 30 nodes over
a time period of 50 sec.

VI. SIMULATIONS

We applied the method described in Section V to re-
construct a Gaussian scalar field using 100 nodes, whose
communication network either has a chain topology or a grid
topology. The simulations were performed on a normalized
domain of size 1 m ⇥ 1 m. The field was reconstructed
using data collected over a time period of 50 sec from a set
of 30 accessible nodes. Figure 2 and Figure 3 illustrate the
results from using the chain and grid topologies, respectively.
Each figure shows the contour plots of the actual field, the
estimated field, and absolute value of the error between these
plots. From these plots, it is evident that the grid topology
yields a much more accurate reconstruction of the field
than the chain topology, even though both networks can be
characterized as observable.

In order to test the performance of our method in a
practical scenario, we applied it in simulation to a set of
real salinity data (psu), obtained from [29], over a section of
the Atlantic Ocean at a depth of 25 m. The salinity field was
reconstructed over a time period of 50 sec using 100 nodes
with a grid communication topology and 30 accessible nodes
whose temporal data were sampled at 10 Hz. During the
simulation, each node measured the salinity at its position
and transmitted this information to its neighboring nodes
according to Equation (2). The temporal observations by the
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Fig. 4. Estimation of salinity (psu) over a section of the Atlantic Ocean
at a depth of 25 m. The network consists of 100 nodes with a grid
communication topology. Temporal data is acquired from 30 nodes over
a time period of 50 sec.

accessible nodes, obtained over 50 sec according to Equa-
tion (3), were used to reconstruct the salinity measurements
taken by all the nodes using the techniques described in
Section V. The contour plots in Figure 4 show that the
estimated salinity field reproduces the key features of the
actual field with reasonable accuracy.

VII. EFFECT OF NETWORK TOPOLOGY ON
ESTIMATION PERFORMANCE

In this section, we analyze the effect of network topology
on the accuracy of the field estimation as the number of
nodes in the network increases. Comparing the results in
Figure 2 and Figure 3, it is evident that there is some
fundamental limitation arising from the network structure
which makes the system with the chain topology practically
unobservable. In the control theory literature, the degree
of observability is used as a metric of a system’s observ-
ability [15]. The observability Gramian WO(0,T ) can be
used to compute the initial state of an observable linear
system from output data over time t 2 [0 T ] [7]. This
makes it a good candidate for use in quantifying the relative
observability among different systems. Due to the duality
of controllability and observability, the results associated
with one of these properties can be used for the other if
interpreted properly. Commonly used measures of the degree
of observability (controllability) are the smallest eigenvalue,
the trace, the determinant, and the condition number of
the observability (controllability) Gramian [12], [13], [14].
For large, sparse networked systems, the Gramian can be
highly ill-conditioned, which makes numerical computation
of its minimum eigenvalue unstable. Although researchers
have computed bounds on the minimum eigenvalues of the
Gramian [11], these bounds did not help to us arrive at a
conclusion since they were too close together.

These factors prompted us to use the trace of the observ-
ability Gramian as our metric for the degree of observability.
Analogous to the interpretation of the controllability Gramian
in [11], the trace of the observability Gramian can be
interpreted as the average sensing effort applied by a system
to estimate its initial state. For a communication network
represented by G with information flow dynamics given by
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Fig. 5. Comparison of the degree of observability based on the trace of
the observability Gramian and its bounds. The trace shown in Figure 5(a)
is computed numerically using the eigenvectors of L(G ).

Equation (2), the trace of the observability Gramian WO(0,T )
is defined as

Trace(WO(0,T )) = Trace
✓Z T

0
e�L(G )⇤tC⇤Ce�L(G )tdt

◆
.

(12)

Following steps similar to those in [11], we use Theorem 1
below to derive upper and lower bounds on the trace of
the observability Gramian for networks with chain and grid
topologies. Figure 5 compares these lower and upper bounds
for two network sizes as a function of the sensor-to-total-
node ratio, where the sensors are defined as the accessible
nodes. It is clear from the plots that the average sensing
effort required by the chain network is greater than that of
the grid network for a given measurement energy, which
is defined as kY(t)k2

L2([0 T ],Rk) [11], where Y(t) is obtained
from Equation (3).



Theorem 1: Let G be an unweighted, undirected graph
that represents the communication network of a set of N
nodes with information dynamics and output map given
by Equation (2) and Equation (3), respectively. If we label
V(G ) such that k  N sensor nodes in V(G ) are labeled as
1,2, ...,k, then C =

⇥
Ik⇥k 0k⇥(N�k)

⇤
. Assuming that L(G ) is

diagonalizable and that l1 � l2 � ...� lN are its eigenvalues,
there exist real constants c1  c2  ... cN such that

k

Â
i=1

ci  Trace(WO(0,T )) 
k�1

Â
i=0

cN�i, (13)

where ci =
R T

0 e�2litdt.

Proof: From the definition of the trace operator, it
can be shown that the trace and integral operators are
commutative. Using this property and the property that the
trace operator is invariant under cyclic permutation [30],
Equation (12) can be written as

Trace(WO(0,T ))

=
Z T

0
Trace

⇣
e�L(G )⇤tC⇤Ce�L(G )t

⌘
dt

=
Z T

0
Trace

⇣
C⇤Ce(�L(G )t�L(G )⇤t)

⌘
dt.

Since the Laplacian of an unweighted, undirected graph is a
Hermitian matrix, this equation becomes

Trace(WO(0,T )) =
Z T

0
Trace

⇣
C⇤Ce�2L(G )t

⌘
dt.

Let L(G ) = VLV⇤ such that L = Diag(l1,l2, ...,lN) and
the columns of V 2 RN⇥N are given by the corresponding
eigenvectors of L(G ). Then using the decomposition of the
matrix exponential [27], the equation becomes

Trace(WO(0,T )) =
Z T

0
Trace

⇣
C⇤CVe�2LtV⇤

⌘
dt

= Trace
✓

C⇤CV
✓Z T

0
e�2Ltdt

◆
V⇤

◆
.

The matrix exponential
R T

0 e�2Ltdt is a diagonal matrix
given by Diag

⇣R T
0 e�2l1tdt,

R T
0 e�2l2tdt, ...,

R T
0 e�2lNtdt

⌘
. We

define ci =
R T

0 e�2litdt. Then, since l1 � l2 � ... � lN , by
definition we have that c1  c2  ... cN .

Let M = V
⇣R T

0 e�2Ltdt
⌘

V⇤. Then we see that M is a
Hermitian matrix with eigenvalues c1,c2, ...,cN and the same
eigenvectors as L(G ). Also, we find that C⇤C is a diagonal
matrix with the first k diagonal elements equal to 1 and the
rest equal to 0. Defining P=C⇤C, we obtain a compact form
for the trace of the observability Gramian,

Trace(WO(0,T )) = Trace(PM) . (14)

Equation (14) can be reduced to:

Trace(WO(0,T )) = Trace(PM) =
k

Â
i=1

Mii,

where Mii denotes the ith diagonal entry of M.

From Theorem 1 of [31], we obtain the following lower
bound:

Trace(WO(0,T )) =
k

Â
i=1

Mii �
k

Â
i=1

ci. (15)

Now by applying Von Neumann’s trace inequality [30] to
Equation (14) and the fact that WO(0,T ) is at least positive
semidefinite, we find that

Trace(PM) 
n�1

Â
i=0

s (P)n�i s (M)n�i

where s(·)i is the ith singular value of a matrix. The singular
values are arranged in increasing order, s(·)1  s(·)2  ...
s(·)N , and here they coincide with the eigenvalues of the
matrices. Note that only the last k eigenvalues of P are
nonzero and are equal to 1. Thus, we obtain the upper bound:

Trace(WO(0,T )) 
k�1

Â
i=0

cN�i. (16)

Since we can obtain the eigenvalues of L(Gc) and L(Gg)
analytically [18], we can use Theorem 1 to analyze and
compare the scaling properties of the chain and grid network
topologies in a more precise fashion. For each type of
network, we specify that k of the N total nodes in the
network are sensors (accessible nodes), where k <

p
N.

Without loss of generality, we assume that the grid is
square to simplify the analysis. By Theorem 1, the upper
bound on Trace(WO(0,T )) is given by Âk�1

i=0 cN�i, where
cN�i =

R T
0 e�2lN�itdt. Let l c

N�i and l g
N�i denote the (N� i)th

eigenvalue of L(Gc) and L(Gg), respectively. Then from
[18], l c

N�i = 4sin2 � pi
2N

�
and l g

N�i = 4sin2
⇣

pi
2
p

N

⌘
for i 2

{0,1, ...,k � 1}. Since k <
p

N implies that k
N < 1p

N
, for

networks with large N we have that l c
N�i ⇡ (pi

N )2 and l g
N�i ⇡

( pip
N
)2. Therefore, the upper bound on Trace(WO(0,T )) for

the chain network is given by:
k�1

Â
i=0

cc
N�i =

k�1

Â
i=0

Z T

0
e�2 p2i2

N2 tdt, (17)

which can be simplified to

k�1

Â
i=0

cc
N�i = T +

N2

2p2

0

@
k�1

Â
i=1

1� e�2 p2i2
N2 T

i2

1

A . (18)

Similarly, the upper bound on Trace(WO(0,T )) for the grid
network can be reduced to:

k�1

Â
i=0

cg
N�i = T +

N
2p2

0

@
k�1

Â
i=1

1� e�2 p2i2
N T

i2

1

A . (19)

From Equation (18) and Equation (19), we observe that
the upper bound on the average sensing effort required by
the chain network scales quadratically with the total number
of nodes N, whereas this upper bound for the grid network
scales linearly with N.



VIII. EFFECT OF NETWORK TOPOLOGY ON
ROBUSTNESS TO NOISE

In this section, we analyze the effect of noise on the output
of first-order linear dynamics that evolve on chain and grid
network topologies. We assume that the data at each node in
the network is affected by white noise with zero mean and
unit covariance. Therefore, the augmented system dynamics
described by Equation (2) can be written as

Ẋ(t) =�L(G )X(t)+W, (20)

where W 2 RN denotes a zero mean, unit covariance white
noise process. The output equation is the same as Equa-
tion (3).

As defined in the robust control literature, the H2 norm
of a system gives the steady-state variance of the output
when the input to the system is white noise and when
�L(G ) is Hurwitz [32]. However, for unstable systems,
the finite steady-state variance can be computed only when
the unstable modes are unobservable from the outputs [33].
For L(G ), zero is the only unstable mode with correspond-
ing eigenvector 1N , which does not affect the steady-state
variance of the output. If we can make the zero mode
unobservable, then it is still possible to use the H2 norm
as a measure to quantify the effect of noise on the system
output.

In order to do so, we follow the approach in [34],
which uses the first-order Laplacian energy. This quantity
is essentially the H2 norm of a system if the matrix C in
Equation (3) is chosen in such a way that it annihilates the
vector 1N . This can be done by defining C to be an incidence
matrix of a graph Gk. Denoting this new C by Ĉ, we have
that L(Gk) = ĈT Ĉ. Then L(Gk)1N = 0, which implies that
Ĉ1N = 0 since ker(Ĉ) = ker(ĈT Ĉ). Note that Ĉ need not
necessarily be the incidence matrix of a graph Gk; the only
condition required is that ĈT Ĉ = L(Gk).

Now, if Gk is chosen to be a weighted complete graph
KN whose edges all have weight 1

N , then L(Gk) = IN⇥N �
1
N JN . The first-order Laplacian energy, H

(1)
KN

(L(G )), for the
corresponding C can be defined from [34] as

H
(1)

KN
(L(G )) =

N�1

Â
i=1

1
2li

, (21)

where l1 � l2 � ...� lN = 0 are the eigenvalues of L(G ).
In Figure 6, we compare H

(1)
KN

(L(G )) for graphs with
grid and chain network topologies as a function of the total
number of nodes in the network. The plot shows that the
grid network is more effective than the chain network at
mitigating the effect of noise on the system output for a
given number of nodes.

IX. CONCLUSION
In this work, we have presented a methodology to estimate

the initial state of a large networked system of nodes with
first-order linear information dynamics using output mea-
surements from a subset of the nodes. We have quantified
the advantages of a grid network over a chain network in
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Fig. 6. Performance measure based on the first-order Laplacian energy.

the estimation of a two-dimensional scalar field, even though
both networks can be made observable by construction. We
have also used a performance measure based on the H2
norm of the network to characterize the robustness of the
network dynamics based on its structure. A straightforward
extension of this work is to compare the chain and grid
topologies with similar degree distributions using the same
methodology. Another interesting aspect to investigate is
the effect of structural uncertainty in the networks, which
could be done by quantifying the observability radius of the
networks, as defined in [35]. In addition, we would like to
compare network topologies in an alternative way by viewing
L(Gc) and L(Gg) as approximations to the Laplace operator
for 1D and 2D heat equations and analyzing the Gramians
of these partial differential equations [36].
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