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A Probabilistic Approach to Automated
Construction of Topological Maps using a

Stochastic Robotic Swarm
Ragesh K. Ramachandran1, Sean Wilson1 and Spring Berman1

Abstract—In this paper, we present a novel procedure for
constructing a topological map of an unknown environment from
data collected by a swarm of robots with limited sensing capa-
bilities and no communication or global localization. Topological
maps are sparse roadmap representations of environments that
can be used to identify collision-free trajectories for robots to
navigate through a domain. Our method uses uncertain position
data obtained by robots during the course of random exploration
to construct a probability function over the explored region that
indicates the presence of obstacles. Techniques from topological
data analysis, in particular the concept of persistent homology,
are applied to the probability map to segment the obstacle
regions. Finally, a graph-based wave propagation algorithm is
applied to the obstacle-free region to construct the topological
map of the domain in the form of an approximate Generalized
Voronoi Diagram. We demonstrate the effectiveness of our
approach in a variety of simulated domains and in multi-robot
experiments on a domain with two obstacles.

Index Terms—Swarms; Mapping; Probability and Statistical
Methods

I. INTRODUCTION

SWARMS of low-cost, expendable robots can potentially
be used in a variety of applications, such as exploration,

environmental sensing, disaster response, and search-and-
rescue operations, that require mapping an unknown, possibly
hazardous environment in order to perform desired tasks. The
robots may not be equipped with sufficient power to have on-
board GPS or inter-robot communication devices, or they may
be deployed in GPS-denied environments (e.g., underground
or indoors) with unreliable communication. These resource
limitations would preclude the use of conventional techniques
of exploration and mapping, such as simultaneous localization
and mapping (SLAM) [1], [2].

For such scenarios, we address the specific problem of
finding safe robot trajectories using uncertain localization data
acquired by robots with onboard odometry. Toward this end,
we use the robots’ data to construct a topological map, which
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is a sparse representation of an environment that encodes all of
its topological features, such as holes that represent obstacles,
and provides a collision-free path through the environment
in the form of a roadmap [3]. If the domain is embedded in
R2, then the topological map can be mathematically described
as a one-dimensional deformation retract of the domain [4].
A topological map can be constructed in the form of a
Generalized Voronoi Diagram (GVD) [5]. A GVD provides
all possible path homotopies in an environment containing
obstacles and indicates the maximum clearances from ob-
stacles and the domain boundary. In addition, since GVDs
are graphs, standard graph search algorithms can be used for
planning on GVDs. Due to the computational complexity of
computing exact GVDs, algorithms have been developed to
generate approximate GVDs (AGVDs) in practice [6].

The novel contribution of this paper is an automated pro-
cedure, which combines existing techniques from algebraic
topology and graph search, for generating the topological
map of an unknown, GPS-denied environment using data
from a swarm of robots with limited sensing and no inter-
robot communication. This procedure is an extension of our
work in [7], which also computes a probabilistic map of
a domain using uncertain localization data from randomly
exploring robots. However, the approach in [7] only estimates
the number of topological holes (obstacles) in the domain
and does not construct a topological map, as we do in this
paper. The estimate in [7] is derived from a Rips complex
filtration [4] with a heuristically chosen filtration parameter,
whereas the topological map in this paper is constructed from a
probability-based filtration which outputs the optimal filtration
parameter. Our prior work [8] also presents a method for
mapping GPS-denied environments using a swarm of robots
with stochastic behaviors. This approach employs optimal
control of partial differential equation models rather than the
topological techniques used in this paper. Although the method
in [8] only requires robot data on encounter times with features
of interest, it is limited in application to domains with a few
sparsely distributed features.

We employ tools from topological data analysis (TDA) to
segment the obstacle regions in the domain by constructing a
probability-based filtration on the domain’s free space, thereby
simultaneously computing the optimal filtration parameter and
estimating the number of topological features in the domain.
TDA has previously been used for super-level set estimation
of probability densities [9]. Next, we use a graph-based wave
propagation algorithm [10], [11] to construct the topological
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map of the domain in the form of an AGVD. This map
can then be used by humans or more expensive robots to
navigate safely through the environment. The data-gathering
portion of our procedure is decentralized, in that the robots
act autonomously and a central supervisor is not required to
control their individual operations. After this phase, a central
server is needed to construct the AGVD from the collected
robot data, since the robots do not have the resources to
perform these computations onboard. While we only consider
2D environments in this paper, our techniques can be extended
to 3D environments as well.

Although constructing a GVD from a given configuration
space is a well-studied topic [12], [13], there is little work
on constructing a GVD using a swarm of resource-restricted
robots. Compared to existing methods that do address this
problem, our procedure uses robots with fewer requirements.
Most of the existing work on using robots to generate topolog-
ical maps requires the robots to have sophisticated sensing and
localization capabilities [12], [14]. Other work on exploration
and topological mapping uses robots with limited sensing
capabilities, but does not scale well in a swarm robotic frame-
work [15]. A similar approach to ours is presented in [11],
which constructs an AGVD of a domain by combining a graph
search algorithm with a coverage algorithm based on concepts
from algebraic topology. Unlike our procedure, this approach
requires each robot to communicate with a central server that
commands its actions. In [16], a simplicial approximation
of a region of interest is obtained as a topological map
by constructing dual pairs of nerves using relevant visibility
and observation covers. This strategy requires the robots to
detect, identify, and store landmarks in the domain such as
obstacle corners and edges, and therefore requires the robots
to have higher sensing and processing capabilities than in our
procedure. The approach in [17] generates a point cloud of the
domain’s free space in a coordinate-free manner and employs
persistent homology to compute topological features in the
domain. This strategy requires inter-robot communication, and
each robot must have a unique identifier that is recognized by
other robots.

II. BACKGROUND

Topological Data Analysis (TDA) [18] provides algorithmic
and mathematical tools for studying topological and geometric
attributes of noisy data in a coordinate-free manner. Detailed
treatments of the theoretical and computational aspects of
TDA are given in [19], [20]. Techniques from TDA have
been previously applied to problems in robotics [21], sensor
networks [22], and localization [23]. The key idea underlying
TDA is that data have an inherent shape that encodes important
information regarding their global structure. TDA uses the
mathematical framework of algebraic topology [20] to char-
acterize topological features embedded in the data. For many
applications, data are obtained as a point cloud comprised of
noisy samples of an intensity map in a Euclidean space. TDA
can be used to compute prominent topological features of a
point cloud, which can be presented graphically in a compact
fashion with persistence diagrams [24] and barcode diagrams
[25].

A central concept in TDA is persistent homology [19],
which enables the study of global attributes of a space
from local computations on noisy data that are obtained by
sampling the space. Persistent homology can be used to filter
topological features that are persistent over a large range
of scales. To any topological space T, one can associate
a set of vector spaces called homology groups, denoted by
Hk(T), k = 0,1,2, ...,dim(T)− 1. Every vector space in this
set encodes information regarding a particular topological
feature of T. The dimension of each vector space Hk(T),
denoted by βk, gives the number of independent topological
features represented by that vector space. The dimensions βk
are topological invariants [20] and are commonly referred
as Betti numbers. In addition, βk represents the number of
independent k-dimensional cycles in T. For instance, if T
is embedded in R2, denoted by T ↪→ R2, then β0 gives the
number of connected components in T and β1 indicates the
number of holes in T. Similarly, if T ↪→ R3 then β0, β1, and
β2 specify the numbers of connected components, tunnels, and
voids in T, respectively.

Another key concept in algebraic topology is the abstract
simplicial complex. Although this complex is in general de-
fined on topological spaces constructed on arbitrary sets, here
we restrict its definition to Euclidean spaces and use notation
from [24]. We say that vectors v0,v1, ...,vk ∈ Rn are affinely
independent if the vectors v1 − v0, ...,vk − v0 are linearly
independent. A k-simplex σ ⊂Rn can be defined as the convex
hull of k+1 affinely independent vectors {v0,v1, ...,vk}, called
vertices, and is often represented as σ = [v0,v1, ...,vk]. A face
τ of the simplex σ is the convex hull of a non-empty subset
of {v0,v1, ...,vk}. This relationship is commonly denoted as
τ ≤ σ . A simplicial complex κ is defined as a finite collection
of simplices σ such that (1) σ ∈ κ , (2) τ ≤ σ implies that
τ ∈ κ , and (3) σ ,σ ′ ∈ κ implies that σ ∩σ ′ is empty or is a
face of both σ and σ ′.

Simplicial complexes provide discrete representations of an
underlying topological space using a combinatorial structure,
which can be expressed algebraically with linear operators
(matrices). This algebraic structure can be exploited to develop
algorithms for homological computations. If f : κ → R is
a function such that τ ≤ σ implies that f (τ) ≤ f (σ), then
f−1((−∞,δ ]) is a simplicial complex denoted by κδ and
δ1≤ δ2 implies that κδ1 ⊆ κδ2 , yielding a filtration of simplicial
complexes with δ as the filtration parameter. The persistent
homology is obtained by varying the value of the filtration
parameter, computing the generators of homology groups (the
basis of the homology group vector spaces) for each simplicial
complex obtained for the parameter value, and identifying the
persistent homology generators.

A barcode diagram is a graphical representation of Hk(T) in
terms of its homology generators and can be used to identify
the persistent topological features of T. This diagram plots a
set of horizontal line segments whose x-axis spans a range of
δ values and whose y-axis depicts the homology generators in
an arbitrary ordering. The Betti number βk gives the number
of generators of Hk(T). The number of arrows in the diagram
indicates the number of persistent topological features of T.
Figure 1 illustrates an example of a barcode diagram.
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Fig. 1. An example barcode diagram of a filtration. βk(δi) is the number of
horizontal segments in the barcode for Hk(T) that intersect the dashed line at
δ = δi. The arrows in H0 and H1 indicate the persistent topological features.
The shaded regions contain the 2-simplices (triangles).

III. PROBLEM STATEMENT

We consider the problem of generating a topological map of
a bounded, GPS-denied 2D environment using data collected
by a swarm of N robots. We assume that the boundary of
the domain is known, but its interior is unknown. We also
assume that each robot can identify features and other robots
that fall within its local sensing range, enabling it to avoid
collisions, and can estimate its position and orientation with
uncertainty using measurements from a compass and wheel
encoders. After the swarm is deployed into the domain, each
robot performs a correlated random walk while estimating its
global position using its onboard odometry and refining its
measurements using a Kalman filter. At fixed time intervals,
each robot records its estimated position and the associated
covariance matrix corresponding to the uncertainty of the
estimate. After a time T , which we assume is sufficiently large
for the robots to thoroughly cover the domain, all robots travel
to a common location where their stored data is retrieved.

The robots follow the standard odometry motion model
described in [26]. Each robot has a constant speed v and an
orientation θ(t) at time t with respect to a global frame. The
velocity and position vectors of a robot at time t are defined
as V(t) = [vx(t), vy(t)]T = [v cos(θ(t)), v sin(θ(t))]T and
X(t) = [x(t), y(t)]T , respectively. At time t = 0, the begin-
ning of a deployment, each robot is provided with accurate
measurements of its position X(0) and orientation θ(0). At
the start of every time step ∆t during the deployment, each
robot generates a uniform random number between 0 and 1
and randomly chooses a new orientation θ(t) ∈ [−π,π] if the
number is below a predefined threshold pth. During a time
step, the displacement of a robot is described by the equation

X(t +∆t) = X(t)+V(t)∆t +W(t), (1)

where W(t)∈R2 is a vector of independent, zero-mean normal
random variables that are generated at time t. These variables
model randomness in the robot’s motion due to sensor and
actuator noise.

IV. TOPOLOGICAL MAP GENERATION PROCEDURE

A. Procedure Description

In this section, we present a three-step procedure for ex-
tracting a topological map of the domain in the form of an
AGVD from the data obtained by the robots.

1) Estimation of the Number of Obstacles: We first dis-
cretize the domain into a high-resolution uniform grid of M
cells, as in occupancy grid mapping algorithms [26], and use
the robots’ data to assign a probability p f

i to each grid cell
mi, i∈ {1, ...,M}, of being free, or unoccupied by an obstacle.
We first presented this computation in [7] and summarize
it here. During a deployment, the data obtained by robot
j ∈ {1, ...,N} at time tk ∈ [0,T ], k ∈ {1, ...,K}, consists of the
tuple d j

k = {µ
j

k ,Σ
j
k}, where µ

j
k ∈R

2 is the mean of the robot’s
estimate of its position in Cartesian coordinates at time tk, and
Σ

j
k ∈ R2×2 is the covariance matrix of its position estimate at

this time. The probability pi jk that robot j occupied grid cell
mi at time tk is computed for all robots, cells, and measurement
times. This discrete probability is calculated by integrating the
Gaussian distribution with mean µ

j
k and covariance matrix Σ

j
k

over the region [xl
i ,x

u
i ]× [yl

i ,y
u
i ] occupied by cell mi. A score

si ∈ [0,∞) is then assigned to cell mi according to the equation

si =
N

∑
j=1

K

∑
k=1

log
(

1
1− pi jk

)
. (2)

This score is rescaled to a value sC
i ∈ [0,C], where C is chosen

such that the value of 1− exp(C)−1 is close to one. The
rescaling improves numerical stability when converting the
scores to probabilities, especially for values near zero and one.
Finally, we compute the probability of cell mi being free as
p f

i = 1− (exp(sC
i ))
−1.

Next, we identify the persistent topological features in the
domain and find the optimal threshold αopt for which all grid
cells with p f

i < αopt belong to an obstacle. As discussed in
Section II, we generate a filtration of simplicial complexes
based on a parameter δ in order to compute the persistent
homology. Let α denote a given threshold for identifying grid
cells mi that belong to obstacles (the “obstacle grid cells”),
according to p f

i < α . We define the filtration parameter δ as
1−α in order to be consistent with the conditions described
in Section II. Thus, the value of δ varies from 0.1 to 0.9
when the threshold α varies from 0.9 to 0.1. We construct the
simplicial complex κδ by selecting the center points of the grid
cells with p f

i ≥ α = 1−δ and constructing 1-simplices and 2-
simplices from these points (the 0-simplices). The 1-simplices
are generated by taking each element of the 0-simplices and
pairing it with its immediate vertical, horizontal, and diagonal
neighbors (8-connectivity) if the neighbors are elements of
the 0-simplices. Thereafter, the 2-simplices are constructed by
taking every subset of three elements in the 1-simplices that
form a triangle. Figure 2 shows the filtration constructed for
the domain in Figure 4(b), which was used in the multi-robot
experiments described in Section V-B.

Barcode diagrams are extracted from these filtrations, and
the number of barcode arrows in each homology group cor-
responds to the number of topological features in the domain
that are encoded by that particular group. The optimal filtration
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(a) Simplicial complex, δ = 0.2
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(b) Simplicial complex, δ = 0.4
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(c) Simplicial complex, δ = 0.6
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(d) Simplicial complex, δ = 0.8

Fig. 2. Filtration used to generate the barcode diagram Figure 6(b) for the domain shown in Figure 4(b). The red triangles are the 2-simplices that are
constructed from the centers of the grid cells in the domain discretization.

parameter δopt is defined as the minimum value of δ for which
all the topological features are captured by the corresponding
simplicial complex. Alternately, it is the value of δ for which
there exists no barcode segment other than arrows in any of
the homology groups for all values of the filtration parameter
greater than this value. Thus, the optimal threshold can be
defined as αopt = 1− δopt . In practice, we can compute δopt
by taking the maximum value of δ that is spanned by the
non-arrow barcode segments in all the homology groups.

We used the MATLAB-based JavaPlex package [27] to
perform the persistent homology computations and generate
the barcode diagrams. Persistent homology was computed only
for dimensions zero and one, since higher dimensions are not
relevant for our application.

2) Obstacle Segmentation: In the second step, we use the
information gathered in the previous step to segment the
portion of the domain that is occupied by obstacles and iden-
tify the obstacle grid cells. By definition, the grid cells with
p f

i <αopt belong to an obstacle. Since we have determined the
number of obstacles NO in the domain (the number of arrows
in H1 in the barcode diagram), a straightforward approach
would be to use a K means clustering algorithm on the center
points of these grid cells. However, since K means techniques
are highly sensitive to the choice of randomly initialized
points, it is difficult to guarantee the correct classification of
the obstacle grid cells.

Instead, to classify the grid cells in each obstacle, we
develop an algorithm that takes as input (1) the number of
obstacles in the domain, and (2) an obstacle graph GO whose
vertices are the center points of the obstacle grid cells. Denot-
ing the set of these points by C, the edges of GO are defined
by pairing every element in C with its immediate vertical
and horizontal neighbors (4-connectivity) if the neighbors are
elements of C. We initialize an open list L with all the elements
in C and loop through the following procedure NO times. We
choose an element randomly from L and perform a breadth-
first search on GO with this element as starting point. The
resulting set of elements, denoted by V , consists of the grid
cells contained in a single obstacle. Then L is updated by
removing those elements in L which are also in V . After the
obstacles are segmented in this way, the boundaries of each
obstacle are identified as the elements in C that belong to the
same obstacle and have fewer than four neighbors, according
to GO. We denote the set of elements along the boundary of
the ith obstacle by ∂Oi.

Algorithm 1 Topological Map Generation
Input: Free region graph G f with vertex set V (G f ), {Bk} =
{∂Oi}∪{∂Di}
Output: gvd nodes: subset of V (G f ) which constitutes the
discrete AGVD (topological map)

1: L = V (G f ) . Initialize the open list
2: . L is a min heap with ∞ priority ∀ elements at start
3: src[v] = ∞ for all v ∈ L . Distance to obstacles
4: and domain boundaries
5: label[v] = -1 for all v ∈ L . Label variable
6: gvd nodes = /0
7: mark = 0
8: for Bk ∈ {Bk} do
9: for v ∈ Bk do

10: . Label the obstacle and domain boundaries
11: label[v] = mark
12: src[v] = 0 . Set distance to 0
13: L[v] = 0 . Decrease priority of v
14: end for
15: mark = mark + 1
16: end for
17: while L 6= /0 do
18: n = argmin

n̂∈L
src[n̂] . Min element of L

19: if src[n] == ∞ then
20: break
21: end if
22: L = L − n . Remove the min element
23: . Find element in nbh, the expanded neighbor set, with a

different label
24: q = argmin

q̂∈nbh(n)
{src[q̂] | label[q̂] 6= −1 & label[q̂] 6=

label[n]}
25: if (src[q] + 1 == src[n]) or (src[q] == src[n]) then
26: add q to gvd nodes . Vertex of AGVD
27: end if
28: U = {u ∈ nbh(n) | u ∈ L, src[u] > src[n]+dist(n,u)}
29: for u ∈ U do
30: src[u] = src[n] + dist(n,u) . Update distance
31: label[u] = label[n] . Assign same label to
32: neighbor
33: L[u] = src[n] + dist(n,u) . Change priority
34: end for
35: end while
36: return gvd nodes
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3) Voronoi Diagram Construction: In the third step, we de-
velop a new implementation of the wave propagation algorithm
to generate the approximate Generalized Voronoi Diagram
(AGVD). Let ∂D j denote the set of grid cell centers that
are closest to the jth edge of the domain boundary. Since
we have assumed that the domain boundary is known, we
have prior knowledge of the ∂D j. We define a free region
graph G f whose vertex set V (G f ) contains the center points
of grid cells that lie in the union of the obstacle-free region
with the obstacle boundary sets, ∂Oi. This graph is constructed
in the same manner as the obstacle graph. We also define
the sets {Bk} = {∂Oi} ∪ {∂D j} for each obstacle i and
each boundary edge j. The distance between v,w ∈ V (G f ) is
given by a known function dist(v,w), which is based on the
discretization of the domain.

The pseudocode of the algorithm is outlined in Algorithm 1.
The inputs to the algorithm are the free region graph G f and
the set {Bk}. The algorithm starts by initializing an open list
with the vertices of G f . Then the src-value of each element in
{Bk}, defined as the distance from the element to the closest
obstacle or domain boundary edge, is set to zero and a label is
assigned to it based on which Bk ∈ {Bk} it belongs to (lines
7-16). The remainder of the algorithm is a modified form of
Dijkstra’s algorithm [28]. Until the open list is non-empty,
at every iteration we choose the element with the minimum
src-value from the open list and check whether any of the
neighbors of this element can be a part of the AGVD (lines 24-
27). We update the src-values of the neighbors of this element
and copy its label to its neighbors. The algorithm outputs the
set of vertices in V (G f ), which constitutes the topological map
of the domain in the form of a discrete AGVD. Figure 3
illustrates the progress of the algorithm when it is applied
to the domain in Figure 4(b).

B. Computational Complexity
The computational complexity of an algorithm is a key

factor in determining its feasibility for real-time implemen-
tation. Here, we analyze the complexity of each of the main
computational blocks in our procedure. From our analysis, we
conclude that the worst-case complexity of our approach is
O(M2.372), which is same as the worst-case computational
complexity of the method in [17], a state-of-the-art mapping
technique for a swarm of resource-constrained robots with
stochastic motion and no global localization.

1) Probability map generation: In order to generate the
probability map of the domain, we need to process the data
from each robot for every grid cell. Therefore, if N robots each
collect K items of data over a domain that is discretized into
M grid cells, and we use this data to compute the probability
map, then the cost of computation for this block is O(NKM).
This cost can be reduced by processing the data from each
robot in parallel.

2) Simplicial complex construction and barcode genera-
tion: The simplicial complex generated from the centers of
the M grid cells will have a size proportional to M. The
worst-case computational complexity of persistent homology
is O(M2.372), but for most practical applications it is close to
O(M) [19].

3) Obstacle segmentation: The most computationally ex-
pensive part in this block is the breadth-first search (BFS) per-
formed on the obstacle graph. The computational complexity
of BFS on a graph with V vertices and E edges is O(V +E)
[28]. Since the obstacle graph is constructed from a subset of
the grid cells of the domain, the number of vertices in the
obstacle graph will be a constant factor times M. Thus, the
resulting cost becomes O(M+E). Since the obstacle graph is
planar, the number of edges will be a constant factor times V ,
reducing the cost to O(M).

4) AGVD extraction using the wave propagation algorithm:
The cost of this block can be evaluated by analyzing Al-
gorithm 1. The most computationally expensive part of the
algorithm is the loop from lines 17 to 35. As before, the
number of vertices in the free region graph is a constant factor
times M. Extracting the minimum element in line 18 will cost
O(logM) due to the heap implementation [28]. During each
iteration, a vertex is popped out, and the loop ends when all
the vertices are popped. Since the statements inside the loop
each have a sub-linear cost, the overall cost of this block is
O(M logM).

C. Comparison to Other Mapping Algorithms

Table I compares key properties of our approach to those of
several existing probabilistic sparse map methods. The prop-
erties of these methods are described as in [29]. In the table,
the uncertainty field states how uncertainty is represented in
the resulting map. The convergence field describes the conver-
gence properties of the algorithms under suitable assumptions.
The incremental field indicates whether an algorithm can build
the map incrementally or not. The correspondence field spec-
ifies whether the method can accommodate mapping similar
features in the environment. Lastly, the handles raw data field
states whether the method can construct maps from raw sensor
data, or whether the data first requires pre-processing and
filtering.

V. RESULTS

A. Simulation Results

We applied our procedure to generate the topological maps
of the simulated domain shown in Figure 4. All computations
and simulations except for persistent homology computations
were done in Python. The simulated robotic swarm consisted
of 50 point robots, each with a sensing radius of 0.06 m,
an average speed of v = 0.2 m/s, and pth = 0.2. The robots
explored a 2 m × 2 m domain over a time period of 160 s.
At the beginning of each simulation, the robots were placed
at random positions near the domain boundary. The robots
followed the motion model Equation (1) while dispersing
throughout the domain, with the covariance matrix of the
random variables in W(t) set to a diagonal matrix with 0.1
on the diagonal. Upon encountering an obstacle, the domain
boundary, or another robot within its sensing radius, a robot
randomly chose a different direction to avoid a collision. The
robot data obtained after each simulated swarm deployment
was used to construct the AGVD of the domain.
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TABLE I
COMPARISON OF OUR APPROACH TO SEVERAL PROBABILISTIC SPARSE MAP GENERATION METHODS DESCRIBED IN [29]

Kalman Hybrid Occupancy Grid Dogma Our Approach
Map representation landmark locations point obstacles occupancy grids occupancy grids occupancy grids
Robot sensor noise Gaussian any any any any

Requires exact robot poses no no yes yes no
Uncertainty posterior poses and map maximum likelihood map posterior map posterior map posterior map
Convergence strong no strong weak weak
Incremental yes yes yes no yes

Correspondence no yes yes yes yes
Handles raw data no yes yes yes yes

The outputs at different stages of the procedure for each
domain are displayed in the following figures: the contour
plots of p f

i (Figure 5), the barcode diagrams (Figure 6), the
obstacle segmentation (Figure 7), and the computed AGVD
superimposed over the actual maps (Figure 4). As mentioned
previously, the numbers of arrows in the barcode diagram for
dimensions 0 (H0) and 1 (H1) give the numbers of connected
components and features (obstacles) in the domain, respec-
tively. The results in Figure 6 estimate the correct number of
topological features and report the value of δopt for each case.
Figure 7 demonstrates that the obstacle segmentation tech-
nique described in Section IV-A2, based on the αopt obtained
from Figure 6, successfully identifies each distinct obstacle
in the domains. Finally, Figure 4 displays the topological
map generated for each domain, which display collision-free
trajectories among the obstacles as expected. These results
show that our procedure can accurately construct topological
maps for different scenarios, even though it relies on uncertain
robot position data.

To study the failure cases of our approach, we also simulated
a complex 20 m × 20 m domain explored by 300 point robots
for 200 s. All other parameters were the same as in the pre-
vious simulations. The results are presented in Figure 8. The
topological map generated from the robot data does not reveal
the narrow gap between the two rectangular obstacles in the
center of the domain, since there is a low probability of robots
passing through the gap while recording localization estimates.
Also, the large size of the domain prevents the robots from
obtaining reliable localization data about certain regions before
their odometry noise become too high for the associated robot
position data to provide any useful information. As Figure 8(c)
shows, the lack of reliable data about these regions causes the
procedure to incorrectly identify free space in these regions
as obstacles. Although the resulting map in Figure 8(d) does
not accurately represent the deformation retract of the domain,
it does provide a conservative set of collision-free trajectories
for the robots. A possible way to obtain accurate topological
maps over large domains is to construct the maps locally and
patch them together, similar to the approach in [17].

B. Experimental Results

We also tested our procedure in experiments with four
Pheeno mobile robots [30] that explored a 1.5 × 2.1 m
rectangular arena with two obstacles. We first analyzed this
experimental data in [7] using the approach to topological
feature identification presented in that paper. The robots were

initially assigned random positions, and they were controlled
to move with a linear velocity of 10 cm/s. Other details of the
experimental setup are described in [7]. The plots in Figure 9
show that our procedure is effective at building the topological
map (AGVD) of the experimental arena.

VI. CONCLUSIONS

We have formulated a novel procedure for automatically
generating the topological map of an unknown environment
using data collected by a robotic swarm without global lo-
calization or communication. Our procedure constructs an
approximate Generalized Voronoi Diagram, which yields
collision-free paths through the environment for safe robot
navigation. Our proposed methodology was validated through
simulations of domains with different numbers of obstacles
and illustrated with experiments using mobile robots. In future
work, we plan to experimentally test our approach on larger,
more complex domains with larger numbers of robots. We
will also extend our approach to construct a metric map
of an unknown environment using techniques from manifold
learning [31], which uses local information to infer the global
structure of a domain.
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