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Motion Planning

Let A be a single rigid object — the robot — moving in
a Euclidean space W, called workspace, represented as R,

with N = 2 or 3.

Let B, ...,B, be fixed rigid objects distributed in W. The
B;’s are called obstacles.

Assume that both the geometry of A, By, ..., B, and the loca-
tions of the B;’s in W are accurately known. Assume further
that no kinematic constraints limit the motions of A (we say

that A is a free-flying object).

The problem is: Given an initial position and orientation and
a goal position and orientation of A in W, generate a path T
specifying a continuous sequence of positions and orientations
of A avoiding contact with the B;’s, starting at the initial
position and orientation, and terminating at the goal position
and orientation. Report failure if no such path exists.

Robot Motion Planning. J.C. Latombe. Kluwer Academic Publishers, Boston, MA, 1991

RoboticsCourseWare.org: Advanced Robotics (UPenn MEAMG620, Vijay Kumar)



Trajectory generation

Given end points (and possibly intermediate points) and velocities,
generate a smooth trajectory between them while avoiding

obstacles and obeying constraints

RoboticsCourseWare.org: Advanced Robotics (UPenn MEAMG620, Vijay Kumar)



Explicit
Motion
Planning

subgoals

Trajectory Generator

smooth trajectory

Signals to joint controllers/drivers
* joint velocities
* joint torques

RoboticsCourseWare.org: Advanced Robotics (UPenn MEAMG620, Vijay Kumar)



Control

Let A be a single rigid object — the robot — moving in
a Euclidean space W, called workspace, represented as RV,

with N = 2 or 3.

Let B, ...,B, be fixed rigid objects distributed in W. The
B;’s are called obstacles.

Assume that both the geometry of A, By, ..., B, and the loca-
tions of the B;’s in W are accurately known. Assume further
that no kinematic constraints limit the motions of A (we say

that A is a free-flying object). Find a control mput u(¢)

The problem is: Given an initial position a ] '

a goal position and orientation of A in WI generate a path T |
specifying a continuous sequence of positions and orientations
of A avoiding contact with the B;’s, starting at the initial
position and orientation, and terminating at the goal position

and orientation. Report failure if no such path exists.

Robot Motion Planning. J.C. Latombe. Kluwer Academic Publishers, Boston, MA, 1991

RoboticsCourseWare.org: Advanced Robotics (UPenn MEAMG620, Vijay Kumar)



Motion Planning

Known Environments (Model) Unknown Environments

® Explicit motion plans ® Sensor based motion planning

® Implicit motion plans

N

Usually combines
Motion Planning
Trajectory Generation
Control

RoboticsCourseWare.org: Advanced Robotics (UPenn MEAMG620, Vijay Kumar)



Earliest Implicit Motion Planning Algorithm

1. The robot follows a straight line segment to the goal.
2. When it hits an obstacle (at the hitting point), it follows its boundary while keeping

track of the straight line segment.
3. When it returns to the hitting point, it follows the boundary to the point on the boundary

that 1s on the line segment and closest to the goal.
4. It then resumes the straight line segment path to the goal.

Always finds a path
(if 1t exists)

Bug Algorithm: Viadimir Lumelsky
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Implicit Method: Potential Field Controllers

Basic idea
® Create attractive potential field to pull robot (R) toward a goal

Voou =k [a’(R,goal)]2

go
® Create repulsive potential field to repel robot (R) from obstacles

C

V., =
oS d(R,0bs)

® In two-dimensional space (robot is a point, goal/obstacles are points)

d(R gOdl I:(X xgoal)2 +\V - ygoal )2:F

d(R.0bs)=|(x— x4 (= v ]

® Remember: Force on a particle is given by f = -grad (V)

RoboticsCourseWare.org: Advanced Robotics (UPenn MEAMG620, Vijay Kumar)



Implicit Method: Potential Field Controllers

Basic idea
® Construct potential field for goal
® Construct potential field for each obstacle
® Add potential fields to create the total potential V(x, y)

Assume two-dimensional space (robot is a point)

® Force on a particle 1s given by f = -grad (V)
® Command robot velocity according to the following control law (policy)

dx oV
dt 0x
@ __
dt dy

RoboticsCourseWare.org: Advanced Robotics (UPenn MEAMG620, Vijay Kumar)
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Contour plot
of Vgoa ]

Potential Field: Goal (x=0.5, y=0.5)
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Potential Field: Obstacle (x=0.0, y=0.0)

Vs :
[(x ~ Xooal )2 + ()’ ~ Vooal )2}

Contour plot
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oal
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What are the potential (no pun!) difficulties?

RoboticsCourseWare.org: Advanced Robotics (UPenn MEAMG620, Vijay Kumar)
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Navigation Functions

[1] Rimon and Koditschek, “Exact robot navigation using artificial potential
functions.” IEEE Trans. on Robotics and Automation, 8(5):501-518, Oct. 1992.

For theoretical background:

[2] Rimon and Koditschek, “The construction of analytic diffeomorphisms for
exact robot navigation on star worlds.” Trans. of Amer. Math. Society, 327(1):
71-115, Sept. 1991.

[3] Rimon and Koditschek, “Robot navigation functions on manifolds with
boundary.” Advances in Applied Mathematics, 11:412-442, 1990.
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Problem Statement

Assume:
e Point robot
e Stationary 2D world

q;

» Perfect info about environment
» [deal sensors and actuators

Construct a smooth, bounded-torque controller T such that the robot
trajectory goes to q, while avoiding the obstacles.

Traditionally: Path planning + trajectory planning + robot control

N— S
—

Navigation function approach
T =—Vo(p) +d(p,p)
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Definition

©: M —[0,1]

M is a compact, connected, analytic manifold with
boundary

- Manifold of dimension n: set that 1s locally homeomorphic
to R”

A C® @ with a unique minimum at ¢4 exists for any g4 in
the interior of an AA{ with these properties
(Theorem 3 of [3])



Definition

Navigation functions are:

M

A



Definition

Navigation functions are:

Morse: nonsingular Hessian at critical points
Admissible: uniformly maximal on boundary of M
Polar: unique minimum at ¢,

Smooth: at least C°



Definition

Morse

- Hessian matrix of ¢ evaluated at its critical points 1s
nonsingular = critical points are nondegenerate
(maxima, minima, or saddle points)

- Ensures that trajectories beginning away from a set of
measure 0 asymptotically approach a local minimum
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Definition

Admissible

Uniformly maximal (a constant ¢ > 0) on boundary
OM of freespace

Guarantees that trajectories starting in M with bounded
initial velocity will remain away from obstacles

Makes smooth potential field defined on A1 bounded,
producing a bounded controller

From [1]

Fig. 2. A suitable potential function over a free configuration space. 22



Properties

- Each obstacle introduces at least one saddle point of ¢

(Corollary 2.3 of [3])




Properties

- Properties of ¢ are invariant under an analytic

diffeomorphism /4 (a smooth, bijective map with a
smooth inverse): (Prop. 2.6 of [3])

h:F—> M @E@Oh
/ AN

Nav th on F Nav fn on M

—> Can construct a navigation function on any space
deformable to A

24



Sphere Worlds

Obstacles are disks; obstacle 0 1s complement of largest disk

1

08t Obs 0
06} Obs 1 Obs 2

| Q O | M

ot 1S 1nterior

o] ) O

-06F

-0.8f

5

25



Sphere Worlds

Obstacle functions: ~ obs; = {q : B;(q) < 0}

Bo(q) = —llg — ql|” + pg
Bile) =g —q;lI°—p; (G=1,...,M)

q=|xy]
g; = obstacle center

p; = obstacle radius




Sphere Worlds
Obstacle functions:  obs; = {q : B;(q) < 0}

Bo(q) = —lg — @l* + P}
Bil@)=lga—qgl*—p; (G=1,.., M)




Obstacle functions:

Sphere Worlds

obs; = {q : Bi(¢q) < 0}

3 =112, 5

28
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Sphere Worlds

Distance-to-goal function:

7 (q) = llg — qa||*"




Sphere Worlds

Distance-to-goal function:

7 (q) = llg — qa||*"

OO
N O O

Kk > 0

- ¢ 1s a valid navigation function 1f ¥ > N, where N 1s a
function of the geometric data

- As x 1ncreases, local minima disappear

- Setting x arbitrarily high can lead to gradient vector fields
that vary too abruptly to be implemented

- Rule of thumb: x > number of obstacles + 1
(but seems to work for lower )

30



Sphere Worlds
P = Yr / b

Is this a navigation function?

31



Sphere Worlds

@ — 7}%//6 0 at obstacle

boundaries

It’s polar and almost everywhere Morse
and analytic, but... . Af — 0, 1]

32
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Sphere Worlds

Squash the function with an analytic switch:
ox(z) = /(A + x) [0,00) — [0,1]

It's polar, admissible, analytic, and Morse everywhere
except at ¢,




Sphere Worlds

Use a “distortion” function to make ¢, nondegenerate:

1/k

pr(2) = @




Sphere Worlds

Navigation function is thus defined as:

||6] — Qd||2

Pk (Q) = (pkoalo@)(q) — [HC] _ Qd”% 4 5((])]1/5:




Star Worlds

Star-shaped set: Has a point from which all rays cross the
boundary only once

- Include all convex sets

36



Star Worlds

- Star world F : All obstacles are star-shaped sets

- Construct a diffeomorphic map /% to define a navigation

function p = po h on F

F M
Boundary  red blue
Goal q, P4
Obstacle q; ) 2
centers




Star Worlds

- Star world JF : All obstacles are star-shaped sets
- Construct a diffeomorphic map /% to define a navigation

function p = po h on F

Constraints on A :

0.5}

Pa=4: Pi~™4;

Internal spheres are subsets

of internal stars

Outer sphere contains outer
star -1




Star Worlds

Star-to-sphere transformation

) =vi-lq— ¢+ pi

. "_“ star centers sphere centers

From [ Scaling factors:
1 — 30((]) 1+ 3'((])
(q) = po— vi(q) = pig——
l—all TP

ﬁi 1s the implicit representation of a star obstacle

39



Star Worlds

“Omitted product” of star obstacle S, :
%) M
Bi = szo,j;éz‘ B;
Analytic switch for each star obstacle:

A,'th Y ‘Bl
$i(q, A) = (ox 0 = )(q) = ( ) (9)

Vil3; + AD

unity on dS; and zero on 0S;, 5 # @ and at qq

- Used to map one star to one sphere when ¢ is close to an
obstacle

40



Star Worlds

Analytic switch for each star obstacle:

A/f'{..'[_/jj A'/H,-Bi
(00 = or0 220 = (22 (0

A/hBl T )‘d ?

Parameter A

- h, 1s an analytic diffeomorphism if 4 > A, where 4 1s a
function of the geometric data and ¢,

- High Z: shallow V() near obstacle; “safe” navigation

- Low 4: robot only senses obstacle when 1n close proximity;
“fast” navigation



Star Worlds

Identity map: 1y(q) = ¢
Destination switch: Sd(q ; /\) = 1- Zij\fo Si

- Ensures that h(qd) = Pd

ha(q) = saTu(q) + Z s:Ti(q)

- Resembles 7’ near obstacle i and 7, away from obstacles

42



Star Worlds




Forests of Stars

Obstacles are unions of overlapping stars, or “trees of stars”;

maximal tree depth = d

Purge forest of successive levels of stars through coordinate

transformations:

L : index set of leaves

I . index set of stars

p=@ohyofy0..0fy

From [1]

44



Forests of Stars

New definitions

Sa=1—=2 crSi

B, H Bk | - H Br | - By

keZT—{i,p(2)} kel —{i}

o
|

Zenkin’s formula:

Bp(i) (Q) — ﬁp(z’)( ) (2E Bz "‘\/ﬁ;(z) 2E 5@( ))

| Ly(x) — .|| B - Maps exposed part of leaf
HL (Qj’) _ H (:23 377“) + Ty boundary onto part of parent
¢ " boundary it encloses

T, =

45



Forests of Stars
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Simulation

Planar kinematic model

e Continuous model

. L. dp 0@
q=|x J/]T=—KV¢=—K af af K> 0is a gain

Can 1ntegrate in Matlab using ode45() function

- Sphere worlds in Matlab: can get exact gradient by using
symbolic expression of ¢ (syms, diff, subs functions)

- Star worlds, forests of stars: can use numerical approximation

9P _ [o(x +0,y)—@(x,)]/ 6 g—f ~[@(x,y+0)-@(x,y)]/ 0

0x

47



Simulation

Planar kinematic model

e Continuous model

. L. dp 0@
q=|x y]T=—KV¢=—K af ajf K> 0is a gain

Can 1ntegrate in Matlab using ode45() function

 Discrete time implementation

q(t+ At) =q(t) - KV @At



Simulation of Ants Navigating to Nests

meiters

t=2.4min

Uses navigation
functions with
different goal
points
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