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Abstract— We present the M3 framework, a formal and
generic computational framework for modeling and controlling
stochastic distributed systems of purely reactive robots in an
automated and real-time fashion. Based on the trajectories of
the robots, the framework builds up an internal microscopic
representation of the system, which then serves as a blueprint
of models at higher abstraction levels. These models are then
calibrated using a Maximum Likelihood Estimation (MLE)
algorithm. We illustrate the structure and performance of
the framework by performing the online optimization of a
bang-bang controller for the stochastic self-assembly of water-
floating, magnetically latching, passive modules. The exper-
imental results demonstrate that the generated models can
successfully optimize the assembly of desired structures.

I. INTRODUCTION

The controlled formation of structures and patterns is a
fundamental task of distributed robotic systems. In particular,
self-assembling systems come in several varieties, which can
be classified based on, for instance, the role of energy and
information, the control modality (e.g., centralized versus
distributed), the size of the components and their type—
active (e.g., autonomous robots) or passive (e.g., MEMS,
macromolecules). Overall, the ongoing convergence between
robotic minimalism and the increasing sophistication of
micro/nanosystems allows one to envision a unifying per-
spective for self-assembling systems across scales [1]. While
soundly grounded in current technological trends and sup-
ported by a few remarkable theoretical frameworks, such
appealing perspective still lacks substantial and consolidated
modeling methodologies, as compared to the wide-ranging
efforts in components development [2], [3].

Among the approaches to model robotic systems, hybrid
automata stand out for capturing both continuous and discrete
state variables [4]. When dealing with distributed systems,
one often uses a combination of multiple abstraction levels,
which often includes probabilistic and graphical models [5].
However, most modeling methodologies are not sufficiently
systematic to be carried out in an automatic fashion [5], [4],
[6]. Alternative methods for automated model construction
adopt completely different strategies based on evolutionary
computation [7]. In spite of their attractive flexibility and
versatility, these methods are computationally expensive, and
they yield gray-box models whose structure and parameters
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are difficult to anchor back to the original system. In partic-
ular, they rely on a single level of abstraction, even in the
context of collective systems (e.g., biological and chemical
reaction networks [8], [9]), thereby precluding any mapping
between microscopic and macroscopic states.

The control of self-assembling system has been tackled
by several previous works, which generally rely on control
of local interactions among building blocks [10], [11], [12].
Napp et al. [13] control the formation of heterodimers by
adjusting only global parameters of the system (i.e., light
intensity); however, the underlying model is designed and
calibrated manually, and they do not investigate the formation
of more complex structures.

In this work, we present the M3 framework, a formal and
generic computational framework that allows for the auto-
matic construction and calibration of models of distributed
stochastic systems of purely reactive robots. Based on a
generic microscopic representation of a system, the frame-
work generates an associated Chemical Reaction Network
(CRN) model in real-time, and allows for an optimal, global
control of the system as well. We hereby experimentally
demonstrate the performance of the M3 framework by
modeling and optimizing, in real time and without human
supervision, a stochastic self-assembling system of water-
floating passive modules.

II. EXPERIMENTAL SETUP

We study the stochastic self-assembly of target structures
of 3-cm-sized water-floating devices, denoted as blocks here-
after, within a circular water-filled tank. The experimental
setup consists of the tank, with six inlets and four outlets con-
nected to four diaphragm pumps (see Fig. 1(a)), four blocks,
an overhead camera and a workstation. The cuboidal, centro-
symmetric blocks are passive and endowed with four SmCo
permanent magnets (one on each side’s center) for mutual
aggregation, as well as with a visual marker for tracking
purposes (see Fig. 1(b)). The weight of each block (about
17.3 g, compared to a buoyancy limit of 21.9 g) was trimmed
for reliable floatation. The blocks are not self-locomoted;
instead, they are stirred by the fluid flow produced within the
tank by the peripheral pumps. As a result, the blocks describe
trajectories with well-defined geometric features, yet with a
strong stochastic component [14].

The tank, of approximately 30 cm in diameter, has four
inlets perpendicular to the wall and other two almost tangen-
tial, allowing to create flows with both radial and circular
components. Additionally, the four outlets are placed at the
bottom of the tank so as not to interfere with the surface flow.
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Fig. 1. The experimental setup: (a) Water-filled tank with 6 inlets (4 orthogonal and 2 tangential to the wall); (b) Internal details of a water-floating
block, including the latching mechanism composed of four permanent magnets with different pole orientation—north-south (NS) and south-north (SN),
respectively; (c) Real-time visual tracking of four blocks during an experiment (the blue lines show a short history of the trajectory of each block).

Each pump’s flow rate can be controlled individually up to
a maximal value of 600 ml/min. This flexible configuration
allows us to investigate a variety of different flow patterns
and associated block trajectories. Indeed, perpendicular inlets
generate irregular trajectories, and induce block collisions in
the middle of the tank, but they exhibit dead spots near the
walls. Conversely, tangential inlets generate circular flows
that prevent dead spots, but lead to regular, closed trajectories
which do not favor collisions.

The combined effects of mutual magnetic forces and block
shape geometry lead to the precise pair-wise self-alignment
of blocks upon close proximity (about 0.5 cm), when not
hampered by fluidic drag forces. In fact, the interblock
bonds were designed to be reversible, as depending on the
interplay between the magnitude of the magnetic (about
16 mN per bond according to FEM simulations) and the
local hydrodynamic forces acting on the blocks, the latter
being modulated by the fluid flow regimes. As a result, the
stability of all the assembled block structures corresponding
to local system energy minima could be controlled by the
modes of fluidic stirring in the tank, whereas the 2-by-2
square structure—labelled D in Fig. 2 and corresponding to
the global system energy minimum—was irreversible and
acted as absorbing state in the system dynamics.

To monitor the evolution of the system in real time, we
use an overhead camera to track a two-color passive marker
located at the top of each block. SwisTrack [15], an open-
source software package developed in our laboratory, allows
us to track the pose of the blocks. Both their position (x,y)
and orientation (θ) are logged in real time at a rate of
approximately 30 Hz1. These data are then transmitted to
the modules responsible for the construction of the model
and the optimization, described in sections IV and V.

III. PROBLEM STATEMENT

All feasible structures formed by the assembly of four of
our blocks are reachable and can be enumerated (see Fig. 2).
In a well-mixed system, each structure has an intrinsic

1The sampling period (about 33 ms) is much smaller than the average
inter-collision time, which is around 1.15 s.
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Fig. 2. Graphical representation of all assemblies that can be formed out
of four blocks and the forward reactions that lead to them. Chiral copies
of assemblies F1 and F3 are not included. The shaded rectangles indicate
assemblies with the same connection topology (using a 4-neighbors topol-
ogy). Black arrows denote the reactions that lead to the target structure E,
whereas gray arrows other forward reactions in the system. For readability’s
sake, reverse reactions and stoichiometric factors equal to 1 are omitted.

probability of being formed, which depends not only on its
own geometry, but also on the parameters of the system. For
instance, the assembly A is unlikely to be observed in a small
tank because of the high probability of collision between the
blocks.

In this work, we consider a non-well-mixed system
(see [16] for more details about this type of systems), which
allows us to further tune the probabilities of structure for-
mation by optimizing dynamically the control parameters of
the system (e.g., those governing the agitation of the system).
More formally, the research question that we address in this
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paper is the following: Given a stochastic multi-unit system
with a finite set of agitation modes M = {m0, . . . ,mn},
what is the mode mi to be selected at time t that minimizes
the time to form a given target structure T ?

In the present case, we consider only two modes of
agitation (as in a bang-bang controller) corresponding to
two different pump configurations that lead to different
agitation schemes. In mode m0, the fluid flow induces
smooth and regular block trajectories and only marginal
differences in their relative velocities, thereby allowing for
a high stability of the formed aggregates but relatively few
interactions. In mode m1, the blocks exhibit a much more
erratic movement, dominated by the stochastic perturbations
of the water surface (Faraday waves) caused by pumps-
induced tank vibrations. The consequently higher kinetic
energy of the blocks increases the collision rate, but also
the instability of the aggregates.

IV. MODELING FRAMEWORK

In this work, our methodology makes the fundamental
assumption that the robots are strictly reactive, that is,
all behavioral changes can be interpreted as the result of
interactions with other robots or with the environment. A
corollary of this assumption is that one can associate each
behavior of the robot to some condition on its interaction
configuration. Indeed, when designing a robot’s controller,
one naturally arranges the different interaction configurations
that the robot can be in into classes indexed by a set of
behaviors. For instance, the designer can group all situations
in which the robot is close to another robot, and associate the
resulting class to a obstacle avoidance behavior. Following
this methodology, the controller of each robot naturally
reflects the most important states of the robot. As a result,
one can use the robot’s controller as a blueprint to construct
a meaningful partition of the continuous phase space, and
thereby deriving models at higher abstraction levels (see for
instance [5]). This approach opens up new opportunities for
automating model construction and calibration.

We hereby rely on a computational framework, called the
M3 framework, which allows for the automatic construction
of models of a multi-robot system. The global structure of
this framework is depicted in Fig. 3. The general idea of
our approach is that we observe (or simulate) an existing
system, and the model is built based on the observations
(i.e., trajectories) collected during these experiments (or sim-
ulations). Internally, the framework builds up a microscopic
representation of the system based on these observations as
well as on a list of interactions of interest specified by the
user. This representation, called the Canonical Microscopic
Model (CMM), is a formal and generic description of a
reactive multi-unit system, and it serves as a blueprint for
the construction of a macroscopic model, specified using the
Chemical Reaction Network (CRN) formalism. Finally, at
each time step, the optimal mode of agitation is determined
using the optimization scheme described in Section V, and
transmitted to the (real or simulated) actuators.
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Fig. 3. Overview of the M3 framework as deployed in this study, and
the different types of information flowing between its constitutive modules.
Gray-shaded nodes are computational entities whereas other nodes are
physical entities. Dashed arrows denote flows that are not automated, but
need to be performed only once prior to the experiment. Note that the
closed-loop control is completely automated.

Hereafter, we provide a brief summary of the theoretical
foundations of this framework. A more detailed description
will be published elsewhere.

A. Canonical Microscopic Model (CMM)

We define our system as a set of coupled hybrid au-
tomata [17], called particles that interact through a set of
interactions I = {I1, . . . , It} (see Definition 1). Each parti-
cle in the set P = {P1, . . . , Pm} represents a robot in the
target system. The set P may be partitioned into an arbitrary
set of classes of particles Ci (such that

⋃
i Ci = P), which

denote particles that have similar control graphs (see below).
The state of each robot has two distinct components: (i) an
n-dimensional continuous component ~x = [x1, . . . , xn]T ∈
X that typically denotes the physical state of the particle
(e.g., its position, orientation and velocity in physical space,
its temperature, its battery level, etc.)2, and (ii) a discrete

2We write Xi = {x1,i, . . . , xn,i} the set of state variables of particle Pi.
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component ξ ∈ V that denotes the logical state of the particle,
called control mode, that is, a vertex of the finite directed
multigraph G = (V, E), called the control graph of P . The
edges in E are called control switches. Most importantly, each
control mode ξj is labeled with a unique function φj : I →
N0, called an interaction configuration. The function φj(I)
denotes the number of interactions of type I that are active
in mode ξj . In other words, each control mode is associated
to a unique interaction configuration, and vice versa, such
that there exists a one-to-one map Φ : V → {φ1, . . . , φk}.
Definition 1 [Interaction] An interaction I is defined as a
triplet (Ci, Cj , cond) where Ci and Cj are two classes of
particles that may interact through I; the predicate cond
describes the conditions in which I is active, and whose
free variables are in Xi′ ∪ Xj′ , with i′, j′ the indices of the
interacting particles.

The CMM exhibits a few key properties: (i) it describes a
given distributed system as a set of coupled hybrid automata,
thereby allowing for a natural coupling between the contin-
uous and discrete components of the state space; (ii) the
underlying assumptions of the CMM allow the algorithmic
construction of the control space V of its constitutive par-
ticles solely based on their trajectories in the continuous
state space X; (iii) because the control modes in V are
mapped to a unique interaction configuration, they form
a partition of the continuous phase space S, that is, the
continuous space of the entire system; (iv) ultimately, by
a proper aggregation of those control modes, one can obtain
a more tractable and meaningful set of metastates, which we
denote q1, . . . , qr. Importantly, this process of aggregation
is precisely the mental process carried out by the designer
of a robotic system. The latter metastates are the basis for
an algorithmic conversion of any CMM into an equivalent
macroscopic representation based on the CRN formalism.

As mentioned earlier, the control space is built iteratively
as observations of the system are collected (see Algorithm 1):
starting from an initial control space V = {0}, which
contains only a non-interacting mode, each newly observed
control mode ξ > 0 is appended to V . As depicted by
Fig. 3, the construction of the CMM is based on trajectories
collected either in simulation or in real experiments. From
the point of view of the framework, the nature of the
trajectories has no importance.

B. From the CMM to Macroscopic Models

The formalism of hybrid automata is interesting from a
theoretical point of view, yet not very practical numerically.
To enhance its applicability, we hereafter introduce the notion
of Chemical Reaction Network (CRN), and we show how
one can automatically convert the CMM into a CRN.

The general idea of our approach is to use the control
graph G of the particles of the system as a blueprint of the
model structure. It is often necessary to refine the resulting
models a posteriori, in order to account for hidden control
modes, which are relevant to either the performance metric
or the accuracy of the model. For instance, in aggregation

Algorithm 1 Iterative construction of the control space V
Require: Vi = {0},∀i ∈ {1, . . . ,m}

while t < tend do
for each Pi ∈ P do

Update ~xi(t+ ∆t) according to observations
if an interaction has occurred/ended then

Compute new interaction configuration φ′

if ¬∃ξ′ ∈ Vi s.t. Φ(ξ′) = φ′ then
Create ξ′ and updates Φ s.t. Φ(ξ′) = φ′

Append ξ′ to Vi and e = (ξi, ξ
′) to Ei

end if
ξi(t+ ∆t)← ξ′

end if
end for
t← t+ ∆t

end while

scenarios [18], [19], pieces of information that are critical to
the evaluation of the performance metric, such as the size or
the shape of the aggregates, are not available to the robots
(and therefore not reflected in their controller). To keep track
of these global arrangements of interaction, we introduce the
notion of interaction graph and aggregate.
Definition 2 [Interaction Graph] The interaction graph Gint =
(P, E int) is a graph whose edge set E int is given by (Pi, Pj) ∈
E int iff ∃I ∈ I such that Pi and Pj interact through I .

Definition 3 [Aggregate] We note A = {A1, . . . , Aq} the
set of all feasible aggregates, that is, connected subgraphs
of the interaction graph Gint.

Definition 4 [Chemical Reaction Network] Similarly to
previous works [20], [21], we define a CRN N = (R,S) as
a set of N reactions R = {R1, . . . , RN} acting on a finite
number M of species S = {S1, . . . , SM}. Each reaction R
is defined as two vectors of nonnegative integers specifying
the stoichiometry of the reactants, ~rR = [rR,1, . . . , rR,M ],
and the products, ~pR = [pR,1, . . . , pR,M ], respectively. The
stoichiometry denotes how many copies of a given reactant
or product is required or produced, respectively, when a
reaction takes place. For example, assume a CRN with S =
{A,B,C}, the reaction A + 3B ⇀ A + 2C is represented
by the following vectors:

~r = [1 3 0]

~p = [1 0 2]

The CRN being a population model, it keeps track of how
many individuals of each species are present in the system
at a given time. The state of the CRN is therefore given by
the vector ~X ∈ NM

≥0, whose elements specify the number of
individuals of each species. A reaction R may occur iff the
number of reactants is sufficient, that is, ~X ≥ ~rR element-
wise. When reaction R occurs, the new state ~X ′ is simply
given by:

~X ′ = ~X − ~rR + ~pR = ~X + ~νR (1)

with ~νR the population change caused by reaction R.
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Fig. 1.1 Illustration of the model construction for a 1-dimensional system of 3 parti-
cles {p1, p2, p3} belonging to the same class and one interaction A, which is active whenever two
particles are closer than a given distance. At t = t0, no interaction has occurred yet, and both the
control graph of the particles contains only one state S0, which denotes the absence of interaction.
Incidentally, the CRN has only one species, and no reaction. Upon the encountering of p1 and p2
at t = t1, a new control mode A1 is appended to the control graph, and the reaction 2 ·1S0 ⇀ 2A1 is
added to the CRN. Finally, at t = t2, p3 joins the aggregate formed by p1 and p2, thereby making p2
switch to a new control mode A2, and creating a new reaction 1S0 +2A1 ⇀ 2A11A2.

Component 3 (Initial, invariant, and flow conditions). Three vertex-labeling func-
tions init, inv, and f low that assign to each control mode ξ ∈ V three predicates.
Each initial condition init(ξ ) is a predicate whose free variables are from

⋃
pi∈PXi.

Each invariant condition inv(ξ ) is a predicate whose free variables are from
⋃

pi∈PXi.
The flow conditions f low(ξ ) are predicates that take the form of a collection of
stochastic processes

{
Y ξ

1 (t), . . . ,Y ξ
n (t)

}
ξ∈V. In other words, the trajectory xi(t)

along the i-th dimension of state space is a realization of some stochastic pro-
cess Y ξ

i (t). More formally, if we use the following definition of a stochastic process:

YX (t) = f (X , t) (1.2)

where X is a stochastic variable, and f some time-dependent mapping between X
and the stochastic process YX , then, on inserting for X one of its possible values x,
we obtain:

Fig. 4. Illustration of the model construction for a 1-dimensional system of
3 particles {P1, P2, P3} of the same class, and one interaction A, which is
active whenever two particles are closer than a given distance, illustrated by
the gray-shaded circle. At t = t0, no interaction has occurred yet, and both
the control graph of the particles contains only one state S0, which denotes
the absence of interaction. Incidentally, the CRN has only one species, and
no reaction. Upon the encountering of P1 and P2 at t = t1, a new control
mode A1 is appended to the control graph, and the reaction 2·1S0 ⇀ 2A1

is added to the CRN. Finally, at t = t2, P3 joins the aggregate formed by P1

and P2, thereby making P2 switch to a new control mode A2, and creating
a new reaction 1S0+2A1 ⇀ 2A11A2. As a reference, the assemblies C1

and C2 in Figure 2 would be written 2A11A2 using this notation.

Finally, another important characterizing quantity for R
is its propensity function aR, which is defined such that
aR(~x, ·) dt is the probability that one reaction R will occur
in the next time interval [t, t+dt) and dt→ 0, given that the
current state of the system is ~X(t) = ~x. When aR depends
only on the current state of the system (Markov property),
waiting times are exponentially distributed, and the CRN is
exactly as defined in [21].

Now one can write the CMM as a CRN N, whose species
are the aggregates in A and the reactions are represented by
the interactions in I. Therefore, the reactions

Ai +Aj
I+

−−→ Ak (2)

Ak
I−−−→ Ai +Aj (3)

exist iff Ai ‖I Aj = Ak.
The only remaining components of N to be defined are

the propensity functions, whose identification is described in
the next section.

1) Rate Identification: In our framework, the analysis of
the process dynamics provides a precise estimate of the
reaction rates, and, to some extent, a measure of the validity
of this estimate. The time t until the next firing of reaction R
is an exponential random variable with mean 1/aR(~x), that
is, its probability density is given by

f(t) = aR(~x) · e−aR(~x)·t (4)

where ~x is the state of the CRN (i.e., a population vector),
and aR(·) is the propensity function of the reaction R.
Importantly, the form of aR(·) depends on the type of
the reaction R: assuming that the system is in dynamic
equilibrium, one can use the law of mass-action as propensity
function (see [21] for more details). For the sake of simplic-
ity, we shall summarize all forms of the propensity function
using the following notation:

aR(~x) = kR · ãR(~x) (5)

where kR is the rate of reaction R and ãR(~x) has the
appropriate form according to the stoichiometry of R, and
does not depend on kR.

Therefore, the problem we intend to solve hereafter is the
following: Given a sequence of events (e1, . . . , en), with
ei = (Ri, ti, ~xi), what is the most likely rate vector ~̂k =[
k̂1, . . . , k̂N

]
of the underlying CRN? More formally, we

want to solve the following problem:

~̂k = argmax
~k
L(~k|e1, . . . , en) (6)

= argmax
~k

f(e1, . . . , en|~k) (7)

where L(~k|e1, . . . , en) is the likelihood of the rate vector ~k
given the sequence of events (e1, . . . , en).

We can write the probability f(ei|~k) of a single event ei
as follows:

f(ei|~k) = aRi
(~xi) · e−a0(~xi)·ti (8)

where

a0(~x) ,
M∑

j=1

aj(~x) (9)

Since we assume independence of events, we can write:

L(~k|e1, . . . , en) =
n∏

i=1

aRi
(~xi) · e−a0(~xi)·ti . (10)

For the sake of simplicity, we will omit the arguments of L
in the sequel.

Now, we can try to solve the optimization problem for-
mulated by Equation 7. To make our problem simpler (both
from an analytical and a numerical standpoint), we work with
the natural logarithm of the likelihood function:

lnL = ln

( n∏

i=1

aRi(~xi) · e−a0(~xi)·ti
)

(11)

=
n∑

i=1

(
ln aRi

(~xi)− a0(~xi) · ti
)

(12)

First, we need to compute the gradient of the log-
likelihood function lnL:

∇ lnL =

(
∂ lnL
∂kR1

, . . . ,
∂ lnL
∂kRN

)
(13)

with

∂ lnL
∂kRj

=
n∑

i=1

(
1

aRi(~xi)

∂aRi
(~xi)

∂kRj

− ∂a0(~xi)

∂kRj

· ti
)

(14)
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where

∂aRi
(~xi)

∂kRj

=
∂kRi

· ãRi
(~xi)

∂kRj

=

{
ãRi

(~xi) if Rj = Ri

0 otherwise
(15)

and

∂a0(~xi)

∂kRj

· ti =
∂aRj

(~xi)

∂kRj

· ti = ti · ãRj
(~xi) (16)

Replacing these terms into Equation 14, we obtain

∂ lnL
∂kRj

=
n∑

i=1

(
1Ri=Rj

kRi

− ti · ãRj
(~xi)

)
. (17)

where 1Ri=Rj
is the indicator function. A local extremum

of the function lnL corresponds to a zero of the gradient

∇ lnL =
(
0, . . . , 0

)
(18)

which is equivalent to writing

kj =

∑n
i=1 1{Ri=Rj}∑n

i=1

(
ti · ãRj

(~xi)
) (19)

for j = 1, . . . , N . Importantly, the rate of reaction R = Rj

also depends on events that do not involve R. For this point to
be a maximum of lnL, we need the Hessian matrix H(lnL)
to be negative-definite, which can be easily demonstrated.

If the waiting times of a reaction are not exponentially
distributed, it means either that the underlying reaction is
not memoryless, or that some relevant features have been
neglected (in particular, spatiality). In such cases, one would
need to either (i) use an appropriate simulation scheme, in
order to capture the characteristic distribution of the waiting
times, or (ii) modify the structure of the model to mitigate the
impact of this reaction (e.g., by augmenting the state space
of the model with states that account for previous reaction
partners, as proposed by Napp et al. [16]). However, such
research avenues are beyond the scope of this paper, and
we do not perform any further refinement of the resulting
models.

V. OPTIMIZATION

As stated in Section III, we aim at favoring the formation
of a predefined target structure T . We show how this problem
is equivalent to another well-known problem, that is, the
solving of Markov Decision Processes (MDPs). Indeed,
forming the structure T is equivalent to attaining a target
population ~xt = (xt,1, . . . , xt,M ) such that

xt,i =

{
1 if Si = T,

0 otherwise.
(20)

Therefore, our problem consists in determining the
mode ms ∈M to be selected given an initial population ~xs
such that the expected time to reach ~xt is minimized.

For each mode m ∈ M, we have an estimate of the
propensity function a

(m)
R (~x) for each reaction R ∈ R.

Denote k(m)
ij = a

(m)
R (~xi) the rate of the reaction R whose

associated population change is ~νR = ~xj − ~xi if mode m is
selected. Furthermore, we define the following quantities:

λ
(m)
i =

∑

j

k
(m)
ij , p

(m)
ij =

k
(m)
ij

λ
(m)
i

. (21)

Note that each state has only one optimal choice for the
mode which minimizes the expected time it takes to reach
the target population ~xt and this choice is independent of the
past states or how much time has been spent in the present
state.

Denote by Tij the expected time it takes the system to
attain the population ~xj for the first time if it starts with
population ~xi and makes optimal choice for the mode at each
subsequent state. Hence, Tij is the optimal first-passage time
from population ~xi to ~xj . We consider the target population
~xt to be an absorbing state, which is reasonable if the
experiment halts as soon as the desired state is attained.

Now for Tij to be optimal, it is easy to show that they
must satisfy:

Tit = min
m∈M




∑

j 6=i,t

p
(m)
ij · Tjt +

1

λ
(m)
i



 (22)

This equation reiterates the Markov property of the system,
that is, the expected time to reach population ~xt is the sum
of expected time to reach the state via any of its neighbor
(except ~xt itself) and the expected time to exit the present
state. N−1 such equations can be written for different i 6= t
for Tit.

This equation is a Bellman equation corresponding to our
Markov Decision Process [22], and can be solved to obtain
the expected times and the optimal modes for each popula-
tion state. We used the Policy Iteration method to solve the
equations in our case. The optimization is performed upon
each aggregation or disaggregation event observed in the
system, and every 10 seconds otherwise. Previous solutions
are kept in memory, and used for initializing the subsequent
iterations to speed up the optimization process.

VI. RESULTS AND DISCUSSION

To demonstrate the effectiveness of our automatic model
building framework and the relevance of our optimization
algorithm, we performed four distinct experiments using the
assembly E depicted in Fig. 2 as target structure and with
different control algorithms: (I) mode m0 only, (II) mode m1

only, (III) randomized control, where the two modes alternate
randomly with an average switching period of 15 s, and (IV)
optimized control, in which the optimizer selects the most
appropriate mode of agitation as a function of the current
state of the system and of the current state of the model.
The performance of the system is given by the time of the
first occurrence of the assembly E, denoted as first-passage
time, and bounded by the maximal duration of the run.

Each experiment consists of a series of 40 runs of 30
minutes each. Each run starts with all blocks being isolated
and at random locations. In experiment IV, the optimization
relies on an initial model based on the observations made
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during two series (one per mode) of 10 runs of 5 minutes
each. However, as explained earlier, the model is constantly
enhanced, both qualitatively (e.g., if a new type of aggregate
is discovered) and quantitatively (i.e., the reaction rates are
adjusted) as the experiment progresses.

The underlying models are constructed based on a single
interaction that is active between two blocks when they are
both close to each other and appropriately aligned. As a
result, several assemblies that are actually distinct from each
other cannot be discriminated by the model, as seen by Fig. 2.

The choice of E as target structures was made because it
can be univocally mapped to a unique species of the CRN,
and it can be formed out of both C1 and C2. Indeed, the
assembly D can also be univocally mapped to a unique
species of the CRN, but cannot be formed out of C2.
As a result, the optimizer cannot effectively decide which
mode of agitation should be applied when a trimer (i.e., C1

or C2) is present since these two assemblies are topologically
undistinguishable. Note however that this is by no means
an intrinsic limitation of our methodology, but rather a
consequence of the simplicity of the underlying model.

First, as shown in Fig. 5, our results support the intu-
itive argument that self-assembly, as any self-organized pro-
cess, requires a subtle interplay between “exploitation” and
“exploration”—as expressed by the low-agitation m0 and the
high-agitation m1, respectively. Indeed, both experiments I
and II exhibit poor performance even as compared to the
naive strategy that alternates between the two modes of
agitation randomly. More importantly, our results show that
one can drastically improve the performance of the system by
optimizing the mode of agitation as a function of the system’s
state. Indeed, we observe a 40% and 66% decrease of the
average and median first-passage time, respectively, under
optimized control. When observing the system (Fig. 6), it
looks like the strategy adopted by the optimizer is intuitive:
the mode m0 (low agitation) is active as long as assemblies
that may lead to E (i.e., assemblies A, B, C1, and C2) are
present, and switches to the mode m1 (strong agitation) as
soon as some incorrect tetramer is formed. However, the
optimization also exhibits some interesting and less obvious
behaviors. First, when only single blocks are present in
the system, it sets the mode m1 so as to favor mutual
collisions. Upon the formation of a dimer B, the system
may switch to mode m0 in order to preserve it; however,
while most reactions have clearly different rates for m0

and m1 (typically, one order of magnitude or more), the
reaction A+B→ Cx exhibits relatively similar rates in either
mode, thereby allowing for a dynamic switching between
two behaviors, as a function of the time spent in each. For
instance, the optimizer may select mode m0 in order to
conserve the formed dimer, but as the experiment progresses,
the reaction rate of trimer creation in mode m0 decreases,
until it becomes smaller than the rate associated to mode m1,
thereby leading to the selection of the latter. This type of
adaptive behavior is a built-in feature of our automated
modeling approach, which is usually obtained using ad-hoc
learning strategies (e.g., reinforcement learning) elsewhere.
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Fig. 5. Box plot of the first-passage time to the target structure E
obtained over 40 runs of 30 minutes each for experiments I to IV. On
each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually.
Both experiments I (mode 0 only) and II (mode 1 only) exhibit a poor
performance due to the unfavorable exploration vs exploitation balance when
using a unique mode of agitation. The mean/median first-passage time of
the optimized experiment (IV) is 524/205 seconds versus 930/612 seconds
for the randomized experiment (III). A Mann-Whitney test rejects the null
hypothesis that these two distributions of first-passage times are from the
same distribution with equal medians with a p-value of 5.8 · 10−3.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced the M3 framework, a generic
computational framework for the automatic, real-time mod-
eling and control of stochastic and reactive multi-robot
systems. We briefly summarized the theoretical foundations
of the framework, and we demonstrated its relevance by
deploying it for modeling and controlling the stochastic self-
assembly of 3-cm-sized passive water-floating blocks. We
described how the resulting models can be used to optimize
a bang-bang controller, and our results show a significant
improvement of the performance of the system with respect
to strategies based on single modes of agitation or a random
switching between the modes.

In future, we plan to investigate the use of more complex
models (by adopting a 8-neighbors topology, for instance),
and how they may enhance the overall performance of the
system. Also, we aim at demonstrating the generality and the
scalability of our approach by applying it to larger ensem-
bles and other platforms. The strict requirement of perfect
observability is currently an obstacle to the applicability of
the M3 framework in some circumstances (e.g., microscale
self-assembly), but future theoretical developments and the
use of more advanced machine learning methods shall allow
for relaxing this requirement [9].
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Gowal and José Nuno Pereira for useful discussion. Fur-
thermore, we would like to acknowledge the Nano-Tera.ch
research initiative, which partly sponsored this research in
the context of the SelfSys project.

4272



t = 0 sec t = 14 sec t = 24 secmode 1 mode 1 mode 0

2A → B A + B → C2

t = 32 sec t = 34 sec t = 78 secmode 1 mode 0 mode 1

A + C2 → F1 F1 → A + C1 A + C1 → F3

t = 83 sec t = 98 sec t = 146 secmode 1 mode 0 stop

F3 → 2 B and B → 2A A + B → C2 A + C2 → E

Fig. 6. Assembly sequence during a run of experiment IV (optimized control, see Section VI). The snapshots show the state of the system immediately
after a reaction event. The reaction that fired is shown in the bottom left corner and the current time in the top left corner. The mode of agitation chosen
by the controller is shown in the top right corner.
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