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Abstract— Biological robots can be produced in large num-
bers, but are often controlled by uniform inputs. This makes
position control of multiple robots inherently challenging.

This paper uses magnetically-steered ciliate eukaryon
(Tetrahymena pyriformis) as a case study. These cells swim at a
constant speed, and can be turned by changing the orientation
of an external magnetic field. We show that it is possible to steer
multiple T. pyriformis to independent goals if their turning—
modeled as a first-order system—has unique time constants.
We provide system identification tools to parameterize multiple
cells in parallel.

We construct feedback control-Lyapunov methods that ex-
ploit differing phase-lags under a rotating magnetic field to
steer multiple cells to independent target positions. We prove
that these techniques scale to any number of cells with unique
first-order responses to the global magnetic field. We provide
simulations steering hundreds of cells and validate our proce-
dure in hardware experiments with multiple cells.

I. INTRODUCTION

There are compelling reasons for creating micro-robotics
for applications ranging from targeted drug delivery to min-
imally invasive surgery. The potential impact is broad: large
populations of micro-manipulators would enable surgeons to
eliminate cancer at the cellular level, let engineers develop
complex MEMS assemblies, and empower biologists to
simultaneously sort all the cells on a Petri dish. However,
the small size of micro- and nano-robots severely limits
computation, sensing, and communication. This makes im-
plementing controllers difficult. Building autonomous robots
is currently impractical at the micro-scale, making distributed
control is infeasible. Centralized approaches are feasible, but
individually controlling huge populations of robots requires
an equally large amount of communications bandwidth,
ultimately limiting the population size. We require a new
technique for centralized control under the constraint that
every robot receives exactly the same input commands.

This paper applies ensemble control to solve this problem
[1]. Ensemble control is a control technique that uses a
shared input to drive large populations of robots to arbitrary
goal states. Our ultimate goal is multi-robot assembly—
the fabrication of large, complex structures by hundreds or
thousands of robots—with uniform inputs. To make progress,
this paper provides a control technique for large numbers
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Fig. 1. Using two sets of orthogonal electromagnets (left), Ou et al.
demonstrated steering a living magnetized T. pyriformis cell [9](middle).
In this paper we exploit differences in magnetism between cells to steer
multiple cells to arbitrary x, y locations and stabilize them in limit cycles
at these locations (six stabilized cells shown at right). See multimedia
attachment at http://www.youtube.com/watch?v=MLr2YvghPns.

of robots with nonholonomic unicycle kinematics where the
control input is the desired orientation.

In previous work [2], [3], we focused on micro/nano-
robotic systems with control inputs (forward velocity and
turning rate) applied to the local coordinate frame, such
as electric potential-driven scratch-drive micro-robots [4]–
[6] and some light-actuated, molecular nanocar species [7],
[8]. These robots have bounded uncertainty in their velocity
which scales both their forward velocity and their turning
rate. This inhomogeneity allows control of large numbers of
robots using the same global signal. We demonstrated that
position control is possible for these robots.

Unfortunately, the majority of current micro-robotic sys-
tems apply inputs in the global coordinate frame. Our
system is shown in Fig. 1. Other examples include magnetic
micro/nano robots [10]–[20]; magnetic particles studied by
[21]–[24]; magnetic-field controlled bacteria [25]; electric-
field controlled paramecium [26], [27]; electrokinetic and
optically controlled bacteria [28]; protists steered by mag-
netic field [9], [29], and electrically driven nano robots [30].

In [4]–[6] the authors designed robots with varying hys-
teresis levels so that some could orbit in place while others
went straight. By cleverly interleaving primitives, they con-
structed shapes composed of multiple robots. Our biological
organisms are more limited: either all turn in place, or all go
straight. Our proof of controllability depends on a control-
Lyapunov function. This paper investigates systems where
the inputs are the desired heading, encoded by a global vector
field. We focus on artificially magnetotactic Tetrahymena
pyriformis cells and model them as controllable microrobots.
T. pyriformis are eukaryotic, pear-shaped cells, ≈50 µm long
by 25 µm wide. These cells swim using the numerous cilia
that cover their cell bodies. T. pyriformis can be grown
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Fig. 2. Kinematic model of a magnetized T. pyriformis cell. The magnetic
field exerts torque Ma sin(θ−ψ) to align the cell axis θ with the field ψ.

in large quantities in the laboratory with ease. They have
been studied under the influence of various taxes, the innate
behavioral response by an organism to a directional stimulus.
Galvanotactic control of T. pyriformis has been investigated
by Kim et al. [32]. Kim et al. also used magnetic fields to
control the motion of a T. pyriformis by feeding iron-particles
into the cell body [32]. Feedback control of single cell has
been developed using rapidly-exploring random trees (RRTs)
[33] and model predictive control (MPC) [34], [35]. These
results show promise, but for large-scale micro-assembly
and micro-manipulation, single-cell motion control is not
sufficient. We require a control technique that can use a
global magnetic field to simultaneously control many cells.

The paper is structured as follows. First, we introduce our
model for the system (Section II), next we prove this system
is controllable and provide a feedback control law (Section
III), validate this control law in simulation and hardware
experiments (Section IV), and finish with concluding remarks
(Section V).

II. MODELING

For modeling we will work with a simplified 2D approach
that ignores the effects of gravity and collisions. Both are
well documented, and their effects on control strategies
warrants further study. Gravity alone would not make the
system ensemble controllable, but boundary effects may.
Disturbances from robot-robot interactions are also ignored,
and may be significant. Extending the model to 3D requires
additional states and motion primitives, similar to those used
for 2D.

Let the model for the ith cell shown in Figure 2, with
turning time constant ai, be ẋi

ẏi
θ̇i

 =

 vi cos θi
vi sin θi

Mai sin(ψ − θi)

 (1)

Here the xi, yi are Cartesian coordinates, θi is the orien-
tation of the cell, ψ is the orientation of the magnetic field,
and vi is the swimming speed of the cell. The cell is pulled
to orient along the magnetic field ψ by a magnetic field of
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Fig. 3. A cell modeled by (1), under a constantly rotating magnetic field
ψ(t) = ft will reach a steady-state phase lag of arcsin(f/a) radians.
f =Ma is the step-out frequency, after which the phase lag grows without
bound. This growth is approximately linear.
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Fig. 4. As the magnetic field frequency f increases, the radius the cell
swims in and the period of rotation decrease in a reciprocal relationship
until a, the cutoff frequency. The radius values are erratic from a to 1.5a,
but after 1.5a are linear in a2 (a linear-fit line is in dashed grey: r =
1.45f/a2+−0.3/a, T = 12.9f/a2−2.3/a ). Shown are a = [4, 6, 8, 10].

magnitude M , and the rate of this alignment is given by the
parameter ai. We assume the relationship is first order for
some range about 0 and thus can be modeled as an ideal
torsional spring. As long as the magnetic field is on, in
steady-state a large group of magnetized cells will share the
same orientation. No steady-state dispersion in orientation is
possible when a magnetic field is present. It may be possible
to command a change in ψ, quickly turn off the magnetic
field, and get a distribution of orientations parameterized by
a, but this dispersion will vanish when the magnetic field is
replaced.

The nonlinear term sin(θ − ψ) is due to the periodicity
of the magnetic torque. For small |θ − ψ| we can use the
small-angle approximation (θ − ψ).

A. Constantly Rotating Magnetic Field

As shown previously, to make multiple cells controllable
by the same magnetic field, we must exploit heterogeneity
in turning rate. One method is by using a constantly rotating
magnetic field ψ(t) = ft, where f ∈ R+ is the frequency
of rotation. For f < Ma, the cells will reach a steady-state
phase lag as they attempt to align with the field. At steady-
state the cells are turning at the same speed as the magnetic
field

θ̇i = Mai sin (θi(t)− ψ(t))

f = Mai sin (θi(t)− ft)

arcsin(
f

Mai
) = θi(t)− ft. (2)

This steady-state phase lag is shown in Fig. 3. The quantity
f

Mai
is the step-out frequency, after which the phase lag

grows without bound. This growth is approximately linear
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Fig. 5. Limit-cycles for cells with different a values at f = 10 rad/s.
MATLAB code available online [36].
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Fig. 6. Shown are the heading angles for two cells with a = {5, 7}. The
x axis is θ1, y axis θ2. Left: simulation for 100 s at increasing rotation
frequencies f of the external magnetic field. If f and the a values are
coprimes, the possible angular values span [0, 2π]× [0, 2π]. Right: rotation
frequency of the external magnetic field f = 20 simulated for increasing
amounts of time. As time increases, the set of possible angular value pairs
becomes dense.

for f > 1.5a, as shown in Fig. 4. The effective period for
the cell is

Ti =

{
2π
f if f < Mai

≈ 12.9f(Mai)
−2 − 2.3(Mai)

−1 else
(3)

We can also compute the effective radius of the limit cycle
the cell follows. For f < a, the cell completes a cycle every
2π/f seconds and the radius is therefore v/f . Past the step-
out frequency, the cells turn in periodic orbits similar to the
hypotrochoids and epitrochoids produced by a Spirograph R©

toy. Representative limit cycles are shown in Fig. 5. The
radius of rotation is:

ri =

{
vi
f if f < Mai

≈ 1.45f(Mai)
−2 − 0.3(Mai)

−1 else

B. Arbitrary Orientations

If we could control the orientation of each cell indepen-
dently, the cells could swim directly to the goal. Fig. 6
shows two cells with different a parameters. If the rotation
frequency f and the a values are coprime, the range of
possible θ1 and θ2 values span [0, 2π]×[0, 2π]. By increasing
f we can control the density we sample these angles. The
left side of Fig. 6 shows that the time required to span
[0, 2π]× [0, 2π] increases with f .

C. Straight-Line Swimming
By turning the magnetic field off, the cell dynamic model

simplifies to  ẋi
ẏi
θ̇i

 =

 vi cos θi
vi sin θi

0

 (4)

Without an external magnetic field, the cells swim straight in
the direction they were headed when the magnetic field was
last on. If we store the orientation of the magnetic field when
the magnetic field is turned off at time ta as ψa = fta, then
when we turn the field back on at time tb we can resume
where we last stopped

ψ(t) = ψa + f(t− tb),
and the cells will continue their limit-cycle behavior, but the
center of rotation will be translated vi(tb − tb) along the
vector θi(ta).

D. System Identification
Our previous technique for system identification required

manual control of the magnetic field by a human user to keep
a single cell within the field of view (FOV). Human control
does not scale to many cells because their differing speeds
makes it very challenging to maintain even two cells within
the FOV long enough to perform system identification. Our
new approach involves using a constantly-rotating magnet
field to hold the cells in periodic limit cycles. We can then
analyze the vision data and directly measure the vi and ai
values from the phase lag and the radius of rotation using
(2) and (5).

III. FEEDBACK CONTROL

Our control input consists of an alternating sequence of
ORBIT and SWIM-STRAIGHT modes. The oscillation fre-
quency f of the magnetic field is constant for every ORBIT
mode. At the beginning of each ORBIT mode, the phase
of the magnetic oscillation is resumed from the previous
ORBIT mode. During the first ORBIT mode, we identify the
centers of rotation (xc,i, yc,i) of each cell by recording the
cell positions for at least one period, calculated by (3), and
computing

xc,i(t) = max
(
xi(t− T : t)

)
−min

(
xi(t− T : t)

)
yc,i(t) = max

(
yi(t− T : t)

)
−min

(
yi(t− T : t)

)
. (5)

The center of rotation of each cell translates along with the
cell during each SWIM-STRAIGHT mode (see Fig. 7).

A. Control-Lyapunov Function
We use a control-Lyapunov function (CLF) to design

our control law [37]. A suitable Lyapunov function is the
squared distance of the center of rotation, [xc,i, yc,i] (5), from
the origin:

V (t, x, y) =
1

2

n∑
i=1

(
x2
c,i(t) + y2

c,i(t)
)

(6)

We construct several control laws that stabilize the system
with the proposed Lyapunov function.

http://www.mathworks.com/matlabcentral/fileexchange/42890
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Fig. 7. Our control input consists of an alternating sequence of ORBIT
and SWIM-STRAIGHT modes. our algorithms choose the switching time to
move the center of rotation (xc,i, yc,i) toward a goal position.

B. Choosing a Control Law

Our control law consists of deciding when to turn the
magnetic field M on. To make V̇ (t, x, y) negative semi-
definite, we choose

M(t) =

{
0 if V̇ (t, x, y) < threshold

1 else
(7)

for some threshold ≤ 0 value. With such a M(t), whenever
M(t) = 0, the Lyapunov function is decreasing at a rate
≤ threshold ≤ 0. Note here that V̇ (t, x, y) ≤ 0, but there
exists a subspace of [xi(t), yi(t)] such that V̇ (t, x, y) = 0.
Because V̇ (t, x, y) is negative semi-definite, we can only
claim stability, not asymptotic stability. To gain a proof of
asymptotic stability, we must choose a threshold function
such that M is always nonzero only at the origin.

We present three candidate threshold functions.
a) GREEDY: The GREEDY approach switches to

straight-line driving whenever the straight-line driving will
reduce the error faster than a threshold based on the current
distance from the goal

threshold = −1

2

n∑
i=1

vi

√
xc,i(t)2 + yc,i(t)2. (8)

This approach scales to any number of cells and is robust
to noise. Simulated results with 250 cells are shown in
Fig. 8. The time required for convergence as a function of
the number of cells is shown in Fig. 9, and appears to grow
linearly. Unfortunately, this approach requires rapidly turning
the magnetic field on and off. A magnetic field with a large
time constant cannot faithfully implement this controller.
A second potential problem is that while this controller
monotonically reduces the sum of squared errors, it may not
monotonically reduce the squared error for each individual
cell—a small fraction of the cells may temporarily move
away from their goals. The next controllers alleviate these
problems.

b) STEEPESTDESCENT: The STEEPESTDESCENT ap-
proach only switches to straight-line driving when all the
cell’s headings point toward the target. This maximizes the
gradient of the Lyapunov function. It is generally difficult,
and often impossible to make all the cells head directly to
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Fig. 8. 250 cells initialized at x = 20 mm, y evenly spaced [−20, 20] mm,
with vi, ai values distributed uniformly randomly in [0.5, 1]mm/s×[3, 10]
under control law (7) with threshold (8). Code available online [36].
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Fig. 9. Convergence time as a function of population size for simulated
cells. Cells initializes at x = 20 mm, y evenly spaced [−20, 20] mm, with
vi, ai values distributed uniformly randomly in [0.5, 1]mm/s × [3, 10]
under control law (7) with threshold (8). The best-fit line slope is 57s/robot.

the target, so we set a tolerance region for the mean squared
angular error

1

n

n∑
i=1

arctan2
(

sin(θi(t)− θi,target),

cos(θi(t)− θi,target)
)2
< toleranceSD

Because the cells all have different speeds vi, they do not
arrive at the target at the same time. As cells overshoot
the target, the Lyapunov function increases. We use the
threshold value in (8) to resume constant rotation.

This approach is designed to minimize the required field of
view because the experimental setup FOV is limited. Fig. 10
compares the GREEDY and STEEPESTDESCENT controllers.
The STEEPESTDESCENT approach is unsuited for control-
ling large populations (more than 5 cells). Aligning n cells at
desired heading angles is demonstrated in Fig. 4, and quickly
becomes challenging as n increases. STEEPESTDESCENT
provides favorable results in simulations with two cells.

c) HYBRID: The HYBRID approach attempts to com-
bine the advantages of feedback ensemble control and a
constant magnetic field. With a constant magnetic field, all
the cells swim along the same heading angle. We can use

http://www.mathworks.com/matlabcentral/fileexchange/42890
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Fig. 10. Left: simulation trajectory of four cells under GREEDY and
STEEPESTDESCENT feedback control. The cells start in a vertical line at
{[10, 5], [10, 6], [10, 7], [10, 8]} mm and are steered to orbit goal positions
in a horizontal line at {[−6, 0], [−2, 0], [2, 0], [6, 0]} mm. The magnetic
field has frequency 15 rad/s, the a values are {5, 6, 7, 8}, and the speeds
v are {0.8, 0.5, 0.6, 0.7} mm/s. These tests required {200, 930} s for all
cells to converge within 0.2 mm of their goal positions. Right: Lyapunov
function (sum squared distance error) of the four cells as a function of time.

a constant magnetic field to control the mean position of a
large group of cells. In our future applications we want to
use large numbers of cells to manipulate objects. The force
applied to an object is proportional to the number of cells
that can be brought in contact with the object with the same
heading angle, and a constant magnetic field allows all the
cells to push in the same vector direction.

sx =
1

n

∑
i=1

(xi − x̄)
2
, sy =

1

n

∑
i=1

(yi − ȳ)
2
,

σ =
√
sx + sy < toleranceH ,

where (x̄, ȳ) is the center of mass of the group. The HYBRID
approach uses a rotating magnetic field to gather cells
together and uses an unchanging magnetic field to swim
cells to the target. In this case, if the cells’ positions are
too sparse (σ ≥ toleranceH ) we gather the cells using
GREEDY or STEEPESTDESCENT by defining the target as
(x̄, ȳ). Once the cells gather within toleranceH , we switch
to a constant magnetic field and the cells swim in unison
toward the target. This technique could be used as a primitive
operation for micro-manipulation tasks. Figure 11 shows a
simulation where multiple cells are steered to push a disc.

C. Comparison between the Control Laws

A comparison between the three control schemes is shown
in Table I. Each simulation uses cells with identical turning
rates a, velocities v, and initial positions and orientations. In
each test, the cells were successfully steered to end within
2 mm of the origin. These results are representative: the
time consumption for GREEDY is the smallest, since this
method does not require the cells to spin until all the cells
are oriented toward the goal. The feedback ensemble control
methods STEEPESTDESCENT and HYBRID require a smaller
field of view to gather cells to the target. This is important

Comparison GREEDY
STEEPEST-
DESCENT

HYBRID

Convergence fastest slower slowest
Max. robots ∞ n ≤ 5 n ≤ 5

Robustness constant
corrections N/A

straight-line
movement with
magnetic field

Field of
view may increase never increases never increases

Uniform
movement no no yes

Toggling
mag. field often rarely rarely

TABLE I
COMPARISON OF THE THREE CONTROL STRATEGIES.
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Fig. 11. Preliminary study on manipulation using multiple cells to push a
micro-structure. Left: simulation trajectory of four cells under the HYBRID
feedback control algorithm. The cells have the same initial positions and
parameters as in Fig. 10, but the control objective is to push a 0.5 mm
radius disc centered at [0, 0] and drawn in green. This simulation required
85.5 s to reach the disc. Right: Lyapunov function (sum squared distance
error) of the four cells as a function of time.

because the field of view is limited in our experimental
setup. HYBRID has the slowest convergence time, but its
advantage occurs when applying an unchanging magnetic
field to make the cells head to the target. In this case, the
cells move in the same vector direction, which may be useful
for micromanipulation tasks.

IV. EXPERIMENTS

A. Hardware Setup

T. pyriformis are cultured in solution of 1% (w/v) tryp-
tone (Sigma Aldrich) and 0.1% (w/v) yeast extract (Sigma
Aldrich) and incubated at 28 ◦C. Cells are inoculated weekly.

Cells were placed in a multi-functional orthogonal coil
chamber, where two pairs of electromagnets are evenly
spaced, as shown in Fig. 1, with each pair corresponding to
the x or y axes. Variable rotating magnetic fields are supplied
using inputs from two power supplies controlled with Lab-
VIEW software and National Instruments controllers. The
chamber is placed on a stage of an inverted microscope
(Leica DM IRB), where samples are observed through a 4×
objective. Images are captured using a Photron FASTCAM
SA-3 high-speed camera at 125 frames per second. Cells are
placed inside a PDMS microfluidic channel measuring 3 mm
wide and 100 µm deep.

In these experiments, we must avoid large magnetic fields
M . Under large M , turning rapidly in circles damages
cells when the internalized iron-oxide particles rotate quickly
inside the body, resulting in abnormal swimming.



B. System Identification
To choose the optimal frequency of the rotation magnetic

field requires knowing the a values for the set of cells we
want to control. We employ the method of least squares to
determine the ai values. First we discretize the continuous
plant model (1) xi(k + 1)

yi(k + 1)
θi(k + 1)

 =

 vi∆T cos θi(k)
vi∆T sin θi(k)

Mαi sin(ψ(k)− θi(k))

 , (9)

where ∆T is the sampling time and αi = ai∆T .
To identify the αi parameter for each cell, we record

position and orientation measurements under a constantly
rotating magnetic field. We record the discrete-time cell
orientation information as θi(0), θi(1), . . . , θi(k), . . . , θi(n),
and the magnetic field orientation as ψ(0), ψ(1), . . . , ψ(k),
. . . , ψ(n). The following equation is derived from (9).

θi(1)− θi(0)
θi(2)− θi(1)

...
θi(k)− θi(k − 1)

...
θi(n)− θi(n− 1)


=



sin(ψ(0)− θi(0))
sin(ψ(1)− θi(1))

...
sin(ψ(k − 1)− θi(k − 1))

...
sin(ψ(n− 1)− θi(n− 1))


· αi

(10)

We rewrite this equation as Y = Φαi. Then, using the
method of least squares, the parameter set with the best fit
to the data is given by α̂i = Φ†Y , where Φ† = (ΦTΦ)−1ΦT

is the pseudoinverse of Φ. The cell’s ai value is derived as
ai = αi

∆T .
The ai value can also be measured directly by inverting

(2). If the frequency of the rotation magnetic field is below
the step-out frequency, the cells turn in a circle with a
constant phase lag θi,lag. The turning-rate parameter is then
ai = −f/ sin(θi,lag).

Under a constantly rotating magnetic field, T. pyriformis
cells follow circular limit-cycles. We record the positions as
functions of time and the magnetic-field phase, and process
this data to perform system identification of multiple cells in
parallel. From the experimental data shown in the right panel
of Fig. 1, we identify the following parameters for the cells:
a values of {5.82, 2.94,−8.56, 5.45,−5.45} and speeds of
{172, 155, 133, 165, 167} px/s. In our setup each pixel is 0.23
µm wide, giving speeds {39.6, 35.7, 30.638.0, 38.4} µm/s.

C. Validation of Key Modeling Assumptions
The key assumptions in our model are: (i) the cells follow

periodic orbits under a constantly rotating magnetic field,
and (ii) in the absence of magnetic field, the cells swim
straight. These assumptions have been experimentally vali-
dated. Fig. 12 shows cells under the influence of a magnetic
field rotating at 6 rad/s. The cells turn in tight limit cycles,
as predicted by our model (1).

Fig. 13 shows the paths traveled by six cells from the
previous experiment, after turning the magnetic field off. A
majority (62%) of the cells swim in a straight line. The path
traces show 1.6 seconds of movement.

0.5 mm

Fig. 12. Experimental results for nine T. pyriformis cells under the
influence of a magnetic field rotating at 6 rad/s. The cells turn in tight
limit cycles, as predicted by our model. The field was on for a duration of
6.6 seconds.

0.5 mm

Fig. 13. This frame shows the paths traveled by six cells from Fig. 12 after
turning the magnetic field off. A majority of the cells swim in a straight
line. The path traces show 1.6 seconds of movement.

V. CONCLUSION

We have provided an algorithm for steering multiple
micro-robots to arbitrary ending positions when the only
control input is the global desired heading. We demonstrated
a technique for performing model-learning on a large epop-
ulation of cells simultaneously, using video data.

An obvious extension is to apply this work to artificial
micro robots controlled by magnetic fields [10]–[19], [21]–
[24]. In many of these systems [16] the robot speed is also
controllable, allowing the robots to be turned in-place.

These results can be directly extended to 3D by augment-
ing the state and error signals with z and using angles in
SO(3). This can be implemented trivially by first using con-
trol laws from Section III to move to desired x, y positions,
and finish by moving to the desired z positions, requiring
≈ 1.5× as many operations as in 2D.

Preliminary hardware experiments with multiple cells are
promising. This paper represents a step toward our future
goal of using multiple cells to manipulate many objects
simultaneously.
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