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Summary. In this paper, we consider the problem of controlling multiple quadrotor robots
that cooperatively grasp and transport a payload in three dimensions. We model the quadro-
tors both individually and as a group rigidly attached to a payload. We propose individ-
ual robot control laws defined with respect to the payload that stabilize the payload along
three-dimensional trajectories. We detail the design of a gripping mechanism attached to
each quadrotor that permits autonomous grasping of the payload. An experimental study with
teams of quadrotors cooperatively grasping, stabilizing, and transporting payloads along de-
sired three-dimensional trajectories is presented with performance analysis over many trials
for different payload configurations.

1 Introduction

Autonomous grasping, manipulation, and transportation of objects is a fundamental area of
robotics research important to applications which require robots to interact and effect change
in their environment. With recent advancements in relevant technologies and commercially
available micro aerial vehicles (MAVs), the problem of autonomous grasping, manipulation,
and transportation is advancing to the aerial domain in both theory and experiments. However,
individual MAVs are fundamentally limited in their ability to manipulate and transport objects
of any significant size. We address this limitation in this paper and consider the problem of
controlling multiple quadrotor robots that cooperatively grasp and transport a payload in three
dimensions.

We approach the problem by first developing a model for a single quadrotor and a team of
quadrotors rigidly attached to a payload (Sect. 3). In Sect. 4, we propose individual robot con-
trol laws defined with respect to the payload that stabilize the payload along three-dimensional
trajectories. We detail the design of a gripping mechanism attached to each quadrotor that per-
mits autonomous grasping of the payload (Sect. 5). An experimental study with teams of
quadrotors cooperatively grasping, stabilizing, and transporting payloads of different configu-
rations to desired positions and along three-dimensional trajectories is presented in Sect. 6.



2 Related Literature

The problem of aerial manipulation using cables is analyzed in [1, 2] with the focus on find-
ing robot configurations that ensure static equilibrium of the payload at a desired pose while
respecting constraints on the tension. We address a different problem as the robots use “grip-
pers” that grasp the payload via rigid connections at multiple locations. The modeling of
contact constraints is considerably simpler as issues of form or force closure are not relevant.
Additionally, contact conditions do not change in our case (e.g., rolling to sliding, or contact
to no contact). However, the system is statically indeterminate and the coordination of multi-
ple robots is significantly more complex than in the case when the payload is suspended from
aerial robots. In particular, as the problem is over-constrained the robots must control to move
in directions that are consistent with kinematic constraints.

There is extensive literature on multi-fingered grasping and legged locomotion that dis-
cusses the problem of coordinating robot actuators with kinematic constraints [3–5]. However,
our work is different in many ways. First, unlike legs or fingers, we have less control over the
wrenches that can be exerted at each contact. Each robot is capable of controlling propellers
to exert wrenches of a fixed pitch, (i.e., a thrust and a moment proportional to the thrust, both
perpendicular to the plane of the rotor). Second, the robot system can be underactuated if the
planes associated with each rotor are all parallel. In fact, this is generally the case in formation
flight and it may be desirable to grasp the payload at multiple points, allowing the quadrotors
to be in parallel horizontal planes. Third, the control of quadrotors necessitate dynamic models
that reconcile the aerodynamics of flight with the mechanics of cooperative manipulation.

In this work we take advantage of the fact that we have access to many rotors to gener-
ate the thrust necessary to manipulate payloads. A similar concept is presented in [6], where
the authors propose control laws that drive a distributed flight array consisting of many rotors
along a desired trajectory. However, our control methods differ considerably as we are work-
ing with quadrotor robots and must derive feedback control laws based on the control inputs
required by these robots. Similar to the concept of using multiple rotors in a flight array is
the development of an aerial robot with more than four rotors (as in quadrotors), such as the
commercially available Falcon with eight rotors from Ascending Technologies, GmBH [7].

A gripping mechanism is presented in this work that enables autonomous grasping of the
payload by the quadrotors. Toward this design, we build upon considerable research in the
area of climbing robots which generally rely on clinging to surface asperities via microspine
arrays [8]. Similar designs with microspine arrays enable aerial vehicles to perch on vertical
walls [9]. These robots do not require penetration to cling to the wall. However, in our work,
the normal forces required to grasp objects are much higher compared to the shear forces that
are exerted on the surfaces interfacing with the spines. Using similar microspine technology,
we utilize the advantages of penetration in softer material such as wood and cardboard to
attach to horizontal planar surfaces.

3 Dynamic Model

3.1 Coordinate Systems

The coordinate systems are shown in Fig. 1. The world frame, W, is defined by axes xW ,
yW , and zW with zW pointing upward. We consider n quadrotors rigidly attached to a body
frame, B. It is assumed that the body frame axes are chosen as the principal axes of the entire
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Fig. 1. The coordinate systems.

system. Each quadrotor has an individual body frame, Qi, attached to its center of mass with
zQi perpendicular to the plane of the rotors and pointing vertically up. Let (xi, yi, zi) be the
coordinates of the center of mass of the ith quadrotor in B coordinates and ψi be the relative
yaw angle. For this quadrotor, rotor 1 is on the positive xQi-axis, 2 on the positive yQi-axis,
3 on the negative xQi-axis, 4 on the negative yQi-axis. We require the zQi axes and zB to be
parallel. We use ZXY Euler angles to model the rotation of the body (and the quadrotors)
in the world frame. To get from W to B, we first rotate about zW by the yaw angle, ψ, then
rotate about the intermediate x-axis by the roll angle, φ, and finally rotate about the yB axis
by the pitch angle, θ. The rotation matrix for transforming coordinates from B to W is given
by

WRB =

cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ
cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ

 ,
where cθ and sθ denote cos θ and sin θ, respectively, and similarly for φ and ψ. The com-
ponents of angular velocity of the body in the body frame are p, q, and r. These values are
related to the derivatives of the roll, pitch, and yaw angles according to:pq

r

 =

cθ 0 −cφsθ
0 1 sφ
sθ 0 cφcθ

φ̇θ̇
ψ̇

 .
The position vector of the center of mass of the body in the world frame is denoted by r. The
rotation matrix, Euler angles, angular velocities, and position vector to the center of mass of
the ith quadrotor are denoted as WRQi, (φi, θi, ψi), (pi, qi, ri), and ri, respectively.

3.2 Motor Model

Each rotor has an angular speed ω and produces a vertical force F according to

F = kFω
2. (1)



Experimentation with a fixed rotor at steady-state shows that kF ≈ 6.11 × 10−8N/rpm2.
The rotors also produce a moment according to

M = kMω
2.

The constant, kM , is determined to be about 1.5 × 10−9Nm/rpm2 by matching the perfor-
mance of the simulation to the real system.

The results of a system identification exercise suggest that the rotor speed is related to the
commanded speed by a first-order differential equation:

ω̇ = km(ωdes − ω).

This motor gain, km, is found to be about 20 s−1 by matching the performance of the sim-
ulation to the real system. The desired angular velocities, ωdes, are limited to a minimum
and maximum value determined through experimentation to be approximately 1200 rpm and
7800 rpm.

3.3 Equations of Motion

Each of the j rotors on each of the the i quadrotors produces a force, Fi,j , and moment, Mi,j ,
in the zQi direction. These rotor forces can be rewritten as a total force from each quadrotor
Fq,i as well as moments about each of the quadrotor’s body frame axes:

Fq,i
Mxq,i

Myq,i

Mzq,i

 =


1 1 1 1
0 L 0 −L
−L 0 L 0
kM
kF
− kM
kF

kM
kF
− kM
kF



Fi,1
Fi,2
Fi,3
Fi,4

 , (2)

where L is the distance from the axis of rotation of the rotors to the center of the quadrotor.
The total force and moments on the system from the quadrotors in the body frame coordinates,
B, are: 

FB
MxB

MyB

MzB

 =
∑
i


1 0 0 0
yi cosψi −sinψi 0
−xi sinψi cosψi 0
0 0 0 1



Fq,i
Mxq.i

Myq.i

Mzq.i

 . (3)

Note that zi is not present in (3) so this formulation allows for quadrotors in different planes.
If we let m be the mass of the entire system and ignore air drag, then the equations governing
the acceleration of the center of mass are simply:

mr̈ =

 0
0
−mg

+WRB

 0
0
FB

 . (4)

The moment of inertia matrix for the entire system referenced to the center of mass along the
xB − yB − zB axes is denoted by I . We assume xB − yB − zB are chosen such that I is
diagonal. The angular accelerations determined by the Euler equations are:

I

ṗq̇
ṙ

 =

MxB

MyB

MzB

−
pq
r

× I
pq
r

 .



4 Control

4.1 Control Basis Vectors

The linear system in (3) defines four equations with 4n unknowns and can be rewritten as:[
FB , MxB , MyB , MzB

] T = Au,

where A ∈ R4×4n is fixed and determined by the relative positions and orientations of the n
quadrotors. Here u ∈ R4n contains the four control inputs for each of the quadrotors:

u = [Fq,1,Mxq,1,Myq,1,Mzq,1, ..., Fq,n,Mxq,n,Myq,n,Mzq,n]
T .

For a system with more than one quadrotor the linear system is underdetermined so we
have a choice on how to achieve net forces and moments on the entire system. Here we choose
an optimal control input u∗ which achieves the desired net force and moments (F desB , Mdes

xB ,
Mdes
yB , and Mdes

zB ) while minimizing the cost function, J :

u∗ = argmin
u
{J |[F desB ,Mdes

xB ,M
des
yB ,M

des
zB ]T = Au} (5)

where
J =

∑
i

wFiF
2
q,i + wMxiM

2
xq,i + wMyiM

2
yq,i + wMziM

2
zq.i.

A natural way to treat the point-wise minimization of the function J is by choosing control
inputs using the Moore-Penrose inverse. First we define H ∈ R4n×4n so that J = ‖Hu‖22:

H = diag
(√
wF1,

√
wMx1,

√
wMy1,

√
wMz1, ...,

√
wFn,

√
wMxn,

√
wMyn,

√
wMzn

)
.

After algebraic manipulation we get:

u∗ = H−1(AH−1)+[F desB ,Mdes
x ,Mdes

y ,Mdes
z ]T

= H−2AT(AH−2AT)−1[F desB ,Mdes
x ,Mdes

y ,Mdes
z ]T, (6)

where + denotes the Moore-Penrose inverse. It is instructive to the think of the columns of the
matrix H−1(AH−1)+ as control basis vectors uF , uMx, uMy , and uMz . Then the optimal
control input can be written as:

u∗ = [uF ,uMx,uMy,uMz][F
des
B ,Mdes

x ,Mdes
y ,Mdes

z ]T. (7)

We now consider the special case in which all quadrotors are identical and axially sym-
metric meaning roll and pitch can be treated the same way. Indeed this is the case in our
experimental testbed. In this case wFi = wF , wMxi = wMyi = wMxy , and wMzi = wMz .
Consider the following term from (6) for this case:

AH−2AT =


n
wF

∑
yi

wF
−

∑
xi

wF
0∑

yi
wF

∑
y2i

wF
+ n

wMxy

−
∑
xiyi

wF
0

−
∑
xi

wF

−
∑
xiyi

wF

∑
x2i

wF
+ n

wMxy
0

0 0 0 n
wMz

 . (8)

Here we can assume that the positions of the quadrotors dominate the mass properties of
the entire structure since the quadrotors are heavier than what they can carry. The x and y



locations of the center of mass of the payload and quadrotors together are close to that of just
the quadrotors so

∑
xi =

∑
yi = 0. Additionally,

∑
xiyi = 0, as the principle axes of

the quadrotors are aligned with the principal axes of the structure. Therefore, all quadrotors
contribute an equal force and yaw moment to produce a net body force or yaw moment:

uF =
1

n
[1, 0, 0, 0, ..., 1, 0, 0, 0] T

uMz =
1

n
[0, 0, 0, 1, ..., 0, 0, 0, 1] T.

The control basis vectors for moments in pitch and roll reflect the tradeoff between the weight-
ing factors:

uMx =
1

wMxy

wF

∑
y2i + n

[
wMxy

wF
y1, cψ1, sψ1, 0, ...,

wMxy

wF
yn, cψn, sψn, 0

]T

uMy =
1

wMxy

wF

∑
x2i + n

[
−wMxy

wF
x1,−sψ1, cψ1, 0, ...,−

wMxy

wF
xn,−sψn, cψn, 0

]T

.

Here, an increase in the cost of individual quadrotor moments relative to the forces,wMxy/wF ,
causes the individual body forces used to create a net body moment to increase and the indi-
vidual body moments from each quadrotor to decrease. This ratio allows a user to tradeoff
between the individual quadrotor force and moments used to create body moments in pitch
and roll.

4.2 Attitude Control

To control the attitude of the body we use proportional derivative control laws that take the
form:

M des
xB = kp,φ(φ

des − φ) + kd,φ(p
des − p)

M des
yB = kp,θ(θ

des − θ) + kd,θ(q
des − q)

M des
zB = kp,ψ(ψ

des − ψ) + kd,ψ(r
des − r).

(9)

4.3 Hover Controller

Here we use pitch and roll angle to control position in the xW and yW plane, M des
zB to control

yaw angle, and F des
B to control position along zW . This approach is similar to that used for

individual quadrotors in [10–12]. We let rT (t) and ψT (t) be the trajectory and yaw angle we
are trying to track. Note thatψT (t) = ψ0 for the hover controller. The command accelerations,
r̈des, are calculated from PID feedback of the position error, e = (rT − r), as:

(r̈T − r̈des) +Kd(ṙT − ṙ) +Kp(rT − r) +Ki

∫
(rT − r) = 0,

where ṙT = r̈T = 0 for hover. We linearize (4) to get the relationship between the desired
accelerations and roll and pitch angles:

r̈des
1 = g(θdes cosψT + φdes sinψT )

r̈des
2 = g(θdes sinψT − φdes cosψT )

r̈des
3 =

1

m
F des
B − g.



These relationships are inverted to compute the desired roll and pitch angles for the attitude
controller, from the desired accelerations, as well as F des

B :

φdes =
1

g
(r̈des

1 sinψT − r̈des
2 cosψT )

θdes =
1

g
(r̈des

1 cosψT + r̈des
2 sinψT )

F des
B = m(r̈des

3 + g).

We substitute these into (9) to yield the desired net body force and moments. From these
quantities the control inputs for individual quadrotors are computed using the control basis
vectors developed in Sec. 4.1:

u = F des
B uF +M des

xBuMx +M des
yBuMy +M des

zBuMz.

We then calculate the desired angular velocities for each of the 4n rotors from a linearization
of (1,2) about the nominal hovering operating point.

4.4 3D Trajectory Control

The trajectory controller is used to follow 3D trajectories with modest accelerations so the
near-hover assumptions hold. We use an approach similar to those described in [12, 13]. We
have a method for calculating the closest point on the trajectory, rT , to the the current position,
r. Let the unit tangent vector of the trajectory associated with that point be t̂ and the desired
velocity vector be ṙT . We define the position and velocity errors as:

ep = ((rT − r) · n̂)n̂+ ((rT − r) · b̂)b̂

and
ev = ṙT − ṙ.

Note that here we ignore position error in the tangent direction by only considering position
error in the normal, n̂, and binormal, b̂, directions. This is done because we are more con-
cerned about reducing the cross-track error rather than error in the tangent direction of the
trajectory.

We calculate the commanded acceleration, r̈des, from PD feedback of the position and
velocity errors:

r̈des = Kpep +Kdev + r̈T .

Note that r̈T represents feedforward terms on the desired accelerations. At low accelerations
these terms can be ignored but at larger accelerations they can significantly improve controller
performance. Finally, we use the process described in Sec. 4.3 to compute the desired angular
velocities for each rotor.

4.5 Decentralized Control Law

We assume the quadrotors are attached rigidly to the body. As long as each quadrotor knows
its fixed relative position and orientation with respect to the body and the goal of the body
controller (hover location or desired trajectory) then this controller can be decentralized. If
each quadrotor senses its own orientation and angular velocity then the orientation and angular
velocity of the body are calculated as follows:
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Fig. 2. Gripping mechanism engaged in wood. The assembly consists of a compliant poly-
mer with embedded opposed microspines, linkages, and a servo mechanism for engaging and
releasing (Fig. 2(a)). The gripping mechanism is attached to each quadrotor (Fig. 2(b)).

WRB = WRQi

QiRB and [p, q, r]T = BRQi [pi, qi, ri]
T.

From the position and velocity of the ith quadrotor, the position and velocity of the center of
mass of the body are calculated as:

r = ri −WRB [xi, yi, zi]
T

ṙ = ṙi − ωB ×
(
WRB [xi, yi, zi]

T
)
.

Each quadrotor then runs a local hover or velocity controller along with the attitude controller
(9).

For completely centralized control, the state estimates of the n quadrotors are combined
to create a single estimate of the state of the entire body from which the control inputs are
computed. This averaging reduces the noise on the state estimate of the entire body and thus
results in a cleaner control signal.

For the results presented in this work, we use a combination of the decentralized and
centralized formulations. The position, velocity, and orientation estimates all come from a
single source so the terms in the control input that depend on these values are calculated
in a centralized fashion. The angular velocity is measured directly onboard each quadrotor
so the terms in the control law that depend on the angular velocity are calculated using the
decentralized method.

5 Gripping Mechanism

The gripping mechanism shown in Fig. 2 enables the quadrotors to attach to and release from
the payload. The design is specialized to allow gripping of horizontal planar surfaces. This
design choice is motivated by the problem definition, as all quadrotors are expected to attach
to parallel horizontal planes with respect to the payload. It is also desirable for the gripper
to be able to engage at any point on suitable materials. This gripper is designed to penetrate
surfaces via opposed microspines actuated by a servo motor. Opposed spines allow large shear
forces, which in turn allow a large normal force.



Fig. 3. Hover performance data for 40 seconds for four configurations. The center dot repre-
sents the mean error and the error bars represent one standard deviation. Graphical depictions
of the four configurations.

The gripper penetrates the surface of an object by driving four hooks into the plane with
a servo motor. The hooks are standard fishing hooks which are accessible, cheap, sharp, and
sufficiently strong for use in this application. Locating the hooks precisely with respect to the
quadrotor is important as the the top face of the object must remain parallel to the quadrotor.
To this end, we employ shape deposition manufacturing (SDM) to manufacture the full spine.
The resulting compliant polymer spine introduces assistive compliance into the gripper. When
the servo opens the gripper, the polymer acts as a spring that when released, aids the servo
in penetrating the surface. After some penetration is achieved, the piece passes through its
natural state and is stretched in the opposite direction. The piece responds with a restoring
force that assists the servo on releasing the surface. We tested the gripping mechanism with a
number of materials and found it to be effective in grasping soft to medium hardness woods,
cardboard, high density foam, and carpet.

6 Results

In this section we describe results from two experimental trials designed to evaluate the per-
formance of the controllers described in Sect. 4.3 and demonstrate cooperative grasping, ma-
nipulation, and transportation of payloads in 3D.

The hardware, software, and implementation details of the experiments follows. The po-
sition and orientation of the quadrotor is observed using a VICON motion capture system
operating at 100Hz [14]. The position is numerically differentiated to compute the linear ve-
locity of the robot while the angular velocity is sensed onboard the quadrotor with a 3-axis rate
gyro. The position, linear velocity, and orientation are available to MATLAB via ROS [15] and
a ROS-MATLAB bridge [16]. All commands are computed in MATLAB using the latest state
estimate at the rate of the VICON. The commands in MATLAB are bridged to ROS and the
most recent command is sent to the robot via ZIGBEE at a fixed rate of 100Hz. This fixed rate
is due to the limited bandwidth of ZIGBEE (57.6 kbps). Commands sent to the robot consist
of the gains, desired attitude, and thrust values described in Sect. 4.

The first experimental trial consists of a team of four quadrotors rigidly attached to dif-
ferent payload configurations (see Figures 3 and 5). For this test, we wish to focus on co-



Configuration Ixx (kg m2) Iyy (kg m2) m (kg)
Line 0.0095 0.73 3.33
El 0.079 0.50 3.33

Tee 0.082 0.43 3.33
Cross 0.11 0.19 3.23

Table 1. Mass and Inertia Properties.

Fig. 4. Trajectory tracking data for the Cross configuration along a 0.8, m radius circle tilted
at 45◦ from horizontal at 0.6m/s.

operative manipulation and transportation and as such use a payload structure built of wood
with quadrotors attachments made via Velcro for easy rearranging. The total mass and x and
y principal moments of inertia for each configuration (payload and quadrotors) are shown in
Table 1. Note that the mass of a single quadrotor with a battery is about 500 g, so in each of
these configurations the total payload is greater than 1.2 kg.

For each configuration, the control basis vectors are computed as described in Sect. 4.1
with wMxy/wF = 2. We chose this ratio as our connection to the payload is stronger in
resisting a force pulling it away from a surface than a moment in pitch or roll. Data for each
configuration is shown in Fig. 3. Note that for each configuration, control along the x axis is
intentionally performed with the body angle corresponding to the larger principal moment of
inertia, Iyy . The performance along the x axis is worse than the y axis as expected. A large
moment of inertia limits the bandwidth of the control on that angle. This decrease in attitude
control performance leads to decreased position control performance along that axis. Here we
note that position control for a single quadrotor is much better than for any of the multi-robot
structures because their moments of inertia are much larger.

The trajectory tracking controller in Sect. 4.4 is implemented on the Cross configuration
for which data is shown in Fig. 4. We see that the system performs well and controls to the
desired trajectory in three-dimensions.



Fig. 5. Left: Image from an experiment with the gripping mechanism enabling cooperative
grasping, manipulation, and transportation. Right: Four quadrotors carrying a payload in the
El configuration. Videos of the experiments are available at http://tinyurl.com/penndars.

The gripping mechanism described in Sect. 5 is used on two quadrotors to pick up and
transport an 0.8m, 320 g structure as shown in Fig. 5. The quadrotors first descend to the
structure and engage the gripping mechanism. The quadrotors ascend with the structure and
fly twice along the same circular trajectory as in Fig. 4 at 0.5m/s. Finally, the quadrotors
descend to structures initial location, disengage the gripping mechanism, and depart.

7 Conclusions and Future Work

We addressed the problem of controlling multiple quadrotor robots that cooperatively grasp,
manipulate, and transport a payload in three dimensions. We approach the problem by first de-
veloping a model for a single quadrotor and a team of quadrotors rigidly attached to a payload.
We propose individual robot control laws defined with respect to the payload that stabilize the
payload along three-dimensional trajectories. We detail the design of a gripping mechanism at-
tached to each quadrotor that permits autonomous grasping of the payload. We conclude with
an experimental study with teams of quadrotors cooperatively grasping, stabilizing, and trans-
porting payloads of different configurations to desired positions and along three-dimensional
trajectories.

We are currently working on autonomous system identification methods for multiple
quadrotors picking up payloads with unknown masses and moments of inertia. We also plan
to modify the gripping mechanism design to enable passive engagement so that a quadrotor
can simply land on a surface to attach to it.
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