
Constraint-aware coordinated construction of generic
structures

Citation Stein, David, T. Ryan Schoen, and Daniela Rus. “Constraint-
aware Coordinated Construction of Generic Structures.” IEEE,
2011. 4803–4810.

As Published http://dx.doi.org/10.1109/IROS.2011.6048848

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Accessed Sun Oct 30 23:35:29 EDT 2016

Citable Link http://hdl.handle.net/1721.1/72506

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

http://dx.doi.org/10.1109/IROS.2011.6048848
http://hdl.handle.net/1721.1/72506
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://libraries.mit.edu/forms/dspace-oa-articles.html

Constraint-Aware Coordinated Construction of Generic Structures

David Stein, T. Ryan Schoen, Daniela Rus

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

{stein,rschoen,rus}@csail.mit.edu

Abstract— This paper presents a constraint-aware decen-
tralized approach to construction with teams of robots. We
present an extension to existing work on a distributed controller
for robotic construction of simple structures. Our previous
work described a set of adaptive algorithms for constructing
truss structures given a target geometry using continuous and
graph-based equal-mass partitioning [1], [2]. Using this work
as a foundation, we present an algorithm which performs
construction tasks and conforms to physical constraints while
considering those constraints to parallelize tasks. This is accom-
plished by defining a mass function which reflects the priority of
part placement and prevents physically impossible states. This
mass function generates a set of pointmasses in Rn, and we
present a novel algorithm for finding a locally optimal, equal-
mass, convex tessellation of such a set.

I. INTRODUCTION

This paper presents a constraint-aware decentralized ap-
proach to construction with teams of robots. We aim to
create complex structures using heterogeneous sets of robots
and parts. We abstract this process using tool delivery and
assembly robots; delivery robots pick up parts and carry
them from some part source into the construction site where
assembly robots perform actuation tasks to add the parts
to the structure. In our previous work we presented a
set of adaptive algorithms for constructing truss structures
given a target geometry, and demonstrated their feasibility
experimentally [3], [4]. This paper extends that work in two
ways: first, by presenting a novel partitioning algorithm that
uses a detailed description of the target structure rather than a
target geometry to distribute tasks among robots (section III);
second, by introducing a distributed algorithm for delivering
parts in order to conform to physical constraints such as the
stability of the structure and the ability of robots to reach
areas in the structure (section IV).

If we imagine the construction of a building, there is a
strong natural set of constraints on the build order. These
fall into two major categories: (1) physical constraints require
supporting structures be set up first: one must lay a founda-
tion before a wall, and the first floor before the second; (2)
reachability constraints require that construction not block
pending work: plumbing and electrical is installed between
studs before drywall encloses the space, though neither rely
on each other for support. The work we present in this paper
addresses the problem of representing and conforming to
both of these classes of constraints, and determining ways to
maximize and automate parallelism.

A. Related Work

Our work builds on prior research on robotic construction
and distributed coverage. A simple distributed 3D construc-
tion algorithm is described in [16], while [6] describes a 3D
construction algorithm for modular blocks in a distributed
setting. Stochastic algorithms for robotic construction with
dependency on raw materials are analyzed in [7]. Our
previous work on robotic construction includes Shady3D
[9] utilizing a passive bar and an optimal algorithm for
reconfiguration of a given truss structure to a target struc-
ture [8], and experiments in building truss structures [4].
Using Voronoi partitions to deploy robots for coverage was
originally proposed in [12] and has been extended several
times since then for tasks such as adaptive coverage [15] and
equitable partitioning [14]. Our most recent work extends
the idea of equitable partitioning and combines it with
coordinated construction of truss structures [2], locational
optimization [1], and adaptation to failure and shape change
[3].

To perform equal-mass partitioning, our approach utilizes
previous work on computation using barycentric coordinates
[17] and convex hulls [13].

II. OVERVIEW OF CONSTRUCTION ALGORITHM

We are given a team of robots, a blueprint of a desired
structure, and a construction region Q. A subset of n of
the robots are specialized as assembly robots and the rest
are specialized as delivery robots. The blueprint describes
the location, type, and physical requirements for stability of
each object (“part”) in the structure. The robots are given a
local section of a blueprint, and have full knowledge of the
progress of the construction of the target structure in the area
surrounding them and their neighbors. We describe an algo-
rithm that coordinates the construction of a given structure
while maximizing parallelism across assembly robots and
conforming to the physical constraints of the structure. The
algorithm is guaranteed to construct the structure in an order
that is feasible in that it does not prevent any sub-assembly
from being completed.

This problem formation differs from previous work in
coordinated construction ([3], [2]) in that we introduce
knowledge of physical constraints on assembly and delivery.
We consider two new constraints: the requirement that each
part must be capable of staying in place once set (physical
dependency), and the requirement that a delivery robot must

be able to reach both the source and assembly robots at all
times (reachability).

We represent these constraints in the blueprint by defining
parts as vertices connected on two graphs: a physical depen-
dency graph Gp(V,Ep), and a reachability graph Gr(V,Er).

We define Gp by placing a directed edge (vi, vj) ∈ Ep

between any vi and vj where vj cannot be stably placed
unless vi already has been, regardless of the state of any
other part. We assume that any part is placeable iff all of its
parents in Gp have been placed.

We define Gr by placing a directed edge (vi, vj) ∈ Ep

between any vi and vj where a robot at the location of vj
could access vi, regardless of the state of other parts in the
systems.

Without loss of generality and for ease of exposition, we
assume that there is some constant upper bound c on the
maximal degree of any vertex in V .

Algorithm 1 outlines the construction algorithm from a
global perspective. The three primary functions performed by
the robots are partitioning, delivery, and assembly. Assembly
robots are deployed into Q, and the partitioning controller
(Section III) ensures that each assembly robot i has some
partition of Pi ⊂ V that is spatially compact and that each
partition has roughly the same amount of work assigned to
it at all times. Delivery robots constantly deliver parts from
some source to the assembly robots, using a priority function
to determine the best place to deliver each part within a local
region (Section IV).

Algorithm 1 Construction Algorithm
1: Randomly deploy assembly robots in Q
2: repeat
3: delivering robots: deliver source components to as-

sembling robots
4: assembling robots: assemble the delivered compo-

nents while constantly updating partitions
5: until task completed or out of parts

III. EQUAL MASS PARTITIONING USING A DISCRETE
APPROACH

In our problem formulation we represent each part in the
target structure as a point, which is reasonable given the
discrete nature of parts. We define the demanding mass of a
part as a measure of its priority in placement order, where the
mass of a part is 0 if a part is unplaceable or already placed
and positive otherwise (this is discussed further in section
IV). By partitioning based on this mass function, we can
allocate roughly the same amount of reachable, actionable
work to each robot. We repeat this algorithm continuously
during runtime to maintain an equitable partitioning of Q as
masses change dynamically while the structure is built.

A trade-off of the significant increase in fidelity we get
by updating our model from a geometry to a blueprint is a
change in the nature of the density of the Q. The density of
Q is used by most coverage algorithms, including canonical
Lloyd algorithms for equipartitioning, to perform gradient

descent to converge to equal-mass partitions. Our blueprint
forces the density of Q to be a dynamic summation of scaled
Dirac delta functions, which has a gradient of either zero or
infinity at all points, meaning we can not use the class of
deployment algorithms that depend on Voronoi partitioning.

Vertex swap, which we present a potential solution to
this problem in [1], works on a graph rather than in Rn,
and requires multi-hop communication. In order to use this
algorithm, we need to define a graph that connects the set of
positive mass points. If we create a relatively sparse graph
we introduce unnecessary assumptions which limit which
points can be in the same partition. If we create a well-
connected graph we introduce the assumption of excessively
large communication radii as neighbors are defined by edges
in the graph rather than Lp distance. We have developed
a equipartitioning algorithm that does not require a graph
connecting points, uses only local communication, and has
lower complexity than vertex swap.

We identify partitions that are spatially compact and
approximately equal mass, but as stated above Voronoi
partitioning and vertex swap are not viable options. The
problem of partitioning a set of point masses in Rn into non-
intersecting, convex, equal-mass partitions is NP-hard, even
in R2 . We present the hull vertex swap algorithm (Algorithm
2), an efficient distributed method for approximating equal-
mass partitioning using only single hop communication.

Hull vertex swap converges to a convex partitioning of
the points v ∈ V distributed across the space Q into a
set of partitions. We allow each partition Pi, i ∈ [1, n] to
“steal” points from its set of neighbors NPi . The focus
of the algorithm is to determine which vertices can be
transferred from one partition to another without creating
an intersection between the convex partitions, and which
vertices can be stolen to effectively converge to a solution
that locally maximizes our measure of equality.

We now discuss how to determine which vertices can be
stolen without introducing intersections between partitions.
We then present how to compute which vertex is best to
steal, if any, and finally present a proof of convergence and
data from simulation. To compute which vertex to steal, each
robot first computes the convex hull of its partition P; then
for each vertex vi in the hulls of its neighbors, it considers
the region that would be added to the polygon defined by the
convex hull of P if vi were moved into P . Any vi that would
not create an intersection between two polygons if added to
P is considered a stealable vertex. The area added to the
region can be quickly tested for intersection by finding the
triangle formed by the tangent rays between P and vi and
testing the edges of each of the hulls in NP for intersection
with that triangle (see Figure 1). In higher dimensional cases
this extends to the pyramid formed by tangent planes.

We measure equality using a cost function H from [12]
with a constant distance function. Given that each vertex v
has a mass φ(v):

MP ,
∑
v∈P

φ(v) (1)

Fig. 1. Test to identify stealable vertices. The triangles with bold outlines
mark the region that would be added to P due to a trade of a vertex. (left)
Adding the vertex would cause a collision between two polygons. (right)
This vertex would be considered a valid candidate to trade.

Algorithm 2 Partitioning Algorithm
1: Deploy into Q at random pose pi

2: P ← {v|(||pose(v)− pi|| < ||pose(v)− pj ||)∀j 6= i}
3: loop
4: compute convex hull of P
5: update NP

6: X ← {v|v ∈ NP , v is stealable}
7: i← argmax

vi∈X
(∆HP(vi))

8: if ∆HP(vi) > 0 then
9: communicate to Nj : vi ∈ PNj

to remove vi
10: P ← P ∪ vi
11: end if
12: end loop

HQ =
∏

i∈[1,n]

MPi (2)

Without loss of generality, if we consider moving a vertex v
from P1 to P2, we can compute the change in mass:

∆HQ =

(
n∏

i=3

MPi

)
(MP2 + φ(v)) (MP1 − φ(v))−HQ (3)

When comparing two potential exchanges of vertices, we
only need knowledge of the partitions that will change in
order to compute both the sign and relative magnitude of our
deltas. We therefore need only local knowledge to determine
which vertex, if any, is best to trade. We can therefore
compute a scaled local ∆HN of moving some v from some
neighbor’s partition Pi to Pself with:

∆HN =

 ∏
Pk∈N∧Pk 6=Pi

MPk

(φ(v)(MPi −MPself − φ(v))
)

(4)

∆HN =
∆HQ∏

P6∈NPself
MP

(5)

A. Convergence

Theorem 1: Algorithm 2 will converge to a local maxi-
mum.

Fig. 2. Data from running partitioning algorithm. (left) Initial configuration
and (right) after 26 time-steps on a set of point-masses with random location
and mass. Shade is a function of total mass of a partition.

Proof: We know that the denominator in equation 5 will
be unchanged by a vertex being stolen and that therefore

argmax
vi∈X

(∆HN (P ← vi)) = argmax
vi∈X

(∆HQ(P ← vi)) (6)

so each stolen vertex will result in an increase in HQ. The
value of H is bounded from above and all |∆H| is bounded
from below, so by induction the algorithm must converge to
a local maximum.

B. Runtime

Theorem 2: Update at each step of algorithm 2 runs in
O(||N ||d + ||N ||||P||) time.

Proof: Consider a single step of algorithm 2 running
on a robot in Rd. Finding a triangle or cone takes O(||P||)
time. Checking for intersections takes O(||N ||d−1). This
check needs to be run on O(||N ||) candidate points [13].
Computation of each ∆H takes constant time, so the com-
putation of candidate points dominates this function. The
runtime per step is therefore O(||N ||(||N ||d−1 + ||P||)) =
O(||N ||d + ||N ||||P||).

Because only the hull is considered, this is often much
faster in practice.

C. Experiments

We ran the partition algorithm on several hundred ran-
domly generated sets of pointmasses with random mass.
Point location was sampled from either a uniform distribution
or 2D Gaussian. The partition masses converged on all
pointsets such that their standard deviation was less than
twice the average mass of a point. No partitionings contained
outliers after convergence, which suggests that most local
maxima are good approximations of equal-mass partitioning
(see Figures 2 and 3). The simulations took 15.5 minutes
in an environment with 500 point masses with 12 robot
state machines each running in a separate thread on a single
1.2 GhZ core. Running the same environment with 5 robots
converged in 2.5 minutes, and with 5 robots and 250 points
the system converged consistently in under 45 seconds.

IV. DELIVERY AND ASSEMBLY WITH PART ORDERING

Delivery robots repeatedly choose random assembly robots
and deliver the part with the highest demanding mass inside
the chosen assembly robot’s partition. The assembly robot
waits for a delivery and then performs whatever actions are
necessary to attach the part to the main structure.

Fig. 3. Total mass of each partition over time during a typical run of the
partitioning simulator.

Algorithm 3 Delivery Algorithm
1: loop
2: Move within communication range of random assem-

bly robot r
3: Receive highest priority vertex in Pr from r
4: Bring corresponding part from part source to r
5: end loop

Algorithm 4 Assembly Algorithm
1: Start partition algorithm (Alg. 2)
2: loop
3: for v ∈ Pself do
4: if v reachable from outside construction site then
5: dist(v)← 1
6: else
7: dist(v)← 1 +min({dist(u)|(u, v) ∈ Er})
8: end if
9: end for

10: yield until delivery
11: receive delivery of part v
12: place v and signal neighbors
13: for u ∈ all children and parents of v do
14: update φ(u) (Equation 23)
15: for w ∈ all children and parents of u do
16: update φ(w)
17: end for
18: end for
19: end loop

In our definition, parts with 0 mass violate either physical
or reachability constraints. Between any two parts with non-
zero mass, the part with higher mass is given priority in
placement. Given this planning algorithm, the mass function
φ(·) dictates the order in which parts are placed. We need a
mass function with the following properties:
• no part placement violates global constraints
• after a part is placed the number of placeable parts tends

to increase or remain constant
• the creation of bottlenecks and hallways is avoided if

possible
• changes to the local density function can be efficiently

calculated and updated using only local information
The precise order in which parts are placed is partially a

function of the assignment of partitions and availability of
parts, which are respectively non-deterministic and outside
of our control. The ordering should optimize over some set
of local metrics. To build this function, we present mass
functions that each satisfy one of our goals and then describe
a combined definition. In each definition we represent the
placement of a part by removing the vertex vi corresponding
to the part placed and also removing any edge going into or
out of vi from both graphs.

Before defining our mass function we need to make
a modification to the reachability graph. We need local
information about the global property of reachability, and
one way to do this is to modify reachability into a DAG. We
do this by defining G′r(V,E′r) such that:

E′r , {(u, v)|(u, v) ∈ Er ∧ dist(u) > dist(v)} (7)

We are now ready to begin defining the mass function
φ. First we define the global constraints formally: any vi is
placeable iff it will be physically supported and not render
any unplaced parts unreachable. We define two boolean
variables ξp(v) and ξr(v) to represent this criteria.

ξp(v) = (deg−Gp
(v) 6= 0) (8)

ξr(v) = (∃j : ((vj , v) ∈ E′r) ∧ (deg+G′
r
(vj) = 1)) (9)

ξp indicates that a part will not be physically supported
if its indegree is anything but 0; all the parts it depends
on for support must already be placed. ξr indicates that the
part should not be placed if doing so would prevent delivery
robots from reaching another part; that is, if placing a part
blocks a unique exit it cannot be placed.

φc(v) =

{
0 ξp(v) ∨ ξr(v)
1 otherwise

(10)

Because the ordering of parts is defined by a set of DAGs,
any mass function that obeys the constraints above and sets
all other φ(vi) to a positive value will terminate if the
problem is solvable. This is sufficient to have a system
that will build a structure without violating any physical
constraints, however with binary mass placement order will
be essentially random. The remaining mass functions allow

behavior to be tuned to tend towards placement that allows
for better parallelism of assembly tasks and access to the
structure by delivery robots.

Before presenting these functions, we introduce the fol-
lowing scoring function and briefly discuss its properties.
Given some function f : x → Z+, and some candidate sets
Xi with the property ||Xi|| ≤ cX∀i:

score(f(·), X) =
∑
x∈X

(
2f(x)

)−cX
(11)

This function takes advantage of the properties of geomet-
ric series to provide a function that will, given two candidate
sets X1 and X2, give a higher score to the set with the most
values generating the lowest value of f . That is, if we identify
the lowest value of f(x), y which is generated by a different
number of members of the two sets:

y = min
i
{i : ||{x ∈ X1|f(x) = i}|| 6= ||{x ∈ X2|f(x) = i}||}

(12)

then score has the property that

score(f,Xi) > score(f,Xj) (13)

implies

||{x ∈ Xi : f(x) = y}|| > ||{x ∈ Xj : f(x) = y}|| (14)

For example: consider two nodes on a directed graph with
sets of children X1 and X2, and a function f(v) which
returns the outdegree of a node. The node with more children
that have outdegree 0 will have a higher score (score(f,Xi)).
In the case of a tie, the node with more children with
outdegree 1 will have a higher score. After that ties are
broken by the number of children with outdegree 2, and so
on. We use this function extensively in our definitions.

First we define a function that will help to place parts such
that we first maximize the number of parts still available
to be placed (i.e., reveal as many new parts as possible).
A reasonable function could rank parts first by the number
of physical dependencies they satisfy. We can represent this
ranking with the score function:

φp(vi) = score(deg−Gp
, {vj |(vi, vj) ∈ Ep}) (15)

Similarly, we would like to place blocks that are least
likely to cause a bottleneck first. By rating blocks by the
number of different ways to reach their children we can
place preference against restricting high-traffic paths. We
also would like to tend toward placing parts in harder-to-
reach locations first, so we need to define a slightly more
complex test function g(vi) = max

j
(deg+G′

r
(vj))−deg+G′

r
(vi)

.
φr(vi) ∼ score(g, {vj |(vj , vi) ∈ E′r}) (16)

We also would like to tend toward working in areas far
from the easily reachable edge of the system first (i.e., at the
end of a hallway). We can use the distance function from
Algorithm 4 to measure this:

φr(vi) ∼ dist(vi) (17)

To combine these two statements we normalize the dis-
tance function to between 1

2 and 1. The score function
behaves such that multiplying by a half is the equivalent
of redefining the input function f ′(·) = f(·)+1. In this case
doing so would effectively lower the outdegree of each of a
node’s children by 1, thus lowering the node’s priority. This
allows us to scale φ by distance without breaking the tiered
behavior of the score function.

kdist(vi) =
dist(vi)− 1

2(max(dist(v)∀v ∈ V, 2)− 1)
(18)

φr(vi) = kdist(vi)score(g, {vj |(vj , vi) ∈ E′r}) (19)

Finally, in combining these three measures of mass, we
need to rescale our masses to allow comparison between φr
and φp. To achieve this we introduce two scaling factors:
β which rescales the range of in-degrees of nodes in E′r to
match that of Ep, and γ which can prioritize reachability
or physical dependency as required by the task. The exact
tuning of these functions varies depending on the capability
and number of each class of robot, and this relationship is
left as future work.

β =
max
vi

(deg−Gp
(vi))

max
vi

(deg+G′
r
(vi))

(20)

γ ∈ {−1, 0, 1} (21)

If we define g′(vj) = β(g(vj)+γ), we can introduce those
scaling factors to the reachability function by substituting
into equation 19, which will normalize it to resemble the
physical dependency function:

φ′r(vi) = kdist(vi)score(g
′, {vj |(vj , vi) ∈ E′r}) (22)

We can now combine equations (22), (15), and (10) to define
our combined mass function for use by the controller.

φ(vi) = φc(vi)(φ
′
r(vi) + φp(vi)) (23)

A. Runtime

Upon the placement of a part, at most c parts will have
a change of degree, which in turn means only c2 parts have
a potential change in mass. This allows constant time for a
robot to update all masses after a part has been placed.

B. Convergence

Theorem 3: The controller outlined in algorithms 3 and 4
will converge to a complete structure if possible.

Proof: Our constraints are described by two DAGs.
The mass function we describe here gives positive mass to
all vertices with no unplaced parents, which by definition
describes and follows a valid topological ordering of both
Gp and G′r, and will therefore converge without violating
either sets of constraints.

Fig. 4. Part placement while building a solid cube using (top) uniform mass
and (bottom) ordering. Note that without the ordering algorithm, work in the
front occurs first (top middle), making it harder for delivery robots to reach
subassemblies in the back. Also note how more of the stacks of blocks in
the top right have reached their maximum height, leaving less opportunities
for parallelism. A more detailed discussion of a simulator trail is given in
Section V-A.

Fig. 5. The average number of parts with positive mass across time over
50 runs of building a solid cube at the end of a hallway with 5 assembly and
4 delivery robots. (top) With uniform mass on placeable parts and (bottom)
using the proposed algorithm.

V. SIMULATION AND EXPERIMENTS

We have implemented Algorithm 3 and 4 in simulation
and evaluated them on several construction test cases, and
have performed some preliminary experiments on a physical
platform. In simulation we used two structures: one which
demonstrates the properties of the controller in a high-stress
scenario, and one which demonstrates a structure that might
be encountered in actual applications. On our platform we
ran tests on structures to test each type of contraint.

Each simulated environment was tested at least 50 times
for each possible permutation of between 1 and 5 delivery
and assembly robots on three environments - an empty box
and solid box at the end of a hallway (Figure 4: complex
reachability, relatively simple physical dependencies) and a
model airplane (Figure 6: complex physical dependencies,
less complex reachability). All runs completed construction
without violating constraints. We rated each run on availabil-
ity - the number of parts ready to be placed - and throughput
- the maximal number of delivery robots that could make a
simultaneous delivery. In our practical experiments we built
structures using two delivery and two assembly robots, and

a b

c d

Fig. 6. The controller running on three assembly and two delivery
robots building a model plane in simulation, which has complex physical
dependencies and relatively simple reachability constraints. Parts are color-
coded by the robot that placed them.

observed no failures in our ordering algorithm.
As a baseline, we compared the results of the mass

function (equation 23) with the minimal constraint (equation
10). We saw a clear performance advantage to our algorithm
in creating opportunities for parallelism (Figure 5). The
throughput in our example situations did not exhibit statisti-
cally significant deviation from the uniform mass functions
until late in each run.

A. Simulation Example: Model Plane

As an example of the behavior of the system we consid-
ered building a model plane with complex physical depen-
dencies and a solid block which has complex reachability
constraints. For illustration, we have colored parts differently
if they were placed by different assembly robots. In this
example, there are several constraints:
• The scaffolding must be completed before panels are

placed over it
• Scaffolding must be built ground up, and have horizon-

tal struts holding it up before it is more than 3 struts
tall

• Wings require stable scaffolding before they are built,
and the attachment point of main wing supports is
unreachable after panels have been placed over the
scaffolding around the connection point.

We initialize the system with three delivery and two assem-
bly robots. The plane blueprint consists of 686 parts and
2402 edges which fully represent the dependencies described
above.

In the screenshots from the simulator in Figure 6, these
constraints are followed, and each assembly robot does
roughly the same amount of work. In (a) we see an empty
blueprint as the assembly robots are deployed. In (b) con-
struction begins, with each of the three partitions filling
up with roughly the same amount. In (c) the scaffolding
has been mostly completed before panels are added, which
maximizes the amount of potential work to be done and

Fig. 7. The box built by the system and the modified mobile manipulator
platform

Fig. 8. Demanding mass of the two assembly robots over time during the
experiment pictured in figure 9. After a part is placed we assigned work
arbitrarily and allowed the algorithm in section III to handle rebalancing,
causing a transient spike in demanding mass of a robot after each part
placement.

would allow for efficient parallelism if more robots were
added. (d) shows the finished product, a completed airplane.
The three robots placed 220, 232, and 234 parts respectively
over the course of this example. It is also notable that when
the robot placing dark grey parts completed its section of
the assembly task it relocated to the still incomplete tail and
resumed construction there, which was a direct result of the
active partitioning algorithm.

B. Preliminary Experiments

Using an experimental setup of 2 assembly and 2 delivery
robots we ran our controller from section V-A on a physical
platform. Our experimental setup used the robots to build
multi-layer boxes to test physical contraints, (see figure 7)

Fig. 9. The controller running on two assembly and two delivery robots
building a box out of boards. There is a supply depot in the bottom right
corner of each picture.

and rows of boards to test reachability contraints. The robots
were built using the iCreate robot base and Crustcrawler arms
with specialized grippers much like the system we presented
in [4], but with the removal of specialize parts to improve the
robustness and battery life of the robots and allow for longer
experiments. We built the box 8 times with no error in part
ordering. The demanding mass was normalized between the
two robots within at most two messages sent per robot after
each part placement. Each robot had non-zero demanding
mass when more than one task was available, allowing for
paralelization (figure 8). We are currently extending and
improving this system.

VI. CONCLUSION

We have extended our distributed controller for building
structures to conform to physical dependencies. This is
achieved by defining a mass function which reflects the
priority of part placement and blocks the controller from
reaching physically impossible states. The mass function
tends towards efficient parallelization by projecting potential
future states. This function introduces the need for equal-
mass convex tessellation, for which we present a novel
algorithm.

VII. ACKNOWLEDGEMENTS

This project has been supported in part by The Boeing
Company, the U.S. National Science Foundation, Emerg-
ing Frontiers in Research and Innovation (EFRI) grant
#0735953, MURI SMARTS grant #N0014-09-1051, and
MURI SWARMS grant #544252. We are grateful for this
support.

REFERENCES

[1] S. Yun and D. Rus, “Distributed coverage with mobile robots on
a graph Locational optimization and equal-mass partitioning,” in
Workshop on the Algorithmic Foundations of Robotics, 2010.

[2] S. Yun, M. Schwager, and D. Rus, “Coordinating construction of
truss structures using distributed equal-mass partitioning,” in Proc.
of the 14th International Symposium on Robotics Research, Lucern,
Switzerland, August 2009.

[3] S. Yun and D. Rus, “Adaptation to robot failures and shape change
in decentralized construction,” in Proceedings of IEEE International
Conference on Robotics and Automation, 2010.

[4] A. Bolger, M. Faulkner, D. Stein, L. White, S. Yun, and D. Rus,
“Experiments in decentralized robot construction with tool delivery
and assembly robots,” in Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010.

[5] M. Pavone, E. Frazzoli, and F. Bullo, “Distributed algorithms for
equitable partitioning policies: Theory and applications,” in IEEE
Conference on Decision and Control, Cancun, Mexico, Dec 2008.

[6] J. Werfel and R. Nagpal, “International journal of robotics research,”
Three-dimensional construction with mobile robots and modular
blocks, vol. 3-4, no. 27, pp. 463–479, 2008.

[7] L. Matthey, S. Berman, and V. Kumar, “Stochastic strategies for a
swarm robotic assembly system.” in Proceedings of IEEE International
Conference on Robotics and Automation. IEEE, 2009, pp. 1953–1958.

[8] S. Yun, D. A. Hjelle, H. Lipson, and D. Rus, “Planning the reconfigu-
ration of grounded truss structures with truss climbing robots that carry
truss elements,” in Proc. of IEEE/RSJ IEEE International Conference
on Robotics and Automation, Kobe, Japan, May 2009.

[9] S. Yun and D. Rus, “Optimal distributed planning for self assembly
of modular manipulators,” in Proc. of IEEE/RSJ IEEE International
Conference on Intelligent Robots and Systems, Nice, France, Sep 2008,
pp. 1346–1352.

[10] O. Baron, O. Berman, D. Krass, and Q. Wang, “The equitable location
problem on the plane,” European Journal of Operational Research,
vol. 183, no. 2, pp. 578 – 590, 2007.

[11] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009, electronically available at http://coordinationbook.info.

[12] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” Robotics and Automation, IEEE Transac-
tions on, vol. 20, no. 2, pp. 243 – 255, 2004.

[13] F. Preparata and S. Hong, “Convex hulls of finite sets of points in two
and three dimensions,” in Communications of the ACM, 1977.

[14] M. Pavone, E. Frazzoli, and F. Bullo, “Distributed policies for equi-
table partitioning: Theory and applications,” in Decision and Control,
2008. CDC 2008. 47th IEEE Conference on, dec. 2008, pp. 4191 –
4197.

[15] M. Schwager, J.-J. Slotine, and D. Rus, “Decentralized, adaptive con-
trol for coverage with networked robots,” in Robotics and Automation,
2007 IEEE International Conference on, april 2007, pp. 3289 –3294.

[16] G. Theraulaz and E. Bonabeau, “Coordination in distributed building,”
Science, vol. 269, no. 5224, pp. 686–688, 1995. [Online]. Available:
http://www.sciencemag.org/content/269/5224/686.abstract

[17] P. Yiu, “The uses of homogeneous barycentric coordinates in plane
euclidean geometry,” International Journal of Mathematical Education
in Science and Technology, vol. 31, pp. 569–578, 2000.

