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Abstract— We consider the task of controlling a large team of
nonholonomic ground robots with an unmanned aerial vehicle
in a decentralized manner that is invariant to the number
of ground robots. The central idea is the development of an
abstraction for the team of ground robots that allows the aerial
platform to control the team without any knowledge of the
specificity of individual vehicles. This happens in much the same
way as a human operator can control a single robot vehicle
by simply commanding the forward and turning velocities
without a detailed knowledge of the specifics of the robot.
The abstraction includes a gross model of the shape of the
formation of the team and information about the position and
orientation of the team in the plane. We derive controllers that
allow the team of robots to move in formation while avoiding
collisions and respecting the abstraction commanded by the
aerial platform. We provide simulation and experimental results
using a team of indoor mobile robots and a three-dimensional,
cable-controlled, parallel robot which serves as our indoor
unmanned aerial platform.

I. INTRODUCTION

In the past few years, the shift in the paradigm of single
robot systems to multi-agent systems has been widespread
in the area of robotics research. The practical arguments for
studying control algorithms for large teams of robots are
numerous. However, as the teams scale in size, the challenge
of solving the path and trajectory planning problems scale in
computational complexity. It is well known from examples
in nature that local interaction rules lead to an amazing
repertoire of group behaviors [1], [2]. However, there still
remain many fundamental questions to be answered. What
is the best approach to modeling a team of ground and aerial
platforms? How should we specify group level behaviors?
And most importantly, how can group behaviors be translated
to local robot behaviors?

One way of reducing the dimension of the control problem
for large numbers of robots is to require them to conform
to a rigid virtual structure [3], [4]. In this case, the motion
planning problem is reduced to a left invariant control
system on SE(3) (or SE(2) in the planar case), and the
individual trajectories are SE(3) (SE(2)) - orbits. Most
of the recent works on stabilization and control of virtual
structures model formations using formation graphs [5],
[6], [7], [8]. The controllers guaranteeing local asymptotic
stability of a given rigid formation can be derived using
standard techniques such as input-output linearization [5],
input-to-state stability [9], Lyapunov energy-type functions

[10], [8], and biologically-inspired artificial potential func-
tions [11]. Virtual structures unnecessarily constrain the
problem, making this approach inappropriate for tasks such
as obstacle avoidance or the passing of narrow tunnels. Also,
graph formulations and leader-follower architectures require
identification and ordering of robots, which makes the overall
architecture sensitive to failures.

In this paper, we are particularly interested in approaches
and solution methodologies that are independent of the
number of ground robots and do not rely on identifying
individual robots in the team. We are also interested, as in the
papers above, in decentralized controllers or local behaviors.

In our own previous work, the problem of controlling a
large team of point robots in a distributed and decentralized
manner was studied in [12], [13]. We defined an abstraction
of the team that has a product structure of the Euclidean
group and a shape space, and is independent of the number of
robots. The group captures the pose of an ellipsoid spanning
the team with semi-axes given by the shape variables. The
overall abstract description is invariant to robot permutations.
In addition, the shape is also invariant to left actions of the
group. This description allows one to define and control the
behavior of the team at a high level, with automatic gener-
ation of individual robot control laws. The key limitation of
this approach was the need for a global observer to provide
estimates of the abstract state. While it is possible to design
decentralized estimators that provide estimates of the abstract
state [14], this approach requires communication between
ground robots and it is difficult to predict the convergence
rates in practical situations, thus slowing down the controllers
to unacceptably low speeds.

In this paper, we overcome this limitation by considering
an aerial vehicle that is able to track ground robots and
provide an estimate of an abstract shape. We require that
the aerial vehicle is able to communicate using a broadcast
protocol with the ground robots without requiring inter-robot
communications. We also require an invariance to the number
of ground robots, anonymity, and communication bandwidth
which is independent of the size of the team. We also extend
the work in [12], [13] in two ways. First, we apply the
methodology to real wheeled platforms with an aerial robot,
providing experimental results on systems with nonholo-
nomic constraints. Second, we relax the assumption of point
robots and provide guarantees for collision avoidance.
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Fig. 1. Figure 1(a) shows a top view of a generic ground robot showing
the body-fixed coordinate system. Pi is a reference point on the ith robot
whose position is regulated by our controller. Figure 1(b) depicts the
control architecture. The aerial vehicle, RA observes the team members
and estimates the abstract state, a, of the team. The aerial vehicle computes
a desired abstract state velocity ȧdes(t) which serves as a feed-forward
control for the agents.

II. MODELING

A. Control

1) Ground robots: Consider a set of N robots described
by position vectors qi = [xi, yi]T , i = 1, . . . , N in the world
frame, {W}, of a two-dimensional Euclidean space R2. We
collect all the robot states in q = [qT

1 , . . . , qT
N ]T ∈ Q ⊂ R2N

and the robot controls in u = [uT
1 , . . . , uT

N ]T ∈ R2N . We will
control each robot to emulate a point robot with Euclidean
dynamics given by:

q̇ = u. (1)

In the differential-drive robot in Figure 1(a), these are the
coordinates of a reference point Pi on the robot which is
offset from the axle by a distance L. We consider a simple
kinematic model for this point robot:

ẋi = ui,1

ẏi = ui,2 (2)

with the understanding that velocities of the reference point
can be translated to commanded linear and angular velocities
for the robot through the equations below:[

ẋi

ẏi

]
=

[
cos θi −L sin θi

sin θi L cos θi

] [
v
ω

]
(3)

Let r be the radius of the circle circumscribing the robot.
If the robot’s reference point is at point Pi, all points on
the robot lie within a circle of radius is L + r centered at
Pi. In other words, if the reference point tracks a trajec-
tory

(
xdes

i (t), ydes
i (t)

)
, the physical confines of the robot

are within a circle of radius L + r of this trajectory. In
what follows, we will use the simple kinematic model of
Equation (2) to design our controllers relying on our ability
to invert the model in Equation (3) for L 6= 0 to implement
controllers on the real robot.

2) Aerial Robot: In a similar manner to the ground robots,
we assume that the aerial robot is kinematically controlled,
or simply,

q̇A = uA, (4)

where qA ∈ R3 is the position of the aerial robot in the world
frame. The notation in Section II-A.1 is easily adapted by
replacing R2 with R3.

B. Abstraction

We now define our model of the formation which allows
us to abstract away the details of individual robots. Instead
of modeling the precise shape, which requires 2N variables,
we consider an ellipsoidal approximation of the formation
analogous to [12], [13], called the spanning ellipsoid. Our
abstract state, a = (g, s) ∈ A, consists of the pose, g ∈
SE(2), and shape, s ∈ S, of the formation, where S is the
shape space. In this paper, since we only consider ellipsoids
in the plane, s ∈ S ⊂ R2.

1) Pose: Define the mean position of the team of ground
robots as

µ =
1
N

N∑
i=1

qi. (5)

We associate with µ the translation from {W} to the body
frame of the robots {B}.

Allowing pi to represent the position of the ith robot
in {B}, we write the local body frame coordinates, pi =
[xi, yi] = RB

T(qi − µ).
The orientation of the body frame (and thus spanning

ellipse), θ, is constrained such that

N∑
i=1

xiyi = 0. (6)

2) Shape: The general shape and span of the team of
robots are modeled by the semi-axes of the spanning ellipse:

s1 =
N∑

i=1

x2
i

N − 1
and s2 =

N∑
i=1

y2
i

N − 1
. (7)

3) Abstraction Map: From the above equations, we can
define a surjection, φ (from the system state q ∈ Q to an
abstraction a ∈ A) given by:

φ : Q → A, φ(q) = a (8)

where in coordinates, a = [µ1, µ2, θ, s1, s2].

III. CONTROL ALGORITHM

A. Abstract State Control

By differentiating Equation (8), we formulate the linear
system,

ȧ = dφq̇, (9)

As in [12], [13], we use the Moore-Penrose inverse of dφ to
derive controls

ũ = (dφ)†ȧ, (10)

which are a function of {q, a, ȧ}. This inverse, (dφ)†

yields vector fields that are decoupled (and orthogonal with
respect to the standard Euclidean metric on R2) and allow
independent control of each component of the abstract state
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a. Thus we can command {µ̇, θ̇, ṡ1, ṡ2} independently.
The control law defined in Equation (10) gives us:

ũi = µ̇ +
s1 − s2

s1 + s2
H3(qi − µ)θ̇

+
1

4s1
H1(qi − µ)ṡ1 +

1
4s2

H2(qi − µ)ṡ2,
(11)

where H1, H2, and H3 are defined in [12], [13].

B. Collision Avoidance

The control law presented in Section III-A does not
consider the local neighbor interactions and the possibility
for collisions between team members. In this section, we
derive the controller for each agent, ûi, that is orthogonal
to the controls ũi and does not affect the evolution of the
abstract state. Further, ûi is designed to avoid collisions.

We assume that the shape description, s1 and s2, are
chosen such that lengths of the semi-axes of the spanning
ellipse are geometrically larger than the physical span of the
team of robots in a packed configuration. From our model
in Section II-A.1, each robot can be modeled by a circular
disk of radius ε = r + L which reflects the characteristic
radius of the robot (treating the robot as a disc). Therefore,
it is reasonable to require that the robots perform collision
avoidance when the distance between two robots

‖qji‖ = ‖qi − qj‖ < 2ε + δ, (12)

where δ is chosen as a safety factor to ensure adequate
clearance between the robots.

The idea underlying the collision avoidance controller is
simple. We find a control û that lies in the null space of
dφ, û ∈ N (dφ). However, finding û for avoiding collisions
requires knowledge of the complete state of the system, a
restriction that eliminates the distributed properties of the
algorithm. Additionally, the symbolic computation of the
null space for large N shows that the spanning vector for
N (dφ) can be chosen so that the controls can easily be
made zero for N − 3 robots. Thus we design our collision
avoidance controller for triads of neighboring robots, indexed
by {i, j, k}. For such a system of three robots, N (dφ) is
one-dimensional and given by:

N (dφ) =


cos(θ)(xj − xk)− sin(θ)(yj − yk)
sin(θ)(xj − xk) + cos(θ)(yj − yk)
cos(θ)(xk − xi)− sin(θ)(yk − yi)
sin(θ)(xk − xi) + cos(θ)(yk − yi)
cos(θ)(xi − xj)− sin(θ)(yi − yj)
sin(θ)(xi − xj) + cos(θ)(yi − yj)

 . (13)

Thus, in the world frame, the resulting local control law is

ûi = λijk(qj − qk), (14)

where λijk is a scaling on the magnitude of the control input
yielding controls for the ith robot that are along the direction
of the vector going from robot k to robot j. Similarly the
controls for the jth (kth) robot are along the direction of
the vector going from robot i (j) to robot k (i) as shown in
Figure 2. By superpositioning Equations (11) and (14), we

Fig. 2. The null space for designing collision avoidance controls, û, for a
triad of three robots, {i, j, k}.

get the control input for robot i:

ui = ũi + ûi, (15)

or, more generally,
u = ũ + û. (16)

The collision avoidance for the triad of robots results in
a motion that does not change the abstract state. Each robot
triad must determine the appropriate scaling λijk to ensure
that the control, ui = ũi + ûi, results in a safe motion. In
the worst case scenario when all three pairs of robots are
within danger of colliding, λijk must be selected so that for
the triad of robots, as shown in Figure 2,

(un − um) · (qn − qm) ≥ 0, (17)

letting {m, n} = {{i, j}, {j, k}, {k, i}}. If a pair of robots,
say i and j, are in danger of colliding, the robots must select
λijk so that:

if ‖qji‖ ≤ 2ε + δ, (ui − uj) · (qi − qj) ≥ 0. (18)

The magnitude of λijk is chosen to be between 0 and α
depending on the distance, ‖qji‖:

λijk = +α
2ε

2ε + δ

[
2ε + δ

‖qji‖
− 1

]
. (19)

The sign is chosen to ensure the inequality (18) is satisfied.
For larger N , one can develop schemes for automatically

decomposing the team into sets of overlapping triads and
develop decentralized approaches for calculating the scaling
coefficients λijk for each triad. For this paper, it suffices
to say that it is possible to come up with the coefficients
λijk that satisfy all inequalities involving pairs of potentially
colliding robots, except when the volume of the ellipsoid
becomes small relative to the number and size of robots.

C. Estimation and control of the abstract state
The estimation of the abstract state, a, the trajectory

planning or the generation of the desired abstract state
trajectory, ades(t), and the computation of the feed-forward
control, ȧdes, can be best performed by an aerial platform
that has a “bird’s-eye” perspective of the world. Here, we will
assume that the desired abstract state trajectory is available
from a human operator and discuss the other two tasks below.

1) Abstract State Estimation: We will use a camera at-
tached to the aerial platform in Section IV-B.2 to estimate
the pose and shape of the system in its local frame. As shown
in the schematic in Figure 1(b), the resulting state estimate
is then transformed from the frame of the aerial robot to the
world frame before it is broadcast to the ground robots.
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Fig. 3. Experimental Hardware. The 20 × 13.5 × 22.2 cm3 SCARAB
platform is shown in Figure 3(a). The KHEPRI robot shown in Figure 3(b)
is controlled by six cables and has a suite of sensing and computational
abilities making it well suited for emulation of an UAV in indoor environ-
ments.

2) Control of the Abstract State: We wish to control the
system to a desired abstract state ades or ades(t), for way-
point control or trajectory tracking, respectively. Proportional
or proportional-derivative control laws are suitable since the
abstract state remains bounded (see [12], [13]), guaranteeing
convergence. Given a trajectory, ades(t), we want to com-
mand the abstract state velocity with a simple proportional
control law:

ȧ = ȧdes + K
(
ades − a

)
(20)

where K is a suitable positive-definite matrix. This equa-
tion combined with Equations (11) and (15) gives us the
controllers for individual robots for achieving asymptotic
convergence to ades(t). Each ground robot requires estimates
of its own state, estimates of the abstract state, a, from the
aerial platform, and the trajectory, ades(t). Further, it requires
estimates of its neighbors’ positions for collision avoidance.

IV. IMPLEMENTATION AND RESULTS

A. Simulation Environment

The 3D environment GAZEBO, part of the
PLAYER/STAGE/GAZEBO project [15], was used to
verify the correctness of the control laws presented for both
the ground and aerial robots. Models of the environment
of the local laboratory and hardware (discussed in Section
IV-B) were reproduced in a simulated world. The robot
models accurately reflect the geometric, kinematic, and
dynamic descriptions of the robots used in the hardware
implementation.

B. Experimental Testbed

1) Ground Robots: Our small form-factor robot is called
the SCARAB. The SCARAB is a 20×13.5×22.2 cm3 indoor
ground platform with ri = 15 cm. Each SCARAB is equipped
with a differential drive axle placed at the center of the length
of the robot with a 21 cm wheel base.

2) Aerial Robot: KHEPRI [16] is a six degree of freedom
cable-controlled robot shown in Figure 3(b). It is equipped
with three Hokuyo URG laser range finders, a three axis
IMU, and a color firewire camera. While the KHEPRI has an
interesting actuation system with a complex workspace and
forward kinematics equations, it also serves as a platform
on which to develop distributed algorithms to deal with air-
ground coordination and sensing in a laboratory environment.

3) Ground Truth: A locally developed ground-truth veri-
fication system permits the tracking of LED markers (visible
in Figure 3(a)) with a position error of approximately 1 cm
and an orientation error of 1◦. The tracking system consists
of LED markers and eight overhead cameras.

C. Software

Every robot is running identical modularized software
with well defined abstract interfaces connecting modules via
the PLAYER robot architecture system. We process global
overhead tracking information but hide the global state of the
system from each robot, providing only the current abstract
state (a) of the system as well as the positions of each
robot’s set of neighbors during collision avoidance. In this
way, we use the tracking system in lieu of an inter-robot
sensor implementation.

The abstract state was estimated in simulation and experi-
mentation using the LED tracking system or from the camera
on KHEPRI. The resulting state estimation was broadcast to
the ground robots. In addition, the abstract state was used to
control the aerial robot, KHEPRI, using the control law

ẋ = kx(µx − x),
ẏ = ky(µy − y),

ż = kz(zdes − z),

where kx, ky, kz > 0 and zdes was either a constant height
or a function of the abstract state and the intrinsic parameters
of the camera.

D. Simulation Results

Simulations were created to verify the effectiveness of the
control algorithm. The simulations were designed to realis-
tically emulate a team of robots (e.g. parallel computation,
networked messaging between agents, etc.). Each simulation
consisted of twenty-five ground robots and an aerial robot.

A series of trials were designed to test the stability and
convergence properties of the abstract controller and the
effectiveness of the local collision avoidance. The mean
squared error (MSE) of the abstract state from the desired
abstract state was computed for each trial and averaged over
ten runs. Additionally, the tests were performed by specifying
ades or ades(t) to the aerial robot. The resulting ȧ was
computed by the aerial robot and broadcast to the ground
robots. The aerial robot also tracked the mean of the abstrac-
tion. Figures 4(a)–4(e) depict images from a trial run where
ades(t) was specified to be a sinusoidal trajectory of the
form µy(t) = sin( 2π

10 µx(t)), θ(t) = arctan(cos(2π
10 µx(t))),

s1 = 1.5, and s2 = 1.
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(f) (g) (h) (i) (j)

Fig. 4. Comparable Simulation and Experimentation Scenarios. Figures 4(a)–4(e) present a representative trial run simulated in GAZEBO. Figure 4(a)
shows the starting formation of twenty five robots. Figures 4(b)–4(c) present the motion of the group given a sinusoidal abstract trajectory. Figures 4(c)
and 4(d) show the position of the system and the corresponding view from the aerial robot’s camera Figure 4(e) shows the final position of the system.
Figures 4(f)–4(j) depict a similar scenario to Figures 4(a)–4(e) but with four SCARAB robots. Figure 4(f) shows the start configuration. Figure 4(g) depicts
the convergence of the ground robots to ades = {1, 1, 0.5, 1, 0.5} (where ades = {µx, µy , θ, s1, s2}). Figures 4(h)–4(i) depict the motion of the
system to ades = {1,−1,−0.5, 0.5, 1}. Figure 4(j) shows an image from the camera on the aerial robot. Note that the aerial robot is controlling to
x = µx, y = µy , and z = 3.0 m or z = 1.5 m, in simulation or experimentation, respectively.

The results of the MSE for these trials are shown in
Table I. The errors shown for the runs are likely due to
a significant but practical implementation consideration. As
the robots upon which the algorithms were run are driven by
stepper motors, a minimum velocity (0.03 m/s) is required
to prevent overheating and motor stall. This limitation is
captured in the simulation. As such, an additional series of
trials was performed without this restriction. The results are
shown in Table I.

ades, vmin XY MSE (m) θ MSE (rad) s1,s2 MSE
Constant, 0 0.0000 0.0000 0.0000

Constant, 0.03 0.0002 0.0001 0.0001
Time-varying, 0.03 0.0023 0.0894 0.0980

TABLE I
SIMULATION RESULTS OF AVERAGE MSE OVER TEN TRIALS WITH AND

WITHOUT A LOWER VELOCITY BOUND.

The MSE for the trials in simulation demonstrate the effec-
tiveness of the control algorithm for a team of nonholonomic
robots. The difference in MSE values for the two trials with
waypoints demonstrates the effects of the minimum velocity
bound on the convergence of the algorithm.

It should be noted that an additional modification was re-
quired during experimentation. When s1 u s2, the numerical
computation of the shape parameters may result in a rapid
change in the orientation θ of the ellipse. During such a
situation, the scaling of θ̇ in Equation (11) becomes zero (or
nearly zero). Thus, these rapid changes have little impact on
the control law in the direction of θ. However, the symmetry
creates a situation in which the directions of s1 and s2 are not
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(b)

Fig. 5. Analysis of simulated system following a sinusoidal trajectory.
Figure 5(a) shows the 3D position of the aerial robot and abstraction.
Figure 5(b) shows the squared error of µ, θ, s1, and s2.

consistently defined. These issues were resolved by placing
a low-pass filter on the estimation of the abstract state that
removed large fluctuations of θ. This addition is reasonable
under the bounded velocity assumption on the ground robots.

E. Experimental Results

The abstract controller was implemented on a team of
four SCARABS and KHEPRI in scenarios similar to the
simulations. The algorithm was tested for convergence and
stability but not for collision avoidance (this is an avenue of
future research).

A series of waypoints (ades) were specified over ten trials
(allowing convergence of the system to twenty specified de-
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Fig. 6. Experimental results for a sample trial run following two waypoints.
Figures 6(a) and 6(c) show the trajectories of KHEPRI while tracking the
µ values of the abstraction. Figures 6(b) and 6(d) present the squared error
for the abstract description of the system corresponding to the trajectories
shown in Figures 6(a) and 6(c), respectively.

sired abstract states). The resulting average MSE for twenty
trials on the hardware are presented in Table II. Figures 4(f)–
4(j) show images from one of the trial runs.

ades, vmin XY MSE (m) θ MSE (rad) s1,s2 MSE
Constant, 0.03 0.001 0.008 0.017

TABLE II
EXPERIMENTAL RESULTS OF AVERAGE MSE OVER TWENTY TRIALS.

The MSE over twenty trials is indicative of the ef-
fectiveness of the algorithm on real hardware. Under the
assumptions of the accuracy of our ground truth system
(as discussed in Section IV-B.3), these results support the
convergence properties for the control algorithm on a team
of robots.

V. DISCUSSION

We presented an architecture and decentralized controllers
for controlling a large team of nonholonomic robots. The
key idea is the development of an abstraction for the team of
ground robots that allows the aerial platform to anonymously
control the team without requiring specific knowledge of the
physical system. The abstraction includes a gross model of
the shape of the formation of the team and information about
the position and orientation of the team in the plane. In
our previous work [12], [13], we established the geometric
framework and developed control algorithms for idealized
point robots. In this paper, we demonstrated the feasibility
of this approach by reducing the theoretical concepts and

algorithms to practice with real nonholonomic ground robots
and a three-dimensional, cable-controlled, aerial robot. We
also derived controllers that allow the team of robots to move
in formation while avoiding collisions.

There are two main directions of current research. First,
we want to enrich the set of abstract models for our ground
robots and aerial robot. The simple five-dimensional abstract
state does not allow the team to split into subteams or merge
subteams into a single team. Further, we want to develop a
unified three-dimensional abstract model of aerial and ground
robots using generalized cones. Developing decentralized
estimators and controllers to realize such abstractions is a
focus of ongoing work.
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