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controlling a swarm of robots to generate patterns specified by implicit functions of the form s(x, y) = 0. We
derive decentralized controllers that allow the robots to converge to a given curve S and spread along this
curve. We consider implicit functions that are weighted sums of radial basis functions created by interpolating
from a set of constraint points, which give us a high degree of control over the desired 2D curves. We describe
the generation of simple plans for swarms of robots using these functions and illustrate.
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Controlling Swarms of Robots
Using Interpolated Implicit Functions

Luiz Chaimowicz, Nathan Michael and Vijay Kumar
GRASP Laboratory – University of Pennsylvania

Philadelphia – PA – USA
{chaimo, nmichael, kumar}@grasp.upenn.edu

Abstract— We address the synthesis of controllers for large
groups of robots and sensors, tackling the specific problem of
controlling a swarm of robots to generate patterns specified
by implicit functions of the form s(x, y) = 0. We derive
decentralized controllers that allow the robots to converge to
a given curve S and spread along this curve. We consider
implicit functions that are weighted sums of radial basis
functions created by interpolating from a set of constraint
points, which give us a high degree of control over the desired
2D curves. We describe the generation of simple plans for
swarms of robots using these functions and illustrate our
approach through simulations and real experiments.

I. INTRODUCTION

Large groups of robots and sensors, generically called
swarms of robots, have received much attention in recent
years. Basically, these systems try to employ a large
number of simpler agents to perform different types of
tasks, oftentimes inspired by their biological counterparts.

We are particularly interested in planning and con-
trolling the trajectories of swarms in dynamic, resource-
constrained, adversarial environments. One of the main
concerns of these types of tasks is scalability. Systems to
control and coordinate swarms of robots must be scalable
from tens to hundreds of agents and must be robust to the
dynamic deletion or addition of new agents. Agents should
operate asynchronously and rely only on local sensing and
communication, since the maintenance of a global state
of the system is impractical. Furthermore, robots must be
anonymous due to the challenges of uniquely identifying
individual members within the swarm.

In this paper we present a scalable approach that allows
a swarm of robots to synthesize shapes and patterns,
converging and spreading along complex 2D curves. We
specify an implicit function and control the robots to track
this function using a modified gradient descent technique.
These implicit functions are generated interpolating from
several user-selected constraint points, which provide a
great flexibility in generating different shapes for the
swarm. We illustrate this approach through simulations and
real experiments using a group of ER1 robots.

We believe that these controllers can be used in applica-
tions such as perimeter surveillance, multi-robot and sensor
deployment, environmental protection, among others. Also,
the approach presented here is a first step towards having
a scalable methodology for the motion planning of robot
swarms.

This paper is organized as follows: Section II presents
some related work in motion planning and control for large
groups of robots. Section III presents our approach, de-
scribing the controllers and the implicit function generation
process. Simulations and real experiments are presented in
sections IV and V respectively. Finally, Section VI brings
the conclusion and directions for future work.

II. RELATED WORK

The general area of motion planning for large groups of
robots has been very active in the last few years. One of
the first works to deal with the motion control of a large
number of agents was proposed for generating realistic
computer animations of flocks of birds (called boids) [1]. A
detailed analysis of the stability of such flocking behaviors
and their robustness to changes in nearest neighbors is
presented in [2]. In the robotics community, the more
classical approaches for planning the motion of groups of
robots have generally been divided into centralized and
decoupled [3]. Centralized planning consists of planning
for the entire group, considering a composite configuration
space. It normally leads to complete solutions but becomes
impractical as the number of robots increases due to the
high dimensionality of the joint configuration space. On
the other hand, decoupled approaches plan for each robot
individually and later try to deal with the interactions
among the trajectories. This reduces the dimensionality
of the problem, but can result in a loss of completeness.
Another way of avoiding the dimensionality problem is
to treat groups of robots as a single entity with a smaller
number of degrees of freedom and then perform the motion
planning for this entity. The work presented in [4], for
example, models a group with a deformable shape and
uses a Probabilistic Roadmap to plan for this shape.
Another approach is presented in [5] where robots can
be dynamically grouped together in a hierarchical manner
using a sphere tree structure.

In our previous work [6], we derived abstractions for
groups of robots and decentralized controllers that allow
the motion planning problem for the abstract group to
be solved in a lower dimensional space. We showed how
groups of robots can be modeled as deformable ellipses,
and presented decentralized controllers that allowed the
control of the shape and position of the ellipses. In [7],
we extended this approach building a hierarchy of ground
and air vehicles and allowing groups to split and merge.
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Instead of performing motion planning in the traditional
sense, some works focus on specific types of motions for
swarms of robots. For example, algorithms for dispersing
a swarm [8], [9], moving in formation [10], covering
areas while maintaining constraints [11] and to perform
shepherding behaviors [12]. Similarly, our main objective
in this paper is not to plan a complete trajectory for the
group in the traditional motion planning sense, but to
navigate a large group of robots through some locations
where they have to organize themselves into certain shapes.
As mentioned, we present a simple yet robust approach
where large groups of robots perform a gradient descent
and spread along the zero isocontour of a predetermined
function.

Gradient descent techniques for smaller groups of ro-
bots have been studied, for example in [13] and [14],
but without considering the requirements of synthesizing
specific shapes. On the other hand, an interesting approach
is presented in [15], where a group of robots track the
boundaries of an environmental function using active con-
tour models (snakes). In this case, the robots are able
to converge to certain shapes (according to the tracked
gradient), but the control equations are more complex than
a simple gradient descent and may require a high level of
inter-robot communication.

III. ROBOT CONTROL USING IMPLICIT FUNCTIONS

A. Controllers

We want our robots to converge to and spread along a
2D curve S given by an implicit function s(x, y) = 0. This
implicit function can be viewed as the zero isocontour of
a 3D surface f = s(x, y) whose value is less than zero
for all points (x, y) that are inside the S boundary and is
greater than zero for all points outside the S boundary as
shown in Figure 1.

Fig. 1. 3D plot of the function: f(x, y) = d2log(d) where d =√
(x − 10)2 + (y − 10)2. The zero isocontour is depicted in white.

By controlling individual robots to perform a gradient
descent on function f , we are able to make the group
converge to S. We should invert the direction of the gra-
dient when f < 0, so the robots will converge to the zero

isocontour and not to the function minima. Alternatively,
the robots can descend the gradient of the square of the
function (∇f2), that has the zero isocontour as its minima.
This removes the discontinuity that arises when inverting
the direction of the gradient. Robots are also subject to
simulated collision forces Fc due to interactions with other
robots. These forces are computed using a simplified rigid
body dynamic model based on [16].

To spread themselves along the curve, the robots apply
repulsive forces Fr to their neighbors when they are close
to S. This force is inversely proportional to the distance
between the robots and is only active when this distance
is less than a certain threshold, that is basically the robot
sensing range.

More specifically, we consider a fully actuated robot i
with dynamic model given by:

q̇i = vi, (1)

v̇i = ui, (2)

where qi = [xi, yi]T is the configuration of robot i, ui is
its control input and vi is the velocity vector. The control
law is given by:

ui = −k∇f2(qi)−Cq̇i+
∑
j∈Ni

Fr(qi,qj)+
∑
j∈Ci

Fc(qi,qj).

(3)
Constant k is positive (k > 0) and Ni and Ci are the sets of
neighboring robots that are applying respectively repulsive
(spreading) and collision forces to robot i.

Note that this controller can cope with the addition or
deletion of new members and is scalable to a large number
of robots. Each robot requires its local state feedback and
local sensing (to detect close neighbors) but no global state
information is required. Also, each robot must know the
shape of the function in order to compute its gradient
∇f(qi). We accomplish this by using specific types of
functions (explained in Section III-C) and broadcasting the
function parameters upon initialization.

B. Performance

We want to show that the controller described in the
previous section will drive the robots to curve S and make
them spread along the curve.

Let’s first consider Equation (3) without the repulsive
forces term Fr and the collision forces term Fc. The system
of robots under this control law is in equilibrium when both
vi = 0 and ui = 0:

vi = 0 ⇒ q̇i = 0
ui = 0 ⇒ ∇f2(qi) = 0 ⇒ f(qi)∇f(qi) = 0.

We want to minimize the error associated with the
convergence to function f , that is given by:

E(q) =
1
2

∑
i

f2(qi). (4)

Thus, for the function E(q) to be at a minimum we need:∑
i

f(qi)∇f(qi)q̇i = 0. (5)

2488



It is easy to see that when the robots are in equilibrium,
the error associated with the function f is also at a local
minimum. Hence, the condition for equilibrium satisfies
the necessary condition for minimizing the error associated
with the convergence to the function f .

Now, to establish convergence, consider the Lyapunov
function V (q, q̇) given by:

V (q) = kφ(q) +
1
2

∑
i

q̇2
i , (6)

where φ is the potential energy associated with the group
of robots defined by:

φ(q) =
∑

i

f2(qi). (7)

It is not difficult to show that V is a monotonically
decreasing function and the system is asymptotically stable:

V̇ (q) = k
∑

i 2f(qi)∇f(qi)q̇i +
∑

i q̇iq̈i

= k
∑

i 2f(qi)∇f(qi)q̇i −
∑

i q̇i(k∇f2(qi) + Cq̇i)

= −∑
i Cq̇2

i .
(8)

The addition of collision forces Fc only adds a dissipa-
tive term, so the above result does not change. The final
step is to show that the addition of the repulsive forces Fr

will cause the robots to spread along the curve but will
not interfere significatively with the gradient forces, so the
robots still converge to S. This is a little trickier since the
addition of repulsive forces may create new equilibrium
points outside the curve boundary. It is possible to show
convergence to an invariant set using the approach in [2],
but the set itself is hard to characterize geometrically.

Figure 2 helps to illustrate some of the ideas. As men-
tioned, the repulsive forces are only active when the robots
are close enough to the curve boundary (f(qi) < ε) and
the distance between the robots is smaller than a threshold
(|qi−qj | < R). For example, robots 1, 2, and 3 in Figure 2
do not suffer any repulsive force, and move directly towards
S. Robots that are inside ε and close to other robots will
be subjected to both repulsive and gradient forces (robot 6
in Figure 2). In this case, setting the constants accordingly,
it is possible to configure these forces in a way that the
resultant force will drive the robot to the curve while
slightly moving away from the other robot. Finally, when
the robots are on the curve (robots 4 and 5 for example)
only the repulsion forces will be active, causing the robots
to spread around it.

Special situations may occur when the number of robots
n is too small or too large compared to the curve length.
When n is small, we will probably have “holes” in the
curve. The robots that are close will spread themselves
only until the point where their separation is greater than
R, which does not guarantee a complete coverage of the
curve. On the other hand, if n is too large, there will not be
enough space to accommodate all robots along the curve.
This will lead to a situation where robots will compete to
move toward the curve. We are currently studying what

7 
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S: f(x,y)=0 

3 

Fig. 2. Diagram of the forces acting on the robots close to the curve
boundary.

is the ideal relationship among n, R, ε, and ρ (the curve
radius) in order guarantee convergence and coverage of the
curve. For example, considering Π as the curve perimeter,
if nR ≤ Π and ρ � ε � R, it is possible to observe
experimentally that the invariant set associated with the
control law (3) is f(qi) = 0.

C. Interpolating Implicit Functions

In order to make the robots synthesize specific shapes,
we consider f as a weighted sum of radial basis functions
(RBFs) created interpolating from a set of constraint points.
As explained in [17], a radial basis function r(p) is a
function that can be described in terms of a center point
c and a function h(d), where d is the distance between
any point p and the center c. The term radial comes from
the fact that r(p) evaluates exactly the same for all the
points that are at a fixed radius from c. Figure 1 is an
example of a radial basis function where h(d) = d2log(d)
and c = (10, 10).

To generate a specific function, we specify some con-
straint points pj along the the desired zero isocontour such
that f(pj) = 0 and at least one constraint inside or outside
the boundary (to avoid degenerate solutions). Each of these
constraints will be the center of one RBF. Then, solving a
simple linear system, we determine the weights (wj) of all
the RBFs that comprise the function f . This approach is
commonly used in the computer graphics community for
generating computer animations [18].

Thus, function f is given by:

f(qi) =
∑

j

wjh(|qi − pj |) (9)

where the term |qi − pj | is the Euclidean Distance (d)
between a robot qi and a constraint pj and the function
h is given by h(d) = d2log(d). As an example, figures 3
and 4 show a weighted sum of radial basis functions that
has a zero contour forming the letter ‘P’. This function was
generated interpolating from the constraint points depicted.

One of the main advantages of this approach is that it
gives a great flexibility for generating different 2D shapes.
Complex curves can be synthesized interpolating from an
adequate number of constraint points. Furthermore, the
resulting radial basis functions are generally smooth, which
allow the use of the gradient descent controllers described
in the previous sections.
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Fig. 3. Implicit function forming a letter ‘P’. The constraint points used
to generate the function are depicted: 37 along the boundary (f(pj) = 0)
and 4 internal.

Fig. 4. 3D plot of the interpolated function with the zero isocontour
forming the letter ‘P’ (depicted in white)

IV. SIMULATIONS

To demonstrate our approach, we performed several
simulations with different implicit functions and a large
number of robots. We used MuRoS, a multirobot simulator
developed in the GRASP Lab that allows us to implement
various tasks, test different controllers, and observe the
robots in real time.

We first generated implicit functions forming the letters
G, R, A, S, P and switched among these functions, dy-
namically changing the robots’ plans. Figure 5 shows the
function graph and a snapshot of the simulation for each
letter, in which the robots are represented by the small
circles. Each of these functions was generated using an
average of 40 constraint points. As expected the robots are
attracted by and spread along the shapes defined by the
zero isocontour of the functions. The time taken by the
group to converge to the each shape is around 30 seconds.

More complex shapes can also be created using this
approach. For example, the function depicted in Figure 6
was created using 93 constraints and has the string “LUIZ”
as its zero isocontour. Figure 7 shows a simulation snapshot
of 80 robots spreading along this isocontour.

It is important to mention that, depending on the shape
of the function, sometimes the robots can be trapped
into “plain” regions where the gradient is close to zero.
But this problem can be easily solved by adding new

Fig. 6. Function composed of 93 radial basis functions that has the string
“LUIZ” as its zero isocontour.

Fig. 7. Snapshot of a simulation where 80 robots converge and spread
along the isocontour depicted in the previous figure.

constraint points to the function that do not alter the
zero isocontour but change the function’s overall gradient.
Another possibility, that does not involve changing the
function, is to make the robots detect when they are trapped
(∇f(x, y) ≈ 0, f(x, y) �= 0) and perform some random
movements to escape these regions. Also, if the function
has different zero isocontours, the robots may not be able
to completely synthetize the desired shape depending on
their initial position. Consider, for example, the letter ‘P’
shown in figures 3 and 4. If all robots start from outside
the shape, they will have to overcome the minima imposed
by the outer curve to reach the inner ellipsoid of the shape.
In the simulations presented here, the initial distribution of
the robots is roughly uniform, thus we do not observe this
problem. But in general situations, this may be similar to a
“local minima” scenario that can be solved using some
approaches such as random exploration, etc. The main
difference here is that the minima is not an undesired local
minima but a valid curve that we also want to converge
to. In fact, the objective in this case is divide the group
between the two curves. We are currently studying some
strategies to systematically perform this type of behavior.

V. EXPERIMENTS

We performed some initial experiments using a group of
ER1 robots from Evolution Robotics (Figure 8). The ER1s
are non holonomic, thus small changes had to be made
to the controllers of equation 3 in order to drive them.
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Fig. 5. Simulations of 55 robots tracking different functions to form the letters G, R, A, S, P. The figures on the top row show the functions generated
for each letter, while the figures on the bottom row show snapshots of the simulation (robots are the small circles).

Basically, considering q = [x, y, θ]T we have:

q̇ =


 cos(θ) 0
sin(θ) 0

0 1




[
v1
v2

]
(10)

[
v̇1
v̇2

]
=

[ −Kv∇f(q) − Cvv1
Kw(ψ − θ) − Cwv2

]
(11)

where ψ is the direction of the inverse of the gradient.
In the experiments presented here, the robots have no

information about their neighbors (no sensing and no
communication) so they are not able to repel each other
and spread along the zero isocontour as shown in the
simulations. Also, they use only odometry to estimate
their position and compute the function gradient. Odometry
can lead to some errors in long runs but worked fine
in these experiments. The robots were programmed and
tasked using ROCI [19], a robotic programming framework
that is being developed in the GRASP Lab.

Fig. 8. Group of 10 ER1 robots at the GRASP Lab.

In these experiments, six robots follow two different
functions depicted in Figure 9. The first function has an
ellipse-like shape as its zero isocontour and was generated
using 7 constraint points. The second function was created
using 14 constraints and has two separated smaller ellipses

as its zero isocontour. Figure 10 shows the robot trajecto-
ries, with the initial positions marked with a small circle
and the zero isocontour of the two functions displayed as
dotted lines. Initially, the robots track the first function
converging to the ellipse-like shape in the center of the
graph. Then, the function is dynamically changed (by
broadcasting new function parameters) and the robots split
in two small groups, descending the gradient of the second
function and converging to the smaller ellipses. Figure 10
also shows two pictures of the robots at the zero isocontours
of the two functions.

Fig. 9. Two functions used to drive the robots in the experiments. The
function depicted on the top has a single 2D curve S(x, y) = 0, while
the function on the botton has two curves, which causes the robot group
to split.

These experiments demonstrate that the robots are ca-
pable of smoothly tracking different implicit functions that
were generated interpolating from sets of constraint points.
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Fig. 10. Trajectory performed by the robots: they first converge to the
2D curve in the center and then the group splits in two and converge to
the top and bottom curves. The small circles indicate the initial position
of each robot.

Also, we could observe that the group autonomously split
in two subgroups in order to follow the new function with
two minima. No specific command was given to individual
members: the group simply descended the gradient of the
new function which caused it to split. We are currently
investigating ways of extending this approach to plan more
complex trajectories, where large groups of robots would
be able to split, merge and change shape while navigating
in dynamic, cluttered environments.

VI. CONCLUSION

This paper presented a scalable approach for controlling
large groups of robots to synthesize specific shapes given
by implicit functions. These functions are generated inter-
polating from a set of constraint points along the desired
curve, which gives a great flexibility for generating com-
plex shapes. Using a gradient descent technique augmented
with robot to robot repulsion, we were able to control large
groups of robots to track these functions and spread along
their zero isocontour using only state feedback and local
sensing information. Both simulations and real experiments
were used to validate this approach.

Our future work is directed toward several fronts. We are
currently working on obtaining formal guarantees of perfor-
mance for the controllers considering the repulsive forces.
On a more experimental perspective, we are equipping our
robots with infrared sensors that will provide local sensing
capabilities allowing them to repulse each other during the
gradient descent. Finally, we want to extend this approach
to automatically plan more sophisticated trajectories for the
swarm. These trajectories would take into account spatial
constraints and perform dynamic changes in the group’s
pose and shape, allowing swarms of robots to plan and
navigate through cluttered environments in a scalable way.
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