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Abstract— We develop a framework for controlling a team
of robots to maintain and improve a communication bridge
between a stationary robot and an independently exploring
robot in a walled environment. We make use of two metrics
for characterizing the communication: the Fiedler value of the
weighted Laplacian describing the communication interactions
of all the robots in the system, and the k-connectivity matrix
that expresses which robots can interact through k or less
intermediary robots. At each step, we move in such a way as
to improve the Fiedler value as much as possible while keeping
the number of intermediary robots between the two robots of
interest below a desired value. We demonstrate the use of this
framework in a scenario where the hop-count constraint cannot
be satisfied, but show that communication quality is maintained
anyways.

I. INTRODUCTION

When deploying robots to accomplish tasks in potentially
unknown environments, one challenge to overcome is the lack
of a global communication medium. Point-to-point wireless
radio communication is available, but when dealing with
robots spread over a large area, range and line-of-sight are both
important considerations when determining whether a remote
robot agent is able to receive commands and send back data.
Although this challenge could be overcome by using better
radios, an alternate strategy would be to deploy more robots
to form a communication bridge between the user and the
task-performing robot.

Control strategies for groups of locally communicating
robots have been developed for systems with both first-order
[1] and second-order [2] dynamics using models considering
a pair of robots connected if their separation distance does not
exceed some communication threshold. Both of these works
create a graph with edges corresponding to the communication
links in the network and then search for control inputs that
preserve graph properties such as, in this case, graph con-
nectedness; these works have created a strong precedent for
the use of graph theoretic concepts when discussing control
of networked robots. In [3], the restrictions on connectedness
are loosened to k-connectedness to capture the fact that when
looking at connectedness between agents k-hops away in the
communication graph, there may be multiple redundant paths
that preserve the connection and so some can be safely bro-
ken. Differential constraints on the control inputs are defined
combinatorially to preserve the k-connectivity of the network.
These papers were developed in an open-field setting with
only range limitations being considered, and work with line-of-
sight considerations in a cluttered environment is much rarer

because it is trickier to prove stability and convergence. In
[4], line-of-sight constraints were added in as an additional
potential field on top of a navigation function, but convergence
was only conjectured. For the related problem of maintaining
line-of-sight to an unpredictably-moving target in a cluttered
environment, there has been success using computational
geometry techniques for both a single target/robot [5] and
multiple targets/robots [6].

Returning to consideration of range-based connection mod-
els, the previously mentioned works deal with finding controls
to strictly preserve graph properties but do not consider how
to do so to form system configurations that are more robust or
further from losing connectedness. One attempt to do so was
covered in [7]. First the full system communication graph is
reduced to just a spanning tree to reduce its complexity. Then
the distances that agents would need to move in order to break
their relative range constraints are computed, and controls are
found to increase this margin. An alternate approach is given
in [8] where the quality of the system connectedness is ab-
stracted by computing the Fiedler value of the weighted graph
Laplacian of the communication graph. By choosing controls
to increase the Fiedler value, the connectedness is indirectly
improved, and this was accomplished using a distributed
subgradient algorithm. These ideas have much in common
with [9], but in that work the Fiedler value maximization
is cast as a semi-definite program. In both cases, one major
complication is that the graph Laplacian depends nonlinearly
on the controllable system state.

In this paper, we continue with the methodology of [8]
in considering how to develop a framework for solving the
problem of controlling a team of robots to enable and improve
the system communications. However, we are interested in
doing so in an environment with obstacles, and so we have
incorporated the constraints of [3] and cast the resulting
combination as a convex optimization problem solved at each
time step. We go on demonstrate the use of this framework
in a simulated environment with rooms in order to explore its
effectiveness.

II. PROBLEM AND THEORY

We consider a team of N point robots in a walled envi-
ronment, where the position of robot i in the global frame
is denoted by the vector xi and the collection of all robot
positions is x =

[
xT

1 · · ·xT
N

]T
.

The task is simple: there is a stationary robot (xα) acting
as base station, and there is a mobile robot (xβ) exploring the
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environment independently. The rest of robots in the team must
move in such a way as to enable and improve communications
between the mobile and the stationary robots. We split this task
up by first exploring how communication quality is defined and
improved, and then exploring how the communication link is
enabled and maintained.

A. Connectivity Metric

Following the setup of [8], we define the communication
quality for the network. The robot team is equipped with radio
systems that allow point-to-point communications between
individual robots. We model this link as range-dependent, with
a quality that varies between 0 and 1. The quality of the link
between robot i and robot j is set to be:

fij(x) ,


1 ‖xi − xj‖ < ρ
0 ‖xi − xj‖ ≥ R

exp
(
−5(‖xi−xj‖−ρ)

R−ρ

)
otherwise

(1)

where R defines a cutoff distance where the signal becomes
unusable and ρ defines a saturation distance where the com-
munication between agents does not change as they get
closer together (see Fig. 1). Such a model allows for there
to be some notion of “better” communication between two
agents so that we can ask questions regarding optimization
later. An exponentially-decaying communication strength is a
reasonable fit to measurements from physical systems [10].

Fig. 1. Plot of Eq. 1, modeling the distance-based link quality between
robots.

In stepping from treatment of quality of a single pair-
wise connection to quality of the entire ensemble of pair-
wise connections, we make use of some of the ideas of Graph
Theory [11]. In particular, we construct a weighted Laplacian,
L(x), whose entries are:

[L(x)]ij ,

{
−fij(x) i 6= j∑N

k=1,k 6=i fik(x) i = j
(2)

This is a Laplacian because it can be written as D−A, where
A is the adjacency matrix whose entries are the pair-wise
interactions between graph nodes, and D is a diagonal matrix
consisting of the row-sums of A. It is denoted as weighted
because the entries of A can take values other than zero or
one, reflecting degrees of adjacency. Since L is symmetric,

its eigenvalues are all real, and its special structure ensures
that the smallest eigenvalue is zero, corresponding to the
eigenvector of all ones, 1.

The second-smallest eigenvalue of L is known as the Fiedler
value, denoted as λ2, and it has an important interpretation for
many of the problems modeled using a weighted Laplacian
system [12]. In our system, we take λ2 to signify an overall
system connectedness: if it becomes zero, then the system
has multiple connected components (a well known result from
Graph Theory), and if it becomes higher, we interpret this as
meaning that nodes are more tightly connected.

The function λ2(L) is a concave function of a Laplacian L,
as clearly demonstrated by expressing it as:

λ2(L) = inf
v∈1⊥

vT Lv

vT v

Concavity follows because this is the point-wise infimum of
a family of linear functions [13]. Although this function is
concave, it is not smooth and so does not have a gradient
at all points. But notice that if λ2 is distinct, i.e. the third-
smallest eigenvalue, λ3, is different from λ2, then the only
choice of v that completes the infimum is v2: the eigenvector
corresponding to the second eigenvalue. When this is true,
there is only one linear function active and so its derivative
must be the derivative of the infimum as a whole. Therefore,
as long as λ2 is distinct, then we can state that:

∂λ2(L)
∂L

=
v2v

T
2

vT
2 v2

(3)

We do not know the significance of λ2 being non-repeated.
Even if this condition is broken, Eq. 3 still provides a
supergradient belonging to the superdifferential [14], as shown
in [8].

But while λ2 may be concave with respect to L, L is a
nonlinear function of x. We can, however, use the chain rule
to linearize λ2:

∂λ2(L(x))
∂xα

=
〈

∂λ2(L)
∂L

,
∂L

∂xα

〉
(4)

where xα is a single element of x (rather than the subvector
corresponding to a particular robot), and 〈A,B〉 , tr(AT B),
an inner product for the space of matrices. Note that ∂L

∂xα
will

be sparse, with entries only on the diagonal and in indices
corresponding to robots currently interacting with the robot
being partially described by xα.

As demonstrated in [8], the computation of v2v
T
2 can be

performed in a distributed way. Moreover, since the entries of
∂L

∂xα
are only non-zero when local interactions are occuring,

then the computation of ∂λ2
∂xi

, the sensitivity of λ2 to the motion
of robot i, can be computed locally to robot i without relying
on a central computer.

Clearly, knowledge of this derivative gives local directions
to move to improve or at least maintain connectivity of the
network as measured by λ2. But in practice, this direction
is not enough because two of the nodes are not being di-
rectly controlled and the desired directions could indicate
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that the robots should move through walls in improve the
communications. As the mobile node moves away or robots
slide along walls, the network could possibly be forced to
go through phases of lower connectivity and this simple
gradient scheme will not ensure that the network maintains
connectivity, necessitating a further addition to the system.

B. Connectivity Maintenance

Since part of the task is to maintain connectivity between
the stationary and mobile nodes at all times, we need a means
to derive constraints that will prevent the robot motions from
breaking connectivity. For this, we make use of the ideas of
k-connectivity and differential constraints to preserve it, as
derived by [3].

We use a new adjacency matrix, Â(x), whose entries
no longer reflect degrees of adjacency as before. Instead,
the entries âij are composed of sharp sigmoid functions,
reflecting an on/off relationship where pairs of nodes either
have communication or they do not but allowing for derivatives
to be taken near the transition:

âij(x) , û(R− ‖xi − xj‖) (5)

where R is the cutoff distance again, and û is the sigmoid:

û(y) =
1

1 + e−ωy

This function is shown with various values of ω in Fig. 2.

Fig. 2. Sigmoid function û(y) for various sharpness values ω.

The k-connectivity matrix is defined as:

Ck(x) , IN + Â(x) + Â2(x) + · · ·+ Âk(x) (6)

and the {i, j} entry can be interpreted as the number of
communication paths of k-hops or less that connect robot i
to robot j. As shown in [3], this matrix can be differentiated
with respect to the robot state x to find ∇Ck(x) and complete
the expression:

Ċk(x) = (∇Ckx)(IN ⊗ ẋ)

where ⊗ denotes the Kronecker product (see kronecker ref-
erence). ∇Ck(x) is an N × 2N2 matrix, but the expression

could be rearranged by stacking the elements of Ck into a
vector:

[ċij(x)]ij = (∇cij(x))ẋ (7)

Note that because Ck is symmetric and we can ignore the
diagonal (since we do not care about the node’s connectivity
to itself), we actually only have n(n−1)

2 derivatives to deal
with. Each ∇cij(x) has dimension of 1× 2N .

Although we now know how the k-connectivity between
any two robots changes as the robots move, we are only
interested in the connection between the stationary robot and
the exploring robot, allowing us to use only the derivative of
Eq. 7 that corresponds to this pair of indices (i.e. ∇cαβ(x)).

As in [3], we are only interested in whether cαβ is non-
zero, and so pass cαβ through the sigmoid û and require that
its change always be non-negative, ensuring that the robots of
interest stay connected at all times:

û′(cαβ(x))(∇cαβ(x))ẋ ≥ 0 (8)

where û′ is the derivative of the sigmoid with respect to its
single argument.

The computation of cαβ(x) and ∇cαβ(x) has not yet
been made decentralized, although some distribution of this
operation seems possible.

C. Solving the Task

Now we have at hand the two pieces we need to solve the
task of improving and maintaining communication between
the exploring and stationary nodes. Computation of ∂λ2(x)

∂x
gives us a direction to move the robot system to improve the
connectivity measure, and the differential constraint of Eq. 8
gives us motion limits to prevent communication from being
lost. All that remains is to deal with the walled environment
and combine all the pieces into one framework.

We assume that each robot has some local sensing capa-
bilities and can recognize nearby rectilinear walls. If a wall
is close by, then we find its outward normal n and add the
differential constraint:

nT xi ≥ 0 (9)

Finally, we formulate the task as a bounded linear program
to choose an input u = [uT

1 · · ·uT
N ]T to make the change

in λ2 as positive as possible while keeping the differential
constraints:

max
u

∂λ2(x)
∂x

u (10)

‖ui‖∞ ≤ di (11)
û′(cαβ(x))(∇cαβ(x))u ≥ 0 (12)

Wu ≥ 0 (13)
uβ = ẋβ(t) (14)

where W is a matrix containing all of the wall constraints
like Eq. 9, di is step-limit for robot i, and the motion of the
exploring robot, ẋβ , is known. Although using a 2-norm limit
on ui would be more natural, the choice of the ∞-norm is a
relaxation that keeps the problem as a linear program.
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Note that since the step limit is based on an ∞-norm, the
wall detection occurs in a square-shaped sensing region.

Although it may be possible to solve this program in a
decentralized fashion, we have made no attempts to do so
here.

III. SIMULATION

We have performed a simulated experiment with 8 robots in
a walled environment, seen in Fig. 3; the map dimensions are
20 meters by 20 meters. There is one exploring robot (the dia-
mond) that travels through the rooms and one stationary robot
(the square) sitting in the starting area. The k-connectivity
limit of Eq. 8 was set as 6, and the step limit di was set to
0.1 m. The sigmoid sharpness ω was set to 40, the saturation
radius ρ was set to 2 meters, and the cutoff radius R was set
to 8 meters (as seen in Fig. 1). In Fig. 3, the circles indicate
the communication cutoff radius.

As the experiment proceeded, the configuration in the lower-
left room stretched out to keep connection with the exploring
robot as it moved to the upper-left corner, seen in panel 2 of
Fig. 3. When the exploring robot went into the hallway on the
right (panel 3), the connecting robots became trapped and the
link was lost (panels 4 and 5), and finally when the exploring
robot looped back around, it reconnected with the other robots
(panel 6). This test was quantified in two different ways, as
seen in Figs. 4 and 5. In both, the dotted lines indicate at what
times the snapshots in Fig. 3 were taken. The initial snapshot
was at time 0.

Fig. 4. Hop count of the robot network over time. The hop count limit was
intended to be 6 or less at all times, but this limit was exceeded in the later
stages as the lead robot got far away from the stationary one. Surprisingly,
connectivity was still maintained afterwards.

First of all, the hop count between the stationary robot and
the exploring one is plotted in Fig. 4. The constraint of Eq.
8 was supposed to keep this quantity less than or equal to 6
at all times, but clearly it exceeds that number and increases
up to 8 at times and even loses connection (hop count zero)
as the exploring robot moves in such a way as to trap the

Fig. 5. Actual Fiedler value and idealized “chain” value of the robot network
over time. The chain value is the Fiedler value that would be obtained if the
robots were evenly spaced on a straight line between the lead robot and the
stationary one, ignoring walls. By comparing the actual Fiedler value to the
chain value, the effect of distance is in some sense normalized out, and the
effect that the terrain displacement has on the connection quality is made
apparent by the divergence of the two values.

intermediary robots against the walls. This is discussed further
in Sec. IV.

The second quantity of interest is the Fiedler value, describ-
ing communication quality, and this is shown in Fig. 5. The
main line shows the actual Fiedler value as it changes. Note
that it is zero at snapshots 4 and 5, indicating that connectivity
in the network was lost as the lead robot went out of range
of the trapped intermediary robot. The second line shows
the connection for an ideal chain configuration with robots
evenly distributed on a straight line between the stationary
and lead robot. It is intended to show that although the actual
Fiedler value drops as the network stretches out, it is close to
an idealized value, effectively normalizing it. When the two
lines diverge substantially, the effect of the walls has become
pronounced, causing the chain to stretch.

IV. DISCUSSION

In this paper we used two measures of graph connectivity
to develop a new framework for dealing with the task of
moving robots to maintain communication between a station-
ary and exploring robot. First, the quality of the connectivity
is measured using the second eigenvalue of the weighted
Laplacian describing the network, and the derivative of this
value provides information about how to move the robots
to improve the connectivity. Second, the k-connectivity of
the system is enforced using differential constraints on the
motion. The two are combined to form a linear program that
is solved at each step of motion. Although some parts have
been made decentralized so far, the entire procedure is not yet
decentralized.

Except for the periods when robots were prevented from
maintaining connections because of intervening walls, con-
trolling to increase the Fiedler value seems to have had an
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Fig. 3. Six snapshots of the robot team motion, starting from the initial configuration in the upper-left panel and proceeding from left-to-right in chronological
order. Note that in panels 4 and 5, connectivity was lost because of the robots getting stuck against walls.

impact. As Fig. 5 shows, the actual Fiedler value was close to
the idealized chain value for most of the run. Near snapshot
5, the robot nearest to the lead robot got caught in the corner
and was unable to close the gap when the lead robot started
moving back towards the group, causing the Fiedler value
to diverge greatly from the chain value. However, this entire
scheme is purely reactive and has no planning component that
would allow the robots to recognize where paths exist to close
the gaps. Adding in this planning could be a useful future
direction.

The resulting positions of the robots during motion are close
to locally optimal for the given positions of the stationary and
lead robot. For the configurations shown in snapshots 2, 3, and
6 in Fig. 3, the lead robot was frozen and the controller was
allowed to continue to improve the Fiedler value. The resulting
Fiedler value changes are shown in Fig. 6. In all cases, the
value does not change much at all.

One striking feature of the experiment is that at times the
hop count exceeded the limit set at 6. This is actually to be
expected given the setup because 6 hops is not enough to
form an unbroken chain from one corner of the map to the
other. However, the program kept moving along and providing
motions to take that still kept the Fiedler value high and

Fig. 6. Fiedler value changes after freezing the lead robot and letting the
robot system stabilize; the lead robot was frozen in snapshots 2, 3, and 6 of
Fig. 3, corresponding to the three frames above.
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kept connectivity of higher orders than 6. It is likely that
the contributions from the two measures are more or less
important at different times.

One thing that we tried was to remove the k-connectivity
constraint and control the formation solely with the derivative
of the Fiedler value; the resulting motion was not able to
maintain connection with the lead robot. With only Fiedler
value considerations, we are trying to optimize a single value
by changing several others, and so there is natural tradeoff
between enhancing the value by adjusting robots near the
stationary robot and enhancing connection with the lead robot
as it moves away. At a certain point, the lead robot moved
too fast for the other robots to react to its departure, and
connection was lost.

When the k-connectivity is thrown in, the resulting motion
keeps connectivity, and so these constraints seem to pushing
the system away from the “lazy” solution of tweaking the
regions with high connectivity already and instead forcing it
to stretch out to pursue the lead robot. Even if the constraint
becomes meaningless at a certain point because the intended
hop count has been exceeded, it is possible that the robot chain
has been stretched out to a point where it is no longer just as
effective to adjust the robots near the start point.

All of these points lead to many directions for future re-
search on this method of solving our connectivity-maintenance
task. First of all, it would be useful to make the entire solution
decentralized; doing so has advantages for deployment on
physical robots and for scaling the solution to larger teams.
Second, it would be worth exploring what effect the k-
connectivity constraint is actually having on the solution once
the fixed hop-count limit has been exceeded. If there is a
subtle interplay between the two components of the program,
it would be useful to discover it. Finally, with this purely
reactive scheme, the problems with robots getting stuck against
walls when trying to improve connectivity cannot be avoided.
Adding in a planning component based off global a priori
or local online maps would be an important step to take in
making this a practical approach.
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