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Abstract— This paper presents a methodology for finding
optimal control parameters as well as optimal system parame-
ters for robot swarm controllers using probabilistic, population
dynamic models. With distributed task allocation as a case
study, we show how optimal control parameters leading to a
desired steady-state task distribution for two fully-distributed
algorithms can be found even if the parameters of the system
are unknown. First, a reactive algorithm in which robots change
states independently from each other and which leads to a linear
macroscopic model describing the dynamics of the system is
considered. Second, a threshold-based algorithm where robots
change states based on the number of other robots in this state
and which leads to a non-linear model is investigated. Whereas
analytical results can be obtained for the linear system, the opti-
mization of the non-linear controller is performed numerically.
Finally, we show using stochastic simulations that whereas the
presented methodology and models work best if the swarm size
is large, useful results can already be obtained for team-sizes
below a hundred robots. The methodology presented can be
applied to scenarios involving the control of large numbers of
entities with limited computational and communication abilities
as well as a tight energy budget, such as swarms of robots from
the centimeter to nanometer range or sensor networks.

I. INTRODUCTION

Reactive, fully distributed coordination based on local
interactions is a reasonable control scheme for multi-robot
systems when the individual robotic units are limited in terms
of computation and communication. Multi-robot systems
obeying these control paradigm are commonly referred to as
swarm-robotic systems [1]. Swarm-robotic systems provide
a high level of robustness due to individual simplicity and
because no single point of failure given by a centralized
entity exists. Also, as coordination does not rely on global
communication, swarm-robotic controllers scale well for
large numbers of robots. Due to a high level of randomness
(either implemented in the robots’ controllers or coming
“naturally” with sensor and actuator noise), the resulting state
distribution of the robots is usually probabilistic and robust
to changes in the number of robots.

A drawback of this coordination approach is that although
the system will eventually show the desired behavior, it
cannot be excluded that the system exhibits sub-optimal
or even undesired behavior, in particular when the number
of robots is low. A partial remedy to this problem is the
development of powerful analysis tools that allow for better
prediction of the systems performance; better predictability
of the swarm performance can then be used to further
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improve the design of the controller and the system as a
whole.

One way of analyzing swarm-robotic systems is to use
population dynamic models, i.e. probabilistic rate equations
that keep track of the number of individuals in a certain state
[2]–[4]. Provided that the number of interactions among the
robots is large, such models track well the average behavior
of the system already for small teams. We wish to find
a methodology to automatically identify the parameters of
such models from experimental data and consequently use
the refined models to find optimal control parameters for the
individual robotic unit.

One of the advantages of population dynamic models
is that control parameters of the individual robots are di-
rectly expressed in the macroscopic equations describing the
system’s dynamics. This property allows us to use these
models as a design tool and calculate an optimal control
to achieve a desired trajectory of the robot swarm in state
space. For instance in [3], Martinoli et al. calculate an
optimal control parameter that maximizes the collaboration
rate in the “stick-pulling experiment”. In [5], Correll et
al. introduce dynamic optimization for finding an optimal
dynamic collaboration policy for a swarm-robotic inspection
case study. In [6], Milutinovic et al. use optimal control
on partial differential equations describing the probability
density function of the swarm’s spatial location in order
to drive the swarm into a desired area in the environment.
Finally, Berman et al. consider swarms that switch between a
series of controllers and proposes a methodology for finding
optimal trajectories in state-space that is sub-divided into
poly-topes each associated with a particular controller in [7].

As a model is only an approximation of a real system’s
dynamics, good quantitative agreement with model predic-
tion and real robot experiments can usually only be achieved
by calibrating some of the model parameters using real
hardware and/or estimating parameters by model fitting [8].
In this paper, we propose a methodology to find both an
optimal control as well as optimal system parameters at the
same time. The process is illustrated using two distributed
algorithms for the multi-robot task allocation problem, whose
dynamics are described by a linear and a non-linear macro-
scopic model, respectively. Applications of the presented
methodology are large-scale distributed systems consisting
of entities with limited computational and communication
capabilities as well as a tight energy budget such as miniature
robots around and below the centimeter range or sensor
networks.



A. Case Study: Dynamic Role Allocation in Robot Swarms

The multi-robot task allocation [9] or role assignment
problem is well illustrated by applications such as search
and rescue missions [10] or foraging [11]. In a search and
rescue mission, some robots are allocated for exploring the
environment, some robots remain static in the environment
for message passing, and some others are used as “markers”
around points of interests [12]. In a foraging application, a
task corresponds to foraging for a specific class of items
requiring a specific tool, e.g., and the number of each robots
performing a task is a function of the estimated number of
items in each class.

In both scenarios, a reactive, fully distributed approach
provides a robust and scalable solution, and is particularly
competitive under the absence of global communication but
sub-optimal when compared with deliberative, deterministic
coordination approaches using global communication (see
[11]–[13] for an analytical and experimental comparison of
a series of task assignment algorithms in a robot swarm).

For illustrating the optimal control and parameter es-
timation framework, we consider first a non-collaborative
reactive approach where robots switch to a certain task with
a specific probability. It is then shown analytically, how
optimal control parameters for achieving a certain steady-
state task distribution can be found, even if the times required
for task execution are unknown. Second, a threshold-based
algorithm [14], [15] is considered, where the probability to
switch to a task is a function of the number of robots already
in this task.

II. OPTIMAL CONTROL ON POPULATION DYNAMIC

MODELS

Consider N(k + 1) = f(N(k), μ, θ) describing the evolu-
tion of the number of robots in a certain state at time step
k with the vector μ containing the control parameters of
the individual robot, i.e. parameters that are hard-coded into
the robot controller, and the vector θ contains the system
parameters which are usually average quantities describing
the environment, e.g. the average duration of a task, or the
average encountering probability of a certain object [3].

With the system parameters θ being known, optimal
control parameters μ∗ for driving the system into a desired
steady-state distribution π can be found by solving the
optimization problem

μ∗ = argmin
μ

(π − N∗(μ, θ))2 (1)

where N ∗(μ, θ) = limk→∞ f(N(k), μ, θ).
Solutions to (1) can be obtained by applying the necessary

condition of optimality (NCO), that is

∂

∂μ
(π − N(μ, θ)∗)2 = 0 (2)

where the derivative ∂
∂μ is either calculated analytically

(when possible) or by exciting an implementation of the
system by a small perturbation of μ by slightly changing
one parameter at a time [5].

A. Optimal Control under Uncertainty of System Parameters

In a real robotic system, not all of the model parameters
can be known beforehand, either due to uncertainty of
measurements or because the chosen model oversimplifies
the system (e.g., ignoring friction or sensor noise). In this
case, parameters need to be estimated from observations of
the system N̂∗(μ, θ), leading to the following optimization
problem [8]:

θ∗ = arg min
θ

(N∗(μ, θ) − N̂∗(μ, θ))2 (3)

which aims at minimizing the error between model prediction
N∗(μ, θ) and observation N̂∗(μ, θ) by finding an optimal
set of parameters θ∗. As for the optimal control problem in
Section II, analytical solutions for (3) can be obtained by
applying the NCO.

As either μ or θ is known (in a real experiment or
in the model used for optimization, respectively), finding
an optimal control and parameter estimation are indeed
two separate optimization problems. An optimal control μ∗

calculated using (1) based on an estimate θ can then be
used in an implementation at a lower level of abstraction,
e.g. realistic, sensor-based simulation (e.g., Webots [16]) or
real robot experimentation, which provide an observation
N̂(μ∗, θ). This observation can then be used for solving the
parameter estimation problem (3) and improving the optimal
control by using θ∗ instead of θ.

This insight allows for formulating the following recur-
rence equations for the parameter vectors μ(n) and θ(n).
The index n corresponds to the number of the experiment
that led to an observation of the steady state N̂(μ, θ, n)∗.

θ(n + 1) = argmin
θ

n∑
i=0

(N∗(μ(i), θ) − N̂∗(μ(i), θ, i))2

(4)

μ(n + 1) = argmin
μ

(π − N∗(μ, θ(n + 1)))2 (5)

with μ(0) = μ0 an initial guess for the control parameters.
Already one experiment (n = 0) conducted with an initial
guess μ0 then allows for estimating the real system param-
eters θ, if θ can be identified unambiguously. If this is not
the case, i.e. there are multiple combinations of parameters
possible that reproduce the observation (see [8]), multiple
iterations of (4)-(5) might be necessary. In this case, the
sum in (4) assures that θ is in agreement with all conducted
experiments.

III. A PROBABILISTIC, ERGODIC, TASK ALLOCATION

PROBLEM

Consider a robotic system in which each robot can en-
gage in one out of m different tasks, as well as being
idle. For a large system of robots, let the number of
robots in either state be given by the state vector N(k) =
(N0(k), N1(k), . . . , Nm(k))T , where N0(k) corresponds to
the number of robots being idle. The index k corresponds to
the number of time-steps of length T .
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Fig. 1. Markov chain describing the individual robot system. A robot is idle
or switches to task i with probability pi(k). For the linear controller, pi(k)
is constant, whereas for the threshold-based controller pi(k) is a function
of the number of robots in state i. Both times, a robot needs an average of
Ti time-steps for executing task i and returning to idle.

Task allocation in the system is fully distributed, proba-
bilistic, and does not require any sensors. When idle, at every
time-step a robot will switch to a task i with probability pi

or will remain idle with probability p0 such that
∑m

i=0 pi =
1. It will then execute this task for an average time, T i.
Thus, when executing task i, a robot returns into idle with
probability 1

Ti
. The Markov chain representing the individual

robot is depicted in Fig. 1.
The average number of robots executing task i is then

given by the following difference equation

Ni(k + 1) = Ni(k) + piN0(k) − 1
Ti

Ni(k) (6)

The number of idle robots can be calculated from the fact
that the number of robots is constant

N0(k + 1) = n −
m∑

i=1

Ni(k + 1) (7)

with N(0) = (n, 0, . . . , 0)T the initial conditions.
Let M be the state transition probability matrix of the

Markov chain depicted in Fig. 1, with its i-th row given by
Equations 6 and 7. The system can then be summarized by

N(k + 1) = M(μ, θ)N(k) (8)

where μ = (p1, . . . , pn) are the control parameters of the in-
dividual robot, and θ = (T1, . . . , Tn) the system parameters
that are dependent on the average time a robot spends in a
task in this example. As (8) is a linear system, this controller
will be referred to as the linear controller in the reminder
of this paper.

A. Optimal Control Problem

Assuming θ to be known, we want to find an optimal con-
trol μ∗ such that limk→∞ M(μ, θ)N(k) = N∗ = π, i.e. the
steady-state role distribution matches a specific distribution
π.

As the Markov chain of Fig. 1 is ergodic, a steady-state
N∗(μ, θ) exists, and N ∗(μ, θ) = π is the eigenvector of M

with eigenvalue 1, i.e.

N∗(μ, θ) = M(μ, θ)N∗(μ, θ) (9)

and solving
(M − I)π = 0 (10)

with π = (π0, . . . , πm)T leads to

μ∗ =
(

1
T1

π1

π0
, . . . ,

1
Tn

πm

π0

)
(11)

Alternatively, μ∗ can be found by solving the following
optimization problem

μ∗ = argmin
μ

(π − N∗(μ, θ))2 (12)

Using the necessary condition of optimality, we write

0 =
∂

∂μ
(π − N∗(μ, θ))2 = −2(π − N∗(μ, θ))

∂N∗(μ, θ)
∂μ

(13)
which leads with ∂N∗(μ,θ)

∂μ �= 0 to a similar Ansatz as (10).
Solving for each component of N ∗ leads to

N∗
0 =

n

1 +
∑m

i=1 piTi
(14)

and
N∗

i = TipiN
∗
0 . (15)

Substituting N ∗(p, T ) = π, (15) is equivalent to the solution
obtained in (11).

B. Optimal Control under Uncertainty of System Parameters

We will now assume that the task-execution times θ =
(T1, . . . , Tm)T are unknown and need to be estimated along
the optimization process. Using an initial guess for θ(0) = θ
and known μ(0) = μ0, a new estimate for T can be
calculated using (4) and a new optimal control based on the
improved estimate of T can be found using (5) which can
both be solved using (11).

IV. A THRESHOLD-BASED TASK ALLOCATION PROBLEM

Whereas the probability for executing a certain task was
constant for the controller of Section III, we now assume
that robots can estimate the fraction of robots performing
a certain task and use this information for calculating the
probability for executing this task. The fraction of robots
performing a certain task can be estimated either by direct
observation (e.g. using a camera), overhearing communi-
cations in the swarm, explicit local communication, or by
observing changes in the environment that are a direct result
of a certain task [13], [17]. This approach is known as
a threshold based algorithm, and has been observed for a
variety of social insects [14] and successfully been used for
coordinating robot swarms in [13], [15], [17].

The threshold function is chosen such that the probability
to execute a certain task decreases with the number of robots
already performing this task, and is given by

px =
σx

σx + τx
(16)



where σx is the perceived stimulus for executing task x and
τx is the threshold for a certain task. In this example, we use
σx(k) = 1

Nx(k)+1 , i.e. the stimulus is anti-proportional to the
perceived number of robots. As σx(k) simply needs to be
anti-proportional to Nx(k) and the controller is stochastic, a
local estimate of Nx(k) that is proportional to the real value
is sufficient. The time-varying probability for executing task
x is thus given by

px(k) =
1

1 + τx(1 + Nx(k))
(17)

As before, robots switch back to idle state after an average
time given by θ = (T1, . . . , Tm)T . The system equations are
given as follows

Ni(k + 1) =Ni(k) + N0(k)pi(k) − 1
Ti

Ni(k) (18)

N0(k + 1) =n −
m∑

i=1

Ni(k + 1) (19)

with N(0) = (n, 0, . . . , 0)T the initial conditions, i.e. all
robots being idle initially, and μ = (τ0, . . . , τm) the decision
variable of the optimal control problem.

As the state transition probability matrix of the system is
time-varying, analytical solutions to the optimization prob-
lems become unfeasible and the steady-state N ∗(k, μ, θ) is
calculated numerically by iterating (18)-(19).

V. RESULTS

Results are provided for a set of desired steady-state
distributions and serve as an example for the proposed
methodology. Notice that the accuracy of the numerical
results is a function of the chosen optimization method
(fmincon from the Matlab optimization toolbox), which has
been sufficient for solving the problems considered in this
paper. Simulations of the swarm are obtained by stochas-
tic simulation of the underlying Markov chain, which has
yielded accurate predictions when compared with real robot
experiments in a series of case studies [3], [18].

A. Optimal control with known system parameters

We consider a system with three tasks with durations given
by θ = θ = (2, 4, 2)T , i.e. the system parameters θ are
known at time of optimization. We are interested in finding
an optimal control for reaching the steady-state distributions
π1 and π2 given by

π1 = (40%, 10%, 20%, 30%)T

π2 = (40%, 30%, 20%, 10%)T

which have been arbitrary chosen for demonstrational pur-
poses (the set of theoretically feasible distributions is a
function of θ, compare Equation 11).

Using (11) for calculating the optimal control for the linear
controller, yields

μ∗
1 = (0.125, 0.125, 0.375, 0.375)T

μ∗
2 = (0.375, 0.125, 0.125, 0.375)T

For the non-linear controller, we solve the optimization prob-
lem from (12) for the system given by (18)–(19) numerically,
where N ∗(μ, θ) is calculated by iterating (18)–(19) until a
steady-state is reached, leading to

μ∗
1′ = (0.5025, 0.1107, 0.0831, 1.0000)T

μ∗
2′ = (0.5073, 1.0000, 0.0833, 0.1104)T

and a residual error in the order of 10−7 both times.
In order to study the transient behavior of the system, we

performed a series of experiments where all robots switch to
μ∗

2 and μ∗
2′ at k = 26, and use μ∗

1 and μ∗
1′ for the first 25 time-

steps, for the linear and non-linear controllers, respectively.
Fig. 2 shows simulation results of the macroscopic model
and stochastic simulation for the linear (top row) and non-
linear controller (bottom row). Stochastic simulations show
the average over 100 runs including the 95% confidence in-
terval, i.e. 95% of the trajectories stayed inside the envelope
generated by the error bars. In order to show the impact
of the team-size on the solution quality, two different team-
sizes are simulated (the prediction of the macroscopic model
is independent of the team-size for the models considered
here).

B. Optimal control with unknown system parameters

We now consider a robotic-swarm with threshold-based
task allocation with three tasks. The task duration is given
by θ = (2.5, 4.3, 1.9)T , which is assumed to be unknown.
For such a system, the optimal control μ1′ and μ2′ calculated
using the estimate θ = (2, 4, 2)T will not lead to the
desired outcome. Let the steady-state distribution observed
on the real system (using θ and not θ) be N̂∗

1 (μ1′ , θ) and
N̂∗

2 (μ2′ , θ), respectively

N̂∗
1 (μ1′ , θ) = (0.3937, 0.1113, 0.2053, 0.2897)T

N̂∗
2 (μ2′ , θ) = (0.3770, 0.3266, 0.2014, 0.0951)T

Solving the optimization problem from (4) yields θ =
(2.5, 4.3, 1.9)T for both N̂∗

1 and N̂∗
2 using the analytical

solution and numerical optimization, respectively. θ finally
being known, the improved optimal control can be calculated
to

μ̂∗
1′ = (0.5072, 0.0932, 0.0722, 1.0000)T

μ̂∗
2′ = (0.5947, 1.0000, 0.0735, 0.1508)T

as in Section V-A, leading to the desired state distributions
π1 and π2 with residual error less than 10−7.

C. Optimal control with unknown system parameters for
small teams

Using a real robotic system in the optimization loop, it
is unlikely that the swarm accurately tracks the predicted
average state distribution, but rather oscillates around the
steady-state, in particular if the number of robots is low.
In this case, it is unclear whether unexpected observations
stem from randomness in the system, a wrong estimate of
the system parameters when calculating the optimal control,
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Fig. 2. Optimal control for swarms of 100 and 1000 robots. The swarms quickly reach the desired distribution [0.4 0.1 0.2 0.3] from the initial configuration
[1 0 0 0] (all robots idle), and converge towards [0.4 0.3 0.2 0.1] after time-step 25 using the non-collaborative (top row) and the collaborative, threshold-
based algorithm (bottom row). Macroscopic difference equations (left) and stochastic simulation (100 runs) for 100 and 1000 robots (middle and right).
Error bars depict the 95% confidence interval.

or from intrinsic divergences between macroscopic represen-
tation of a system with small numbers of robots.

Fig. 3 shows the average steady-state estimate of 1000
stochastic simulations for 25 robots using the linear con-
troller (left), and for 25 and 100 robots using the threshold-
based controller (middle and right, respectively). The steady-
state is estimated by averaging over the distribution from
time-step 10 to 50. Results show that the minimal and
maximal error (shown by the error-bars) is reasonable small
already for small teams. For the threshold-based controller,
however, results show a systematic error when the team-size
is small. This is a typical artifact in stochastic simulation
of non-linear systems. Further experiments (not shown) esti-
mating the steady-state over a longer period of time, confirm
this result.

VI. DISCUSSION

In the proposed control architecture, robots fluctuate be-
tween states even when the system is at steady-state. These
fluctuations are a function of the switching probabilities
between robot states and are proportional to the speed with,
which a system reaches the desired average distribution.

Although the chosen case study exemplifies the proposed
methodology for a linear and non-linear model well and
provides promising results, it is no guarantee for the general
applicability of the method. Whether the proposed method-
ology is applicable for designing a distributed controller is
dependent on three conditions. First, the system needs to
be able to generate an observable that is constant and has
small variance, e.g. a specific trajectory in state space or a
steady-state. In the task allocation case study, such a metric
is provided by a constant steady-state distribution, which can

be robustly estimated by averaging over a certain time when
the system is in steady-state regime. Second, a model that is
able to provide quantitative agreement with the chosen metric
is required. In this paper, we make use of probabilistic popu-
lation dynamic models that can be systematically developed
using the methodology brought forward in [3], [19], [20],
as it allows to track the statistic mean of swarm dynamics.
Third, a suitable optimization method is required to solve the
resulting optimization problems. In particular for highly non-
linear systems, finding an optimal control might be difficult,
if not impossible.

For both the parameter estimation as well as for the
optimization step, a reachability analysis of the model can
answer whether optimal parameters that provide quantitative
agreement of the model with experimental data exist, and
whether a desired state is reachable. In our case study, the
set of reachable distributions is constrained by the choice of
θ (consider the extreme cases Ti = 0 or Ti = ∞ leading
to πi = 0 and πi = 1, respectively). The set of reachable
distributions thus defines whether an optimal control for a
specific distribution exists or not, as well as whether model
parameters exist that lead to quantitative agreement of the
metric of interest with an observable of the real system.

The examples in this paper all aim at finding an optimal
control for a specific steady-state of a system, which cor-
responds to the average system behavior. There is thus no
guarantee for the system to not exhibit undesired behavior
or to violate upper and lower bounds on the performance.
Probabilistic simulation of the system, however, can help to
estimate confidence intervals on the expected performance,
which can potentially be used as constraints in the optimal
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Fig. 3. Stochastic simulation of swarms of 25 using the linear controller (left), and of 25 and 100 robots (middle and right) for the non-linear controller
for an optimal control leading to π = (0.1, 0.2, 0.3, 0.4)T . Bars show the steady-state distribution from time-step 10–50. Error bars depict minimum and
maximal values over 1000 experiments. Small team sizes show systematic errors.

control problem.

VII. CONCLUSION

We presented a methodology for finding optimal control
parameters for a robot swarm in order to achieve a desired
state distribution at steady-state, even if the system parame-
ters are unknown. The approach requires that the system dy-
namics can be modeled by probabilistic population dynamic
models, and that (numerical) solution methods to the arising
optimization problem exist. For controllers whose collective
dynamics can be described by a linear model, analytical
solutions to the optimization problem can be found, whereas
non-linear dynamics usually require numerical solutions
by an appropriate numerical optimization algorithm. The
methodology is illustrated using a task-allocation case study
with a reactive and a threshold-based algorithm which lead
to robust task allocation. The resulting population dynamics
of both approaches have been captured by linear and non-
linear macroscopic models. It was shown using stochastic
simulations of swarms of various sizes that reliable steady-
state estimates can already be achieved for small teams.
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