MAE 598: Multi-Robot Systems Fall 2016

Instructor: Spring Berman spring.berman@asu.edu

Assistant Professor, Mechanical and Aerospace Engineering Autonomous Collective Systems Laboratory http://faculty.engineering.asu.edu/acs/

Lecture 7

Controller Synthesis using the Macroscopic Model

Optimization

Compute the k_{ij} that minimize a measure of the model's convergence time to $\mathbf{x}^{\mathbf{d}}$

Convex optimization approaches:

Multi-affine model

- **Relaxation times:** time to return to equilibrium after perturbation [Heinrich and Schuster, *The Regulation of Cellular Systems*, 1996]
- ${\ensuremath{\,^\circ}}$ Estimated by linearizing the model around x^d
- Linear model

Eigenvalues of K govern rate of convergence (ROC)

• Tradeoff between fast ROC and few task transitions at equilibrium

Hybrid System Macroscopic Models

Controller Synthesis: Vector Fields on Polytopes

$$\dot{\mathbf{x}} = f(\mathbf{x}) + \mathbf{B}\mathbf{u}$$
 $P_S = polytope in \mathbb{R}^S$

Compute ${\bf u}$ that steers ${\bf x}$ to a facet of P_S in finite time

[Habets, van Schuppen Automatica '04, Belta et al., CDC'02]

Swarm Robotic Assembly System

[Loic Matthey, Spring Berman, and Vijay Kumar. "Stochastic Strategies for a Swarm Robotic Assembly System." *ICRA 2009*.]

Design a reconfigurable manufacturing system that quickly assembles target amounts of products from a supply of heterogeneous parts

Approach

ODEs are functions of probabilities of assembly and disassembly: Optimize for fast assembly of target amounts of products

Robots start assemblies and perform disassemblies according to **optimized probabilities**

$$\dot{\mathbf{x}} = \mathbf{M}\mathbf{K}\mathbf{y}(\mathbf{x})$$

Macroscopic model

Microscopic model

Decisions Modeled as Chemical Reactions

 $p^{e} = \text{prob. that a robot encounters a}$ part or another robot $\approx \underbrace{v_{robot}Tw_{comm}}_{R}$ [Correll and Martinoli, Coll. Beh. Workshop, ICRA 2007] A = arena area

Decisions Modeled as Chemical Reactions

 p_j^a = prob. of two robots successfully completing assembly process j(measured from simulations)

Decisions Modeled as Chemical Reactions

Tunable:

 $p_{i}^{T} = \text{prob. of two robots starting assembly process } j$

 $p_{j}^{-} = prob.$ per unit time of a robot performing disassembly process j

Mapping p_i^+, p_i^- onto the Robot Controllers

 Δt = simulation timestep (32 ms)

u = random number uniformly distributed over [0,1]

Robot computes u at each Δt , disassembles the part if

$$u < p_i^- \Delta t$$

Robot computes *u*, executes assembly if

$$u < p_i^+$$

Reduced Macroscopic Model

Lower-dimensional model (abstract away robots):

Vector of complexes: $\mathbf{y}(\mathbf{x}) = \begin{bmatrix} x_1 x_2 & x_5 & x_3 x_4 & x_6 & x_2 x_7 & x_{F1} \\ x_5 x_6 & x_7 & x_2 x_5 & x_8 & x_6 x_8 & x_{F2} \end{bmatrix}^T$

$$\dot{\mathbf{x}} = \mathbf{M}\mathbf{K}\mathbf{y}(\mathbf{x})$$

We also define a matrix $\mathbf{M} \in \mathbb{R}^{10 \times 12}$ in which each entry \mathbf{M}_{ji} , j = 1, ..., 10, of column \mathbf{m}_i is the coefficient of part type j in complex i (0 if absent). We relabel the rate associated with reaction $(i, j) \in \mathcal{E}$ as k_{ij} and define a matrix $\mathbf{K} \in \mathbb{R}^{12 \times 12}$ with entries

$$\mathbf{K}_{ij} = \begin{cases} k_{ji} & \text{if } i \neq j , \quad (j,i) \in \mathcal{E} ,\\ 0 & \text{if } i \neq j , \quad (j,i) \notin \mathcal{E} ,\\ -\sum_{(i,l) \in \mathcal{E}} k_{il} & \text{if } i = j . \end{cases}$$
(5)

Conservation constraints:

$$\begin{array}{rcl}
x_3 - x_4 & = & N_1 \\
x_1 + x_5 + x_7 + x_8 + x_{F1} + x_{F2} & = & N_2 \\
x_2 + x_5 + x_7 + 2(x_8 + x_{F1} + x_{F2}) & = & N_3 \\
x_3 + x_6 + x_7 + x_{F1} + x_{F2} & = & N_4
\end{array}$$

Reduced Macroscopic Model

$$\dot{\mathbf{x}} = \mathbf{M}\mathbf{K}\mathbf{y}(\mathbf{x})$$

$$\begin{array}{rcl} x_3 - x_4 & = & N_1 \\ x_1 + x_5 + x_7 + x_8 + x_{F1} + x_{F2} & = & N_2 \\ x_2 + x_5 + x_7 + 2(x_8 + x_{F1} + x_{F2}) & = & N_3 \\ x_3 + x_6 + x_7 + x_{F1} + x_{F2} & = & N_4 \end{array}$$

The system has a unique, positive, globally asymptotically stable equilibrium.

Proof: Reaction network is *deficiency zero* and *weakly reversible*, does not admit equilibria with some $x_i = 0$

 \rightarrow We can design K such that the system always converges to a target equilibrium, $x^d > 0$

Design of Optimal p_i^+, p_i^-

$$\dot{\mathbf{x}} = \mathbf{M}\mathbf{K}\mathbf{y}(\mathbf{x})$$

$$\begin{array}{rcl} x_3 - x_4 & = & N_1 \\ x_1 + x_5 + x_7 + x_8 + x_{F1} + x_{F2} & = & N_2 \\ x_2 + x_5 + x_7 + 2(x_8 + x_{F1} + x_{F2}) & = & N_3 \\ x_3 + x_6 + x_7 + x_{F1} + x_{F2} & = & N_4 \end{array}$$

Recall that **K** is a function of **p**, the vector of p_i^+, p_j^-

$$k_j^+ = A \ p^e \ p_j^a \ p_j^+ \ , \qquad k_j^- = p_j^-$$

Select $\mathbf{x}^{\mathbf{d}}$ that satisfies conservation constraints

Compute p that minimizes the system convergence time to x^d subject to constraints: $\mathbf{MK}(p)\mathbf{y}(\mathbf{x^d})=\mathbf{0}, \quad \mathbf{0}\leq p\leq 1$

Optimization Problems

I. Linear Program

Objective: Maximize the average inverse *relaxation time* τ_i

- τ_j = time for system mode to return to equilibrium after perturbation
- Estimated by linearizing the ODE model around \mathbf{x}^{d} [Heinrich and Schuster, <u>The Regulation of Cellular Systems</u>, 1996] For reaction $X_k + X_l \rightleftharpoons_{k_i^-}^{k_j^+} X_m : \tau_j^{-1} = k_j^+ (x_k^d + x_l^d) + k_j^-$

II. Monte Carlo Method

Objective: Minimize time for system to reach $0.1 \| \mathbf{x}^0 - \mathbf{x}^d \|_2$

Optimization Improves Convergence Rate

• 15 robots, 15 basic parts Simulations averaged over 30 runs

Linearization is most effective for $\alpha \approx 0.2 - 0.5$

- For all α , linear program only changes rates of disassembling F1, F2
- Monte Carlo p_i^+ , p_i^- yield fastest convergence but takes ~10 hrs to compute (in 2009), vs. <1 s using the linear program (2 GHz laptop)

Linearization is most effective for $\alpha \approx 0.2 - 0.5$

• 15 robots, 15 basic parts • Simulations averaged over 30 runs

Linearization is most effective for $\alpha \approx 0.2 - 0.5$

• 50 robots, 50 basic parts • Simulations averaged over 20 runs

Swarm Multi-Site Deployment

[Spring Berman, Adam Halasz, M. Ani Hsieh, and Vijay Kumar. "Optimized Stochastic Policies for Task Allocation in Swarms of Robots." *IEEE Transactions on Robotics*, 2009]

Swarm Multi-Site Deployment

- Model interconnection topology of sites as a directed graph
 G = (V, E) V = set of sites E = {(i, j) ∈ V × V | <u>i ~ j</u>}
- Assume that G is strongly connected (directed path btwn. each pair of sites)

k_{ij} = Transition probability per unit time for one robot at site *i* to travel to site *j*

- Choose for rapid, efficient redistribution
- Assume that each robot:
 - knows $\, \mathcal{G}$, all k_{ii} , task at each site
 - can navigate between sites
 - can sense neighboring robots

can travel from *i* to *j*

Approach

Ordinary differential equations in terms of *k_{ij}* and the fraction of robots
 x_i at each site *i*

N robots, M behavior states: {Doing task at site
1, Doing task at site 2, ...,
Doing task at site M}

- Could also include states that represent travel between pairs of sites

 $x_i(t) =$ Fraction of robots at site *i* at time t $\mathbf{x} = [x_1 \dots x_M]^T$

$$\begin{split} \dot{x}_i(t) &= \sum_{j \sim i} k_{ji} x_j(t) - \sum_{i \sim j} k_{ij} x_i(t) \\ \dot{\mathbf{x}} &= -\mathbf{K} \mathbf{x} \quad \text{(a)} \quad \mathbf{K}^T \mathbf{1} = \mathbf{0} \ , \\ \mathbf{(b)} \quad \mathbf{K}_{ij} \leq \mathbf{0} \quad \forall (i, j) \in \mathcal{E} \end{split}$$

Conservation constraint: $\mathbf{1}^T \mathbf{x} = 1$

$$\dot{\mathbf{x}} = -\mathbf{K}\mathbf{x}$$
 $\mathbf{1}^T\mathbf{x} = \mathbf{1}$

(a) $\mathbf{K}^T \mathbf{1} = \mathbf{0}$, (b) $\mathbf{K}_{ij} \leq 0 \quad \forall (i,j) \in \mathcal{E}$

- There is a unique, stable equilibrium [Proof uses Perron-Frobenius Theorem]
- x_i^d = Target fraction of robots at site i $\mathbf{x}^d = [x_1^d \dots x_M^d]^T$
 - → If k_{ij} are chosen so that (c) $\mathbf{Kx^d} = 0$, the system always converges to the target distribution

$$\dot{\mathbf{x}} = -\mathbf{K}\mathbf{x}$$
 $\mathbf{1}^T\mathbf{x} = \mathbf{1}^T$

(a) $\mathbf{K}^T \mathbf{1} = \mathbf{0}$, (b) $\mathbf{K}_{ij} \le 0 \quad \forall (i,j) \in \mathcal{E}$, (c) $\mathbf{K} \mathbf{x}^{\mathbf{d}} = 0$

- Real parts of eigenvalues of **K** govern rate of convergence to x^d \rightarrow High k_{ij} for fast redistribution
- Probability that a robot at *i* starts moving to *j* in a time step is proportional to k_{ij}

 \rightarrow Low k_{ii} for few idle trips between sites at equilibrium

Optimal K maximizes convergence rate of system subject to a constraint on inter-site traffic at equilibrium

$$\dot{\mathbf{x}} = -\mathbf{K}\mathbf{x}$$

$$\mathbf{1}^T \mathbf{x} = 1$$

(a) $\mathbf{K}^T \mathbf{1} = \mathbf{0}$, (b) $\mathbf{K}_{ij} \le 0 \quad \forall (i,j) \in \mathcal{E}$, (c) $\mathbf{K} \mathbf{x}^{\mathbf{d}} = 0$

Traffic along edge (*i*,*j*) = $k_{ij}x_i$ (fraction of robots per unit time exiting *i* to go to *j*)

Possible constraints on inter-site traffic at equilibrium:

(1) Total limit:
$$\sum_{(i,j)\in\mathcal{E}} k_{ij} x_i^d \leq c_{tot} \quad \text{or}$$

(2) Edge limits:
$$k_{ij} x_i^d \leq c_{ij}, \quad (i,j) \in \mathcal{E}$$

Design of Optimal K Matrix

• Maximize a measure of the convergence rate of model $\dot{\mathbf{x}} = -\mathbf{K}\mathbf{x}$

subject to one of the 2 constraints on equilibrium traffic

• Measure the degree of convergence to \mathbf{x}^d in terms of the *fraction of misplaced robots,*

$$\mu_n(\mathbf{x}) = ||\mathbf{x} - \mathbf{x}^{\mathbf{d}}||_n \qquad n = 1 \text{ or } 2$$

 One problem minimizes convergence time directly using a Monte Carlo method; the others maximize functions of the eigenvalues of K using convex optimization

K Matrix Optimization Problems

Prob.	Objective	FC	DB	\mathbf{x}^{0}
P1a	Maximize asymptotic ROC			
P1b	Maximize asymptotic ROC		\checkmark	
P2	Maximize overall ROC	\checkmark		
P3	Minimize time to reach $0.1\mu_2(\mathbf{x^0})$			\checkmark
P4	Maximize ROC along $\mathbf{x}^d - \mathbf{x}^0$	\checkmark		\checkmark

FC = fully connected (each site accessible from all other sites) DB = detailed balance condition holds \mathbf{x}^{0} = initial distribution known ROC = rate of convergence

Optimal K Comparison

Optimal K Comparison

• Tradeoff between convergence rate, equilibrium traffic

• Tradeoff between convergence rate, equilibrium traffic

• Faster convergence with increased site connectivity

ullet Limits on edge traffic eliminate advantage of knowing \mathbf{x}^0

• Monte Carlo runs are consistently optimal but computationally slow

