MAE 598: Multi-Robot Systems Fall 2016

Instructor: Spring Berman spring.berman@asu.edu

Assistant Professor, Mechanical and Aerospace Engineering Autonomous Collective Systems Laboratory http://faculty.engineering.asu.edu/acs/

Lecture 6

Classifying Dynamical Behavior of Chemical Reaction Networks

Spring Berman

Motivation

> Analysis

Understand cell functions at the level of chemical interactions [Angeli, de Leenheer, Sontag, CDC 2006]

- functionality, qualitative behavior of pathways
- robustness of network to parameter changes

Synthesis

Determine whether a network will produce the desired behavior, or at least have the capacity to produce it

- drug design, therapeutic treatments
- bio-inspired distributed robot systems

Approaches

- There is presently no unified theory of the dynamical behavior of chemical reactions [De Leenheer, Angeli, Sontag, J. Math. Chem. 41:3, April 2007]
- However, there are results for restricted classes of reaction networks:
 - Feinberg, Horn, Jackson

Fairly general network topology, mass-action kinetics

- Angeli, de Leenheer, Sontag

Restricted network topology, monotone but otherwise arbitrary kinetics

Feinberg, Horn, Jackson

Deficiency Zero and Deficiency One Theorems

Martin Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors – I. The Deficiency Zero and Deficiency One Theorems. *Chem. Eng. Sci.* 42:10 pp. 2229-2268, 1987.

For related publications, see:

http://www.che.eng.ohio-state.edu/~FEINBERG/PUBLICATIONS/

Notation $A_1 + A_2 \rightleftharpoons$	$A_3 \rightarrow A_4 + A_6$	$\rightarrow A_6$
2A	$A_1 \rightarrow A_2 + A_7$ $A_8 \qquad A_8$	
	Symbol	Example above
Number of species	$oldsymbol{N}$	8
Number of complexes	п	7
Complex vector	$y_i \in \mathbf{R}^{\mathbf{N}}$	$y_1 = [1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0]$
Reaction vector Fo	$r y_i \rightarrow y_j : y_j - y_i$	$y_2 - y_1 = [-1 \ -1 \ 1 \ 0 \ 0 \ 0 \ 0]$
Network rank	S	5
[# of elements in largest linearly independent set of reaction vectors]		
Number of linkage class	es <i>l</i>	2
[set of complexes connected by reactions]		

Definitions

Reversible: Each reaction is accompanied by its reverse

➢ Weakly reversible: When there is a directed arrow pathway from complex 1 to 2, there is one from 2 to 1

Complexes 1 and 2 are strongly linked if there are directed arrow pathways from 1 to 2 and from 2 to 1

Definitions

Strong linkage class is a set of complexes for which:

- Each pair of complexes is strongly linked
- No complex is strongly linked to a complex outside the set
- > Terminal strong linkage class: has no complex that reacts to a complex in a different strong linkage class (number = L)

Remarks

- > In general, L >= l
- > For a weakly reversible network, L = l

(Linkage classes, strong linkages classes, terminal strong linkage classes coincide)

Kinetics, ODE Description

- Closed, well-stirred, constant-volume, isothermal reactor
 - Can extend to open reactors by adding "pseudoreactions," $0 \rightarrow A_i, A_i \rightarrow 0$
- Species: $\{A_1, A_2, ..., A_N\}$

Molar concentration of A_i : $c_i \in R_{\geq 0}$

Composition vector:

$$\boldsymbol{c} = [\boldsymbol{c}_1 \ \boldsymbol{c}_2 \ \dots \ \boldsymbol{c}_N]$$

 P^N = positive orthant of R^N \underline{P}^N = nonnegative orthant of R^N

Support of composition vector:supp $c = \{A_i \mid c_i > 0\}$ Support of complex:supp $y_i = \{A_i \mid y_{ij} > 0\}$

Stoichiometric coefficient

Kinetics, ODE Description

Closed, well-stirred, constant-volume, isothermal reactor
 Molar concentration of A_i: $c_i \in R_{\geq 0}$ Composition vector: $c = [c_1 c_2 \dots c_N]$

> Kinetics: An assignment to each reaction $y_i \rightarrow y_j$ of a rate function $\mathscr{K}_{i \rightarrow j}(\mathbf{c})$

- Mass action kinetics: For each reaction $y_i \rightarrow y_j$,

$$\mathscr{K}_{i \to j}(\mathbf{c}) \equiv k_{i \to j} \prod_{L=1}^{N} (c_L)^{y_{iL}}.$$

ODE Formulation:

$$\dot{\mathbf{c}} = \sum_{\mathscr{H}} \mathscr{H}_{i \to j} (\mathbf{c}) (\mathbf{y}_j - \mathbf{y}_i), \quad \mathbf{c} \in \widehat{\mathbb{P}}^N$$

Properties of ODE's

$$\gamma = \sum_{\mathscr{R}} \alpha_{i \to j} (\mathbf{y}_j - \mathbf{y}_i). \qquad \{\alpha_{i \to j}\}_{i \to j \, \varepsilon \, \mathscr{R}} >= 0$$

>
$$c(t) - c(0)$$
 lies in S
> Positive stoichiometric compatibility
class (reaction simplex):
 $(c + S) \cap \mathbb{P}^{N}$.

- Goal is to classify dynamics within a stoichiometric comp. class

 \blacktriangleright Network rank $s = \dim(S)$

Steady States

Reaction vectors are positively dependent if:

$$\mathbf{0} = \sum_{\mathscr{R}} \alpha_{i \to j} (\mathbf{y}_j - \mathbf{y}_i). \qquad \{\alpha_{i \to j}\}_{i \to j \in \mathscr{R}} > 0$$

- Always the case in a weakly reversible network

This is a necessary condition for the existence of:

- A positive steady state $\mathbf{c}^* \in \mathbb{P}^N$ $\mathbf{0} = \sum_{\mathscr{R}} \mathscr{K}_{i \to j}(\mathbf{c}^*) (\mathbf{y}_j \mathbf{y}_i).$
- A cyclic trajectory $\mathbf{c}(\tau) \in \mathbb{P}^N$ $\mathbf{c}(0) = \mathbf{c}(T)$.

At steady state, all reactions among complexes in a strong linkage class are switched on or off

Deficiency Zero Theorem

When $\delta = \theta$:

- Network is not weakly reversible
 Arbitrary kinetics
 Network is not weakly reversible
 - \rightarrow No positive steady state or cyclic trajectory $c(\tau) \in \mathbb{P}^{N}$
- > Network is weakly reversible

Mass action kinetics

→ Each positive stoichiometric compatibility class has one steady state, which is asymptotically stable; There is no nontrivial cyclic trajectory c(τ)∈ P^N

Remark: The only reactions occurring at steady state are those joining complexes in a terminal strong linkage class

Deficiency Zero Theorem: Example

$$A_{1} + A_{2} \rightleftharpoons A_{3} \rightarrow A_{4} + A_{5} \rightleftharpoons A_{6}$$

$$2A_{1} \rightarrow A_{2} + A_{7}$$

$$A_{8} \wedge A_{8} \wedge A_{8}$$

- $\delta = \theta$, not weakly reversible
 - \rightarrow No positive steady state or cyclic trajectory $\mathbf{c}(\tau) \in \mathbb{P}^{N}$

Deficiency Zero Theorem: Example

$$A_{1} + A_{2} \xrightarrow{\alpha}_{\beta} A_{3} \xrightarrow{\gamma}_{\epsilon} A_{4} + A_{5} \xrightarrow{\eta}_{\theta} A_{6}$$

$$2A_{1} \xrightarrow{\kappa}_{\epsilon} A_{2} + A_{7}$$

$$\chi \xrightarrow{\lambda}_{\nu} A_{8}^{\lambda} \mu$$

$$\dot{c}_{1} = -\alpha c_{1}c_{2} + \beta c_{3} - 2\kappa c_{1}^{2} + \nu c_{8}$$

$$\dot{c}_{2} = -\alpha c_{1}c_{2} + \beta c_{3} + \kappa c_{1}^{2} - \lambda c_{2}c_{7} + \mu c_{8}$$

$$\dot{c}_{3} = \alpha c_{1}c_{2} + \varepsilon c_{4}c_{5} - (\gamma + \beta)c_{3}$$

$$\dot{c}_{4} = \gamma c_{3} + \theta c_{6} - (\varepsilon + \eta)c_{4}c_{5}$$

$$\dot{c}_{5} = \gamma c_{3} + \theta c_{6} - (\varepsilon + \eta)c_{4}c_{5}$$

$$\dot{c}_{6} = \eta c_{4}c_{5} - \theta c_{6}$$

$$\dot{c}_{7} = \kappa c_{1}^{2} + \mu c_{8} - \lambda c_{2}c_{7} \qquad \Rightarrow \text{System}$$

$$\dot{c}_{8} = \lambda c_{2}c_{7} - (\mu + \nu)c_{8}. \qquad \text{which if}$$

Two networks with the same complexes and linkage classes have the same deficiency

$$\rightarrow \delta = 0$$

- Weakly reversible, assume mass action kinetics

System has one positive steady state, which is asymptotically stable

Deficiency

 $\delta = n - l - s$

> Two networks with the same complexes and linkage classes have the same rank \rightarrow same deficiency

- Network rank <= sum of linkage class ranks</p>
- Network deficiency >= sum of linkage class deficiencies

Deficiency One Theorem

Mass action kinetics

I linkage classes, each containing one terminal strong linkage class

(i)
$$\delta_{\theta} \leq 1, \quad \theta = 1, 2, \ldots, \ell$$

Linkage class deficiencies

(ii) $\sum_{\theta=1}^{r} \delta_{\theta} = \delta$. Network deficiency

- → No more than one steady state in a positive stoichiometric compatibility class (may depend on rate constants)
- Network is weakly reversible:
- → Precisely one steady state in each pos. stoich. comp. class

Deficiency One Theorem: Example

Network is weakly reversible

→ Precisely one steady state in each pos. stoich. comp. class

Deficiency One Theorem: Corollary

Mass action kinetics

One linkage class

- $\delta > 1$ or # of terminal strong linkage classes L > 1
 - → Can have multiple steady states in a pos. stoich. comp. class

Deficiency One Theorem: Subnetworks

> If a set of reactions is partitioned into p subnetworks, then each is independent iff:

 $s = s_1 + s_2 + \ldots + s_p.$

A steady state c* for a reaction network is a steady state for any independent subnetwork.

 \rightarrow Can "carry down" or "carry up" information from Def. Theorems

Ex.) Network admits a positive steady state \rightarrow this is a positive steady state of an independent subnetwork

Example: Single Phosphorylation

$$\delta = n - l - s = 6 - 2 - 3 = 1 \rightarrow \text{Can't apply Deficiency Zero}$$

$$\delta_1 = n_1 - 1 - s_1 = 3 - 1 - 2 = 0$$

$$\delta_2 = n_2 - 1 - s_2 = 3 - 1 - 2 = 0$$

$$\delta_1 \pm \delta_2 \pm \delta_3 \pm Can't \text{ apply Deficiency One Theorem}$$

Deficiency One Theorem: Remarks

- Deficiency one networks that are not weakly reversible:
 - Can admit positive steady states for some values of rate constants but not for others
 - Can admit steady states in some pos. stoich. comp. classes but not in others

Swarm Robotic Assembly System

[Matthey, Berman, Kumar, ICRA 2009]

Design a reconfigurable manufacturing system that quickly assembles target amounts of products from a supply of heterogeneous parts

Required Robot Controller Properties

(1) Strategy should be scalable in the number of parts

Decentralized decision-making:

- Parts scattered randomly inside an arena
- Randomly moving autonomous robots assemble products
- Local sensing, local communication

(2) Minimal adjustments when product demand changes

- Probabilities of assembly and disassembly are robot control policies
- Can be updated via a broadcast

(3) System can be optimized for fast production

Spatial homogeneity → Chemical Reaction Network model

Approach

Ordinary differential equations
 M states: continuous populations
 of parts

 Ordinary differential equations
 States: continuous populations of robots and free/carried parts

3D physics simulation
 N robots, P_i parts;
 i = 1,...,M types

Approach

ODEs are functions of probabilities of assembly and disassembly: Optimize for fast assembly of target amounts of products

Robots start assemblies and perform disassemblies according to optimized probabilities

Example

- Implemented in the robot simulator Webots (www.cyberbotics.com)
 Uses Open Dynamics Engine to simulate physics
- Predefined assembly plan:

Example

- Magnets can be turned on or off
- Servo rotates bonded part to orientation for assembly
- Infra-red distance sensors for collision avoidance
- Emitter/receiver on each robot and basic part for local communication, computing relative bearing

Decisions Modeled as Chemical Reactions

$$X_{R} + X_{i}^{u} \xrightarrow{e_{i}} X_{i}^{c} \quad i = 1, ..., 8$$

$$X_{R}^{c} + X_{i}^{c} \xrightarrow{k_{j}^{+}} X_{n}^{c} + X_{R}$$

$$X_{l}^{c} + X_{m}^{c} \xrightarrow{k_{j}^{+}} X_{n}^{c} + X_{R}$$

$$X_{l}^{c} + X_{m}^{c} \xrightarrow{k_{j}^{-}} X_{l}^{c} + X_{m}^{u}$$

$$e_{i} = A(p^{e}), \quad k_{j}^{+} = A(p^{e})p_{j}^{a}p_{j}^{+}, \quad k_{j}^{-} = p_{j}^{-}$$

$$p^{e} = \text{prob. that a robot oncounters a}$$

 $p^{c} = \text{prob. that a robot encounters a}$ part or another robot $\approx \underbrace{v_{robot}Tw_{comm}}_{R}$ [Correll and Martinoli, Coll. Beh. Workshop, ICRA 2007] A = arena area

Decisions Modeled as Chemical Reactions

 p_j^a = prob. of two robots successfully completing assembly process j(measured from simulations)

Decisions Modeled as Chemical Reactions

Tunable:

 p_{i}^{+} = prob. of two robots starting assembly process j

 $p_{i}^{-} = prob.$ per unit time of a robot performing disassembly process j

Mapping p_i^+, p_i^- onto the Robot Controllers

 Δt = simulation timestep (32 ms)

u = random number uniformly distributed over [0,1]

Robot computes u at each Δt , disassembles the part if

$$u < p_i^- \Delta t$$

Robot computes *u*, executes assembly if

$$u < p_i^+$$

Validation of Complete Macroscopic Model

- Macroscopic model (set of ODEs) is fairly accurate
- Discrepancies are due to:

Relatively low populations; ODE most accurate for large ones Assembly disruption in simulation (not modeled)

Reduced Macroscopic Model

Lower-dimensional model (abstract away robots):

$$\begin{array}{cccc} X_{1} + X_{2} & X_{5} \\ X_{2} + X_{7} & X_{1} \\ X_{2} + X_{7} & X_{1} \\ X_{4} & X_{1} \\ X_{2} + X_{5} & X_{5} \\ X_{6} \\ X_{6} + X_{8} & X_{6} \\ X_{7} \\ X_{7$$

Vector of complexes: $\mathbf{y}(\mathbf{x}) = \begin{bmatrix} x_1 x_2 & x_5 & x_3 x_4 & x_6 & x_2 x_7 & x_{F1} \\ x_5 x_6 & x_7 & x_2 x_5 & x_8 & x_6 x_8 & x_{F2} \end{bmatrix}^T$

$$\dot{\mathbf{x}} = \mathbf{M}\mathbf{K}\mathbf{y}(\mathbf{x})$$

We also define a matrix $\mathbf{M} \in \mathbb{R}^{10 \times 12}$ in which each entry \mathbf{M}_{ji} , j = 1, ..., 10, of column \mathbf{m}_i is the coefficient of part type j in complex i (0 if absent). We relabel the rate associated with reaction $(i, j) \in \mathcal{E}$ as k_{ij} and define a matrix $\mathbf{K} \in \mathbb{R}^{12 \times 12}$ with entries

$$\mathbf{K}_{ij} = \begin{cases} k_{ji} & \text{if } i \neq j , \quad (j,i) \in \mathcal{E} ,\\ 0 & \text{if } i \neq j , \quad (j,i) \notin \mathcal{E} , \\ -\sum_{(i,l)\in\mathcal{E}} k_{il} & \text{if } i = j . \end{cases}$$
(5)

Conservation constraints:

$$\begin{array}{rcl}
x_3 - x_4 & = & N_1 \\
x_1 + x_5 + x_7 + x_8 + x_{F1} + x_{F2} & = & N_2 \\
x_2 + x_5 + x_7 + 2(x_8 + x_{F1} + x_{F2}) & = & N_3 \\
x_3 + x_6 + x_7 + x_{F1} + x_{F2} & = & N_4
\end{array}$$

Reduced Macroscopic Model

$$\dot{\mathbf{x}} = \mathbf{M}\mathbf{K}\mathbf{y}(\mathbf{x})$$

$$\begin{array}{rcl} x_3 - x_4 & = & N_1 \\ x_1 + x_5 + x_7 + x_8 + x_{F1} + x_{F2} & = & N_2 \\ x_2 + x_5 + x_7 + 2(x_8 + x_{F1} + x_{F2}) & = & N_3 \\ x_3 + x_6 + x_7 + x_{F1} + x_{F2} & = & N_4 \end{array}$$

The system has a unique, positive, globally asymptotically stable equilibrium.

Proof: Reaction network is *deficiency zero* and *weakly reversible*, does not admit equilibria with some $x_i = 0$

 \rightarrow We can design K such that the system always converges to a target equilibrium, $x^d > 0$