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Motivation

» Analysis

Understand cell functions at the level of chemical
interactions [Angeli, de Leenheer, Sontag, CDC 2006]

- functionality, qualitative behavior of pathways
- robustness of network to parameter changes

» Synthesis

Determine whether a network will produce the desired
behavior, or at least have the capacity to produce it

- drug design, therapeutic treatments
- bio-inspired distributed robot systems



Approaches

> There is presently no unified theory of the dynamical

behavior of chemical reactions
[De Leenheer, Angeli, Sontag, J. Math. Chem. 41:3, April 2007]

> However, there are results for restricted classes of reaction
networks:
Feinberg, Horn, Jackson
Fairly general network topology, mass-action kinetics

Angeli, de Leenheer, Sontag

Restricted network topology, monotone but otherwise
arbitrary kinetics



Feinberg, Horn, Jackson

Deficiency Zero and Deficiency One
Theorems

Martin Feinberg. Chemical reaction network structure and the stability of complex
isothermal reactors — |. The Deficiency Zero and Deficiency One Theorems. Chem.
Eng. Sci. 42:10 pp. 2229-2268, 1987.

For related publications, see:

http://www.che.eng.ohio-state.edu/~FEINBERG/PUBLICATIONS/



°oe
Notation oo
A +A, — A, > A+ A :AG
2A, — A, +A,
N 7
Ag /
Symbol Example above
Number of species N 8
Number of complexes n 7
Complex vector y; ERN y;=[1100000 0]

Reaction vector Fory, 2y ¥i-¥;  ¥,—y;=[-1-1100000]

Network rank S 5

[ # of elements in largest linearly independent set of reaction vectors ]
Number of linkage classes / 2

[ set of complexes connected by reactions ]
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Definitions

» Reversible: Each reaction is accompanied by its reverse

» Weakly reversible: When there is a directed arrow
pathway from complex 1 to 2, there is one from 2 to 1

» Complexes 1 and 2 are strongly linked if there are directed arrow
pathways from 1 to 2 and from 2 to 1

A2+A35

Ay tAs A,



Definitions

» Strong linkage class is a set of complexes for which:
- Each pair of complexes is strongly linked

- No complex is strongly linked to a complex outside the set

» Terminal strong linkage class: has no complex that reacts to a
complex in a different strong linkage class (number = L)

A, & A +A,

Ay A

/4
2A,

Ayt As

A;




Remarks

> Ingeneral, L >= 1

» For a weakly reversible network, L =1

(Linkage classes, strong linkages classes, terminal strong
linkage classes coincide)

A, < A, +A A, — A,
/4

2A,

A, +A[—HA,




Kinetics, ODE Description

» Closed, well-stirred, constant-volume, isothermal reactor

- Can extend to open reactors by adding “pseudoreactions,”
0>A,A—>0

Species: {A, A, ..., Ay}

Molar concentration of A ¢; ER,,

Composition vector: c=|c; ¢y ... cpl

PN = positive orthant of RY PN = nonnegative orthant of RV
Support of composition vector: supp ¢ = {A; | ¢; > 0}

Support of complex: supp y;= {A; | y; > 0}

T

Stoichiometric coefficient



Kinetics, ODE Description

» Closed, well-stirred, constant-volume, isothermal reactor

Molar concentration of A ¢; ER,,

Composition vector: c=|c; ¢y ... cpl

> Kinetics: An assignment to each reaction y; - y, of a rate
function X7, (¢)

- Mass action kinetics: For each reaction y; 2 y;,
N
x."_;j (C) — kl—’J‘ l_I (CL)yiL'
L=1
» ODE Formulation:

¢ = Zx£~j(c) (¥, —¥:) ce PN
)




Properties of ODE's

> Stoichiometric subspace S={yeRN }:
y=20_;(¥;—¥)  {%-}ivjca >=0
R

» Network rank s = dim(S) A, — 2A,
> c(t)—¢(0) liesin S "l stoieniomerric
glc;rggatlbllny
» Positive stoichiometric compatibility Locus of
class (reaction simplex): / P Steady States

Composition
Trajectory

(c+S) NPV,

- Goal is to classify dynamics
within a stoichiometric comp.
class




Steady States

» Reaction vectors are positively dependent if:
0-_"'2%—»; ¥y, —¥:) {%isjtizjcea >0
e 4

- Always the case in a weakly reversible network

This is a necessary condition for the existence of:
- A positive steady state e*eP" 0= ;, Ay (%) (Y, — ¥:).
- A cyclic trajectory e(x)e PY ¢(0)=c(T).

» At steady state, all reactions among complexes in a strong
linkage class are switched on or off



Deficiency Zero Theorem

When o = 0:

> Network is not weakly reversible
Arbitrary kinetics
- No positive steady state or cyclic trajectory e(z)e ™

» Network is weakly reversible
Mass action kinetics

-> Each positive stoichiometric compatibility class has
one steady state, which is asymptotically stable;

There is no nontrivial cyclic trajectory e(zx)e P¥

» Remark: The only reactions occurring at steady state are those
joining complexes in a terminal strong linkage class



Deficiency Zero Theorem: Example

A +A, & A, — A, +A, A,

2A, — A, +A,
W/

0 = 0, not weakly reversible

> No positive steady state or cyclic trajectory e(t)e P~
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000
Deficiency Zero Theorem: Example ot
LR N
€
2A, — A, +A,
A
W/
¢, = —oc,cp + Bey — 2xe] + veg » Two networks with the same

complexes and linkage classes

€, = —aC ¢y + Pey + ke — Acyc; + pc ici
2 1C2 + Bcy 1 2¢7THC pave the same deficiency

C3 = ac €y +ec4c5 — (¥ + Pc

Cy = yC3+Oce — (e +n)cycs 95_ 0
Cs = yc3 +0ce — (€ + N)C4Cs - Weakly reversible, assume
Gg = Nc,c5 — Ocg mass action kinetics

- 2 —
G = K€+ UCy — AC2Cy - System has one positive steady state,

Cg = ACzC7 — (1t V)Cq- which is asymptotically stable



Remarks

A +A, & A, — A +A, A,

2A, — A, +A,
W/

Deficiency o=n-1-s

» Two networks with the same complexes and linkage classes
have the same rank - same deficiency

» Network rank <= sum of linkage class ranks

» Network deficiency >= sum of linkage class deficiencies



Deficiency One Theorem

Mass action kinetics

[ linkage classes, each containing one terminal strong
linkage class

) dpg<1l, 86=12,...,7 Linkage class deficiencies
e
(i) D, Jp = 0. Network deficiency
8=1

- No more than one steady state in a positive stoichiometric
compatibility class (may depend on rate constants)

> Network is weakly reversible:
- Precisely one steady state in each pos. stoich. comp. class



000
000
Deficiency One Theorem: Example oo
Ot A, 2224, | o, =1
A 3

n x K
A+ Ay 224,24, 2245 0,=1
i A ¥

.flTp
A3+A

\/

» Network is weakly reversible

5=2=Y9,

—> Precisely one steady state in each pos. stoich. comp.
class



Deficiency One Theorem: Corollary

Mass action kinetics
One linkage class

o0 >1 or # of terminal strong linkage classes L > 1

- Can have multiple steady states in a pos. stoich.
comp. class




Deficiency One Theorem: Subnetworks

> If a set of reactions is partitioned into p subnetworks,
then each is independent iff:

S=8 +S,+ ... +5S,.

> A steady state ¢* for a reaction network is a steady state for
any independent subnetwork.

- Can “carry down” or “carry up” information from Def. Theorems

Ex.) Network admits a positive steady state - this is a positive
steady state of an independent subnetwork



Example: Single Phosphorylation

> “Futile cycle”

ex) Signaling transduction cascades, bacterial two-
component systems

Terminal strong

, linkage classes
Linkage 1| S14+ F < FES1| —|l.S2+ F St ik
classes o[ g9 T F < FSol =T S1+F > ar:;\gsln age

S1 =substrate S2 =product E,F =enzymes ES1=E boundto S1
» Not weakly reversible
0 =n-Il-s5s =6-2-3 =1 > Can't apply Deficiency Zero

Theorem
o, =n;—1-5, =3-1-2=0

0, =n,—1-s5,=3-1-2=0

0, +9,#0 -2 Can'’tapply Deficiency One Theorem



Deficiency One Theorem: Remarks

» Deficiency one networks that are not weakly
reversible:

- Can admit positive steady states for some
values of rate constants but not for others

- Can admit steady states in some pos. stoich.
comp. classes but not in others




Swarm Robotic Assembly System

[Matthey, Berman, Kumar, ICRA 2009]

Design a reconfigurable manufacturing system that quickly assembles target

\

amounts of products from a supply of heterogeneous parts




Required Robot Controller Properties

(1) Strategy should be scalable in the number of parts
Decentralized decision-making:

- Parts scattered randomly inside an arena
- Randomly moving autonomous robots assemble products

- Local sensing, local communication

(2) Minimal adjustments when product demand changes

- Probabilities of assembly and disassembly are robot control policies

- Can be updated via a broadcast

(3) System can be optimized for fast production

Spatial homogeneity = Chemical Reaction Network model



Approach

e Ordinary differential equations )
M states: continuous populations [ Reduced macroscopic model ]

of parts

Robots find parts quickly,
" N=Z3P

e Ordinary differential equations _
States: continuous populations of Complete macroscopic model

robots and free/carried parts Large N, P,

_ _ _ Spatial homogeneity

[D. Gillespie, Annu. Rev. Phys.
Chem., 2007]

e 3D physics simulation

N robots, P; parts; Microscopic model ]
i=1,....M types

ASU MAE 598 Multi-Robot Systems Berman




Approach

ODEs are functions of
probabilities of assembly and
disassembly:

Optimize for fast assembly of
target amounts of products

[Reduced Macroscopic modeIJ

Robots start assemblies
and perform disassemblies
according to optimized
probabilities

[ Microscopic model ]

ASU MAE 598 Multi-Robot Systems Berman



Example

* |Implemented in the robot simulator Webots (www.cyberbotics.com)

- Uses Open Dynamics Engine to simulate physics

* Predefined assembly plan:

- 2 }5* | R — F1

10+ e ) s
4 types . \,_, - ° . 2 types
of basic , ‘_f 5 ' _ of final
parts >~ AR | assemblies

y N

}2“ < F2
s~ 6

ASU MAE 598 Multi-Robot Systems Berman



Example

Magnets that bond to

Khepera lll + bar
other parts

(www.k-team.com)

Rotational Magnet Bonds to bar
servo

 Magnets can be turned on or off
* Servo rotates bonded part to orientation for assembly
* Infra-red distance sensors for collision avoidance

* Emitter/receiver on each robot and basic part for local
communication, computing relative bearing

ASU MAE 598 Multi-Robot Systems Berman



Decisions Modeled as Chemical Reactions

p° = prob. that a robot encounters a

part or another robot = V0, I W m O I w._
[Correll and Martinoli, Coll. Beh. A - y T >
Workshop, ICRA 2007] A = arena area robot



Decisions Modeled as Chemical Reactions

p? = prob. of two robots successfully
completing assembly process j

(measured from simulations)

ASU MAE 598 Multi-Robot Systems Berman 8



Decisions Modeled as Chemical Reactions

Tunable:
P ; = prob. of two robots starting assembly process j

p; = prob. per unit time of a robot performing disassembly process j

ASU MAE 598 Multi-Robot Systems Berman 9



Mapping p;,p; onto the Robot Controllers

At =simulation timestep (32 ms)

u =random number uniformly distributed over [0,1]

Robot computes u at each Ay, Robot computes u,
disassembles the part if executes assembly if

u<p; At u<p’

ASU MAE 598 Multi-Robot Systems Berman 10



Validation of Complete Macroscopic Model

* Macroscopic model (set of ODEs) is fairly accurate

* Discrepancies are due to:
Relatively low populations; ODE most accurate for large ones

Assembly disruption in simulation (not modeled)

3_ ................... ......................... ....................... ........................ ........................ ..................
Final ogl ........................ ......................... ............ s .......... ............
product - T Webots, average of
populations s | E——— ‘ .......... ........................ ........................ ......................... F2 ........... 100 simulations
1o Complete macroscopic
i - model (numerically
" integrated)
0.5
0 G(i)O 8(i)O

Time (sec) .



Reduced Macroscopic Model

Lower-dimensional model (abstract away robots):

e
[X1 +X2 1X5] X3-|—X4\iX() X:— —I—XG\:\X7
A ks ks
kf kT ot
X2+X7\iXFl XZ"'XB\:\XS X()—}-Xg;‘GXFZ
ky ke kg
Vector of complexes: Y(X) = [;171;1’2 rs I3T4 Tg ToX7 T

x = MKy(x) | |
Conservation constraints:
We also define a matrix M € R1%%12 in which each entry T3 — T4

Mj;, 7 = 1,...,10, of column m; is the coefficient of
part type j in complex ¢ (0 if absent). We relabel the rate L1+ &5 1 L7 + T8 T TF1 T TF2

associated with reaction (i,5) € & as k;; and define a matrix ~ T2 + T5 1+ T7 + 2(338 +Tp1 T+ leFQ)

Ke R12%12 with entries T3 + X6 + X + TF1 + TFo
kj’i if 7'75.73 (jai)ega
—2pneeka i i=j.

I'sXg I7 T2 IR Iy IFQ]

12



Reduced Macroscopic Model

I3 — T4 = N1
{X — MKy(X)} T1+ x5 + a7 +a8 + 1 + 2o = Ns
To + x5 + a7+ 2(08 + xp1 +Tr2) = N3
T3 +Tg + X7 +Tp1 +Tpo = Ny

The system has a unique, positive, globally
asymptotically stable equilibrium.

Proof: Reaction network is deficiency zero and weakly
reversible, does not admit equilibria with some x; =0

> We can design K such that the system always converges
to a target equilibrium, x4> 0

13



