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Motivation 

!  Analysis 
 Understand cell functions at the level of chemical 
interactions   
   - functionality, qualitative behavior of pathways 

       - robustness of network to parameter changes 
       
!  Synthesis 
    Determine whether a network will produce the desired 

behavior, or at least have the capacity to produce it 
     - drug design, therapeutic treatments 
      - bio-inspired distributed robot systems 

[Angeli, de Leenheer, Sontag, CDC 2006] 



Approaches 

!  There is presently no unified theory of the dynamical 
behavior of chemical reactions                 
[De Leenheer, Angeli, Sontag, J. Math. Chem. 41:3, April 2007] 

!  However, there are results for restricted classes of reaction 
networks: 

"  Feinberg, Horn, Jackson 
    Fairly general network topology, mass-action kinetics 

"  Angeli, de Leenheer, Sontag 
    Restricted network topology, monotone but otherwise 

 arbitrary kinetics 



   Deficiency Zero and Deficiency One 
Theorems 

Feinberg, Horn, Jackson 

Martin Feinberg. Chemical reaction network structure and the stability of complex 
isothermal reactors – I. The Deficiency Zero and Deficiency One Theorems.   Chem. 
Eng. Sci. 42:10 pp. 2229-2268, 1987. 

http://www.che.eng.ohio-state.edu/~FEINBERG/PUBLICATIONS/ 

For related publications, see: 



Notation 
A1 + A2         A3       A4 + A5         A6 

2A1        A2 + A7 

A8 

Number of species                    N                                       8 
Number of complexes               n                                        7 

     Symbol                         Example above                  

Complex vector                     yi ∈ RN                          y1 = [1 1 0 0 0 0 0 0]              
Reaction vector         For yi ! yj :  yj - yi

          y2 – y1 = [-1 -1 1 0 0 0 0 0]              

Network rank                             s                                        5 

  [ # of elements in largest linearly independent set of reaction vectors ] 
Number of linkage classes        l                                       2 

[ set of complexes connected by reactions ] 



Notation 
A1 + A2         A3       A4 + A5         A6 

2A1        A2 + A7 

A8 

Number of complexes               n                                        7 
     Symbol                         Example above                  

Network rank                             s                                        5 

  [ # of elements in largest linearly independent set of reaction vectors ] 
Number of linkage classes        l                                       2 

[ set of complexes connected by reactions ] 

Deficiency                        δ = n – l – s                                0 



Definitions 

!  Reversible:  Each reaction is accompanied by its reverse 

!  Weakly reversible:  When there is a directed arrow 
pathway from complex 1 to 2, there is one from 2 to 1 

!  Complexes 1 and 2 are strongly linked if there are directed arrow 
pathways from 1 to 2 and from 2 to 1 

A1         A2 + A3       A4       A5 

2A6 

A4 + A5       A7 



Definitions 
!  Strong linkage class is a set of complexes for which:                         
     - Each pair of complexes is strongly linked                        
     - No complex is strongly linked to a complex outside the set 

!  Terminal strong linkage class: has no complex that reacts to a 
complex in a different strong linkage class  (number = L) 

A1         A2 + A3       A4       A5 

2A6 

A4 + A5       A7 



Remarks 

A1         A2 + A3       A4       A5 

2A6 
A4 + A5       A7 

!   In general,  L  >=  l 

!   For a weakly reversible network,   L  =  l                                                  
     (Linkage classes, strong linkages classes, terminal strong                  

 linkage classes coincide) 



Kinetics, ODE Description 
!   Closed, well-stirred, constant-volume, isothermal reactor 

Species:  {A1, A2, …, AN} 

Composition vector:             c = [c1 c2 … cN] 

Molar concentration of Ai:    ci  ∈ R≥0 

PN = positive orthant of RN  PN = nonnegative orthant of RN  

Support of composition vector:  supp c = {Ai | ci > 0} 

Support of complex:                  supp yi = {Aj | yij > 0} 

Stoichiometric coefficient 

     - Can extend to open reactors by adding “pseudoreactions,”  
 0 # Ai, Ai # 0 



Kinetics, ODE Description 
!   Closed, well-stirred, constant-volume, isothermal reactor 

Composition vector:             c = [c1 c2 … cN] 
Molar concentration of Ai:    ci  ∈ R≥0 

!   Kinetics:  An assignment to each reaction yi # yj of a rate 
function 

   - Mass action kinetics: For each reaction  yi # yj , 

               

!   ODE Formulation: 



Properties of ODE’s 

!  Stoichiometric subspace S = {             } :             

!  Network rank s = dim(S)             

!                     lies in S 

A1       2A2 

!  Positive stoichiometric compatibility 
class (reaction simplex): 

- Goal is to classify dynamics                  
within a stoichiometric comp. 
class 

>= 0 



Steady States 

!  Reaction vectors are positively dependent if:     

> 0 

- A positive steady state                           

    - Always the case in a weakly reversible network 

!  At steady state, all reactions among complexes in a strong 
linkage class are switched on or off                         

- A cyclic trajectory                          

    This is a necessary condition for the existence of: 



Deficiency Zero Theorem 

!  Network is not weakly reversible   
 Arbitrary kinetics 

    # No positive steady state or cyclic trajectory  

When δ = 0:                                 

!  Network is weakly reversible 
 Mass action kinetics       

   # Each positive stoichiometric compatibility class has 
one steady state, which is asymptotically stable; 

       There is no nontrivial cyclic trajectory 

!  Remark:  The only reactions occurring at steady state are those 
joining complexes in a terminal strong linkage class 



Deficiency Zero Theorem: Example 

A1 + A2         A3       A4 + A5         A6 

2A1        A2 + A7 

A8 

δ = 0, not weakly reversible  
 # No positive steady state or cyclic trajectory  



Deficiency Zero Theorem: Example 

# δ = 0 

A1 + A2         A3       A4 + A5         A6 

2A1        A2 + A7 

A8 

α 

β 

γ 

ε 

η 

θ 
κ 

µ 
λ 

ν 

!  Two networks with the same 
complexes and linkage classes 
have the same deficiency 

- Weakly reversible, assume 
mass action kinetics  

 # System has one positive steady state, 
which is asymptotically stable 



Remarks 
A1 + A2         A3       A4 + A5         A6 

2A1        A2 + A7 

A8 

Deficiency                        δ = n – l – s                                 

!  Two networks with the same complexes and linkage classes 
have the same rank # same deficiency 

!  Network rank <= sum of linkage class ranks  

!  Network deficiency >= sum of linkage class deficiencies  



Deficiency One Theorem 

Mass action kinetics 
l linkage classes, each containing one terminal strong 

linkage class 
     Linkage class deficiencies 

Network deficiency 

# No more than one steady state in a positive stoichiometric 
compatibility class (may depend on rate constants) 

!  Network is weakly reversible: 
# Precisely one steady state in each pos. stoich. comp. class  



Deficiency One Theorem: Example 

δ1 = 1                                 

δ2 = 1                                 

δ3 = 0                                 

δ = 2 = ∑δi                                 

!  Network is weakly reversible 

 # Precisely one steady state in each pos. stoich. comp. 
class 



Deficiency One Theorem: Corollary 

Mass action kinetics 
One linkage class 
δ > 1  or   # of terminal strong linkage classes L > 1      
  # Can have multiple steady states in a pos. stoich. 

comp. class 



Deficiency One Theorem: Subnetworks 

!  A steady state        for a reaction network is a steady state for 
any independent subnetwork. 

!  If a set of reactions is partitioned into p subnetworks, 
then each is independent iff: 

Ex.) Network admits a positive steady state # this is a positive 
steady state of an independent subnetwork 

# Can “carry down” or “carry up” information from Def. Theorems  



Example: Single Phosphorylation 
!  “Futile cycle”                               

 ex)  Signaling transduction cascades, bacterial two-  
        component systems 

S1 = substrate    S2 = product     E, F = enzymes     ES1 = E bound to S1 

!  Not weakly reversible 

δ  =  n – l – s  =  6 – 2 – 3  =  1  # Can’t apply Deficiency Zero 
                Theorem 

 
δ1  =  n1 – 1 – s1  =  3 – 1 – 2 = 0 
δ2  =  n2 – 1 – s2  =  3 – 1 – 2 = 0 

δ1 + δ2 ≠ δ   # Can’t apply Deficiency One Theorem 

Strong linkage 
classes 

Terminal strong 
linkage classes 

2 
1 Linkage 

classes 



Deficiency One Theorem: Remarks 

! Deficiency one networks that are not weakly 
reversible: 

    - Can admit positive steady states for some 
values of rate constants but not for others 

    - Can admit steady states in some pos. stoich. 
comp. classes but not in others 



!!!!Design!a!reconfigurable!manufacturing!system!that!quickly!assembles!target!
amounts!of!products!from!a!supply!of!heterogeneous!parts!

1!

Swarm!Robo=c!Assembly!System!
[Ma$hey,)Berman,)Kumar,)ICRA)2009]!



(1)$Strategy$should$be$scalable$in$the$number$of$parts$
Decentralized!decision@making:!
!!@!!!Parts!scaCered!randomly!inside!an!arena!
!
!!
@  Randomly!moving!autonomous!robots!assemble!products!
@  Local!sensing,!local!communica=on!
!!
!!

(2)$Minimal$adjustments$when$product$demand$changes$

!@!Can!be!updated!via!a!broadcast!
@!Probabili=es!of!assembly!and!disassembly!are!robot!control!policies!

(3)$System$can$be$op>mized$for$fast$produc>on$
Spa=al!homogeneity!!!Chemical!Reac=on!Network!model! ! !!

! !!
!!

2!

Required!Robot!Controller!Proper=es!

ASU!MAE!598!Mul=@Robot!Systems!!Berman!



Approach!

 
Microscopic model 

 

• )3D)physics)simula?on)))))))))))))))))))))))
) )N$robots,!Pi parts;!!! !!!!!!!!!!!!!!!!!

!i = 1,…,M types!
!!!!

 
Complete macroscopic model 

 

 
Reduced macroscopic model 

 

Spa=al!homogeneity $$

• )Ordinary)differen?al)equa?ons)))))))
States:!con=nuous!popula=ons!of!
robots!and!free/carried!parts!
!!!!

• )Ordinary)differen?al)equa?ons)))))))
)M states:!con=nuous!popula=ons!
of!parts!
!!!!

€ 

N, Pi

[D.$Gillespie,$Annu.%Rev.%Phys.%
Chem.,$2007]$

€ 

N ≥ ΣPi
Robots!find!parts!quickly,!

Large! $$

3!ASU!MAE!598!Mul=@Robot!Systems!!Berman!



Approach!

 
Microscopic model 

 

 
Reduced macroscopic model 

 

ODEs!are!func=ons!of!
probabili=es!of!assembly!and!
disassembly:!!
Op=mize!for!fast!assembly!of!
target!amounts!of!products 

Robots!start!assemblies!
and!perform!disassemblies!
according!to!op=mized!
probabili=es!!

4!ASU!MAE!598!Mul=@Robot!Systems!!Berman!



Example!

•  Implemented!in!the!robot!simulator!Webots!!(www.cyberbo=cs.com)!
!@!Uses!Open!Dynamics!Engine!to!simulate!physics!

•  Predefined!assembly!plan:!

!

4!types!
of!basic$
parts$

2!types!!!!!!!
of!final$

assemblies$

5!ASU!MAE!598!Mul=@Robot!Systems!!Berman!



•  Magnets!can!be!turned!on!or!off!
•  Servo!rotates!bonded!part!to!orienta=on!for!assembly!
•  Infra@red!distance!sensors!for!collision!avoidance!
•  EmiCer/receiver!on!each!robot!and!basic!part!for!local!

communica=on,!compu=ng!rela=ve!bearing!

Bonds!to!bar!

Magnets!that!bond!to!
other!parts!

Khepera!III!!+!!bar!
(www.k@team.com)!

Rota=onal!
servo!

Magnet!

Example!

6!ASU!MAE!598!Mul=@Robot!Systems!!Berman!



7!

!!!!!pe  = prob.!that!a!robot!encounters!a!
part!or!another!robot  ≈ "

!

€ 

vrobotTwcomm

A

€ 

vrobotT

€ 

wcomm

[Correll)and)Mar?noli,)Coll.)Beh.)
Workshop,)ICRA)2007]! A!=!arena!area!

Decisions!Modeled!as!Chemical!Reac=ons!



€ 

p j
a = prob.!of!two!robots!successfully!

comple=ng!assembly!process!j !
(measured!from!simula=ons)!

8!

Decisions!Modeled!as!Chemical!Reac=ons!

ASU!MAE!598!Mul=@Robot!Systems!!Berman!



prob.!of!two!robots!star=ng!assembly!process j!

€ 

p j
+ =

prob.!per!unit!=me!of!a!robot!performing!disassembly!process!j!

€ 

p j
− =

Tunable:!

9!

Decisions!Modeled!as!Chemical!Reac=ons!

ASU!MAE!598!Mul=@Robot!Systems!!Berman!



Mapping!!!!!!!!!!!!!!onto!the!Robot!Controllers!

!!!!!Robot!computes!u at!each!Δt,!
disassembles!the!part!if!!

€ 

Δt =!simula=on!=mestep!(32!ms)!

=!random!number!uniformly!distributed!over![0,1]!!u

u < pi
−Δt

!!!!!Robot!computes!u,)))))))))))))))))))
executes!assembly!if!)

u < pi
+

€ 

pi
+, pi

−

10!ASU!MAE!598!Mul=@Robot!Systems!!Berman!



Valida=on!of!Complete!Macroscopic!Model!!
• !Macroscopic!model!(set!of!ODEs)!is!fairly!accurate!
!!!!!

• !Discrepancies!are!due!to:!
!Rela=vely!low!popula=ons;!ODE!most!accurate!for!large!ones!!!
!Assembly!disrup=on!in!simula=on!(not!modeled)!

Final!
product!

popula=ons!

Time!(sec)"

F2!

F1!

Webots,!average!of!
100!simula=ons!
!
!
!
"

Complete!macroscopic!
model!(numerically!
integrated)!
"

11!



Reduced!Macroscopic!Model!

Conserva=on!constraints:!

Vector!of!complexes:!

Lower@dimensional!model!(abstract!away!robots):!!

12!



Reduced!Macroscopic!Model!

!The!system!has!a!unique,!posi=ve,!globally!
asympto=cally!stable!equilibrium.)

Proof:!!!Reac=on!network!is!deficiency)zero)and!weakly)
reversible,!does!not!admit!equilibria!with!some!xi = 0"

!!We!can!design!K such!that!the!system!always!converges!!!!!
to!a!target!equilibrium,!xd > 0!

13!


