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Spontaneous Interac-on.dependent 

Microscopic Model: Task Switching 
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     Mesoscopic model 

Chemical Master Equation    
   Time-evolution equation for  
 

N elements, 
S species 
  

  Species populations (integers) 

        Microscopic model 

Directed"graph"

Adjacent"complexes: 
 

€ 

cijdt  [Gillespie, Annu. Rev.   
Phys. Chem. ’07] 

Modeling Approach 



   Macroscopic model 

N elements, 
S species 
  

  Species populations (integers) 

   Microscopic model 

Directed"graph"

Adjacent"complexes: 
 

Numerical realizations of N(t) using a Stochastic Simulation 
Algorithm  [Gillespie, J. Comp. Phys. 1976] 

€ 

cijdt
 [Gillespie, Annu. Rev.   
Phys. Chem. ’07] 

Modeling Approach 



     Mesoscopic model 

       Macroscopic model 

€ 

Ni →∞, V →∞,
Ni /V finite

Species"concentra%ons;""!

€ 

c i
Tx = ci, i =1,..,S − rank(S)

Thermodynamic"limit!

€ 

E(N(t) /V )
Linear3model3 3 3 3 3 3Mul-.affine3model!

only! ="Vector"of"complexes!

Modeling Approach 



Top-Down Controller Synthesis 

!  Controller synthesis: 
""""Design"rate"constants"kij 

!  Analysis:"establish"
theore%cal"guarantees"on"
performance"

Decentralized robot control policies based on cij that 
produce desired collective behavior 

Broadcast kij 

Macro-
scopic  
model 

Microscopic 
model 



Analysis of Macroscopic Model 

Equilibrium!
Equilibria3characteriza-on3
333

Model"must"have"a"unique,"posi%ve,"
asympto%cally"stable"equilibrium"
(="final"swarm"popula%on"distribu%on)""
!!!!
!  Chemical Reaction Network Theory 
       

•  General network topology, mass action kinetics: 
 M. Feinberg, F. Horn, R. Jackson (1970’s, 1980’s) 

   

•  More restricted topology, monotone kinetics: 
 E. Sontag, D. Angeli, P. de Leenheer (2000’s) 

 
!  Algebraic Graph Theory 
 
!  Lyapunov Stability Theory 

7 ASU MAE 598 Multi-Robot Systems  Berman 



Hybrid System Macroscopic Models 

8 

U!

 
       
 

[Berman, Halász, Kumar HSCC’07] 

€ 

˙ x = M1K1y(x)

• 3Reachability3analysis3
333

Algorithms"for"systems"with"mul%Jaffine"dynamics"
"""

unstable 

stable 

€ 

˙ x = M2K 2y(x)
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Reallocation of a Swarm among Multiple Sites 

Develop a strategy for redistributing a swarm of 
robots among multiple sites in specified population 
fractions to perform tasks at each site 

   Applications:    
     - surveillance of multiple  
       buildings             
     - search-and-rescue 
     - reconnaissance 
     - environmental monitoring 
     - construction 
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[Berman, Halász, Hsieh, Kumar, IEEE Trans. on Robotics 2009] 
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Required Robot Controller Properties 

Synthesize robot controllers that: 
 

   - can be computed a priori by an external supervisor 
   - are based on a set of parameters that are independent of 

swarm size 
   - do not require inter-robot communication 
   - have provable guarantees on performance 
   - can be optimized for fast convergence to the desired 

allocation among sites, with a constraint on robot traffic 
between sites 

   - require minimal adjustments when task demands change 
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Objective 

•  Develop a strategy for redistributing a swarm of 
robots among multiple sites in specified fractions  
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Objective 

•  Develop a strategy for redistributing a swarm of 
robots among multiple sites in specified fractions  
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Objective 

•  Develop a strategy for redistributing a swarm of 
robots among multiple sites in specified fractions  
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Approach 

" Decentralized decision-making, no communication for control  
  - Promotes scalability, robustness to changes in swarm size 
  - In contrast to coalition-formation algorithms such as market-based 

approaches     
 Dias et al., “Market-based Multirobot Coordination: A Survey and Analysis”                  
Proc. IEEE, 2006 

 
 
 

Challenges: Difficult to use centralized control,            
communication across sites may be risky or impossible 

 

#  Robots redistribute themselves autonomously by switching 
stochastically between sites    

Inspired by social insect behavior, particularly ant house-hunting 
(select a new nest and move the colony there)   
Franks et al., “Information flow, opinion polling and collective intelligence in 
house-hunting social insects,” Phil. Trans. of the Royal Society B, 2002 
 

  Simple rules based on local sensing, physical contact 
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New"
site"1"

New"
site"2"
(beOer)"

Damaged"nest" Assess"1"

Assess"2"

Recruit"to"1"

Recruit"to"2"

Search""

Occupy"old"nest"

Occupy"1"

Occupy"2"
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“House-Hunting” in Temnothorax albipennis 

Tandem3run3 Transport3

Courtesy of Prof. Stephen Pratt, ASU 
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(beOer)"
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€ 

< q

€ 

≥ q

16 

“House-Hunting” in Temnothorax albipennis 

Tandem3run3 Transport3

Courtesy of Prof. Stephen Pratt, ASU 
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New"
site"1"

New"
site"2"
(beOer)"

Damaged"nest" Assess"1"

Assess"2"

Recruit"to"1"

Recruit"to"2"

Search""

Occupy"old"nest"

Occupy"1"

Occupy"2"

€ 

< q

€ 

≥ q

Rates"of"switching"
between"tasks"
determine"final"

alloca%on"
"
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“House-Hunting” in Temnothorax albipennis 

Tandem3run3 Transport3

                                                   

kij = f (site pop., q)  
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33Site3pop. 

€ 

< q 33Site3pop. 

€ 

≥ q



task j task i 

€ 

kij

Xi  ~3chemical3species3i 

Unimolecular3(spontaneous) 

Microscopic Model 

Rate3constant3kij 

 Controllers 

€ 

Yr

€ 

Yr

€ 

Yr

€ 

Yr ⊂R
n

Task j 
Task i 
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Decisions modeled as 
chemical reactions 



Macroscopic Model  [Franks 2002] 

θ(X) = 1   when X > 0,   0 otherwise 

Site 0 (home) is destroyed; Site 2 is better than Site 1 

Active                
Ants  
pN 

Passive                 
Ants   

(1 – p)N 
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Macroscopic Model: Active Ants 

Naive 

Recruiters 

Assessors 

0 

2 

1 

µi  =  rate of discovery            
 of site i 
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Macroscopic Model: Active Ants 

Naive 

Recruiters 

Assessors 

0 

2 

1 

ki  =  rate at which 
assessors of site i 
become recruiters to i  
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Macroscopic Model: Active Ants 

Naive 

Recruiters 

Assessors 

0 

2 

1 

λi  =  rate at which 
recruiters lead tandem 
runs to site i 

T = Quorum 

[Franks 
2002] 
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Macroscopic Model: Active Ants 

Naive 

Recruiters 

Assessors 

0 

2 

1 

ρij  =  rate of switching 
allegiance from site i to 
site j 
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Macroscopic Model: Passive Ants 

0 

2 

1 

φi  =  rate at which 
recruiters perform 
transports to site i 

[Franks 
2002] 

T = Quorum 
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208 ants 

Macroscopic 
Mesoscopic 
Microscopic 

Agreement between macroscopic , 
mesoscopic, and microscopic models  

(modified ant house-hunting model) 

Spring Berman, Adam Halasz, Vijay Kumar, and Stephen Pratt, “Bio-Inspired Group Behaviors for the 
Deployment of a Swarm of Robots to Multiple Destinations” ICRA 2007. 



Mesoscopic Model Fluctuations in Recruiter Populations 

•  Effect of population size on steady-state Y1,Y2:  N = 52, 208, 832 
Dashed lines are macroscopic steady-state values 
N = 208:  Std dev is < 9% of mean 
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= set of sites 

can travel from i to j 

M Sites 
1 2 3 

4 5 6 

7 8 9 

#  Model interconnection topology of sites as a directed graph   

kij =  Transition probability per unit time for          
one robot at site i to travel to site j 

#  Assume that      is strongly connected 
(directed path btwn. each pair of sites) 

k56 k45 

k65 

- Choose for rapid, efficient redistribution 

#  Assume that each robot:    

 - knows     , all kij , task at each site 
 - can navigate between sites 

    - can sense neighboring robots 
 

Approach to Swarm Multi-Site Deployment 

27 ASU MAE 598 Multi-Robot Systems  Berman 



28 

Macroscopic 
Model 

 
Microscopic  

Model 
 

•  N robots, M behavior 
states: {Doing task at site 
1, Doing task at site 2, …, 
Doing task at site M} 
 
- Could also include states 
that represent travel between 
pairs of sites 

•  Ordinary differential 
equations in terms of kij 
and the fraction of robots 
xi at each site i 

Abstraction                 
D. Gillespie, “Stochastic Simulation of 
Chemical Kinetics,” Annu. Rev. Phys. 
Chem., 2007 

∞→N

Approach 

i j 

tkijΔ−1

tkijΔ
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Macroscopic 
Model 

 
Microscopic  

Model 
 

•  Switch according to kij ; 
motion control for tasks 
at sites, navigation 

•  Analysis and 
optimization tools to 
choose kij 

Approach 

i j 

tkijΔ−1

tkijΔ

“Top-down” controller synthesis approach is computationally 
inexpensive and gives guarantees on performance 
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Conservation constraint: 

Macroscopic Model 

i j 

             =  Fraction of robots at site i at time t  

Instantaneous 
switching 

(a) 

(b) 
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=  Target fraction of robots at site i 

Base Continuous Model 

#  There is a unique, stable equilibrium  [Halász et al., IROS�07] 

"   If  kij  are chosen so that  (c)                    ,                                         
     the system always converges to the target distribution 

(a) (b) 
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Simulation Methodology 
#  Swarm of 250 robots monitors the perimeters of 4 buildings on 

UPenn campus while redistributing to the desired allocation  

Two possible site interconnection 
graphs 

3

2 4

1

Swarm initially split between sites 3 and 4 
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    Simulate sequence of 
stochastic transitions using 
Gillespie’s Direct Method           

     

    Compare the sets                        
of optimized kij 

Simulation Methodology 
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 D. Gillespie, “A General Method for Numerically Simulating 
the Stochastic Time Evolution of Coupled Chemical 
Reactions,” J. Comp. Physics, 1976 
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    Local potentials to ensure arrival at goal cell [1] 
+ repulsive potentials for inter-robot collision 
avoidance [2] 

Simulation Methodology 
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€ 

Yr Yr ⊂ R
2

Site j 
Site i 

 Controllers 

[2] D. C. Conner et al., “Composition of local potential 
functions for global robot control and navigation,” IROS 2003 

[1] H. G. Tanner, et al., “Flocking in fixed and switching 
networks,” IEEE Trans. Autom. Control, 2007. 
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Simulation of Swarm Reallocation  
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Agreement between macroscopic and 
microscopic models 

#  Verifies the validity of our controller synthesis approach 
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