Master equation and mean-field

- Reaction propensity $a_{i j}$:
$a_{i j} \delta t=$ probability that the reaction' converts complex i in to complex j will occur in the next δt.
- hi $^{\prime}$ current number of distinct combinations of elements that can undergo the reaction

$$
a_{i j}=c_{i j} \cdot h_{i j}
$$

$C_{i j}=$ stochastic reaction constant
$X_{m}+X_{n} \xrightarrow{k_{i j}}$ products
$N_{i}=$ number of elements of species i

$$
\begin{aligned}
& C_{i j}=\frac{K_{i j}}{V}, \quad h_{i j}=N_{m} N_{n} \text { if } m \neq n \\
& C_{i j}=\frac{2 K_{i j}}{V}, \quad h_{i j}=\frac{N_{m}\left(N_{m}-1\right)}{2} \text { if } m=n
\end{aligned}
$$

$X_{i} \xrightarrow{k_{i j}}$ products

$$
c_{i j}=k_{i j}, \quad h_{i j}=N_{i}
$$

Mesoscopic Model - Abstraction of Microscopic Model

- Counts the number of entities in each species i

$$
N_{1}, N_{2}, \ldots, N_{S}
$$

- Ignores robot identities

The mesoscopic model models the time evolution of $N_{i}, i=1, \ldots, S$, according to the Chemical Master Equation (CME), which is derived by applying the laws of probability to the fundamental hypothesis.

$$
\underline{N}(t) \in \mathbb{R}^{S}=\left[\begin{array}{llll}
N_{1} & N_{2} \ldots N_{S}
\end{array}\right]^{\top} \text { at time } t
$$

integer populations in species $1,2, \ldots, s$

- The CME governs the time evolution of

$$
P\left(\underline{n}, t \mid \underline{n}_{0}, t_{0}\right) \equiv \operatorname{Prob}\left(\underline{N}(t)=n \text { given } N\left(t_{0}\right)=n_{0}\right)
$$

and describes a continuous-time Markov process whose states are all possible species population Vectors N.

$$
\text { for } P\left(n, t \underline{n}_{0}, t_{0}\right)
$$

- Cannot be solved analytically "for more than a feu simple cases; often difficult to solve numerically
\Rightarrow Instead, we can characterize statistical properties of the mesoscopic model by generating numerical realizations of $N(t)$ uscig a stochastic simulation algorithm (SSAA) that is also derived from the fund. hypothesis.
one possible method is Gillespie's Direct Method.

Gillespiés Direct Method

- Equivalent to a microscopic model in which robots perform stochastic v transitions at each time step Δt task as described earlier.
Advantage: Faster to run than the microscopic model, which loops through all robots lother elements at each time step.
- Simulates a sequence of reactions in a CRN and their inititationtimes according to the reaction rate constants $K_{i j}$.
(1) Store initial $N_{i}, i=1, \ldots, S$, in a counter and compute the propensities $a_{i j}$ for each reaction.
(2) Select (1) the next reaction according to a uniform probability distribution over the $a_{i j}$, and ${ }^{2}$) the time until the reaction's occurrence, $\Delta \tau$, from an exponential distribution with $\sum_{\text {all reactions }} a_{i j}$ as its parameter.
(3) Advance time by $\Delta \tau$, simulate the reaction by decrementing the species populations in complex i and incrementing the populations in complex j.
\rightarrow could be done at a future time that represents the completion of the reaction, such as the end of a robot's navigation between tasks at 2 sites.
(4) Recalculate the $a_{i j}$ and go bock to Step (2).

Macroscopic Model Abstraction of the Mesoscopic Model

- Describes the time evolution of the expected values of the species concentrations, $\frac{N_{i}(t)}{V}$, with a set of ODE's. $\quad(V=$ volume of enviononent $)$
- Only unimolecular reactions: can substitute the $C M E$ into the equation for $\frac{\partial E}{\partial t}(\underline{N}(t))$ and use the linearity of expectation.
[Wilkinson, Stochastic Modelling for Systems Biology, 2006, Section 6.7]
- If there are bimolecular reactions: can demonstrate by using van Kamper's system size expansion of the CME [vauKampen, Stochastic Processes in Physics and Chemistry, 2007 , Ch.10]
concentration of species $i=$
$x_{i}+$ fluctuating component
deterministic value
CME is Taylor-expanded near trajectories of x_{i}, in powers of $V^{-1 / 2}$
\Rightarrow ODE modal governing time evolution of x_{1}.
* linear Fokker-Planck equation (the"linear noise approximation") that can be used to characterize moments of fluctuations around ODE solution
- Thermodynamic limit: $N_{i} \rightarrow \infty, V \rightarrow \infty$,

$$
\frac{N_{i}}{V} \rightarrow \text { finite values }
$$

Concentration fluctuations become negligibly small; time evolution of system is accurately described by ODE model.
$x_{i}(t)=$ continuous concentration of species i

$$
\underline{x}(t) \in \mathbb{R}^{S}=\left[\begin{array}{llll}
x_{1}(t) & x_{2}(t) \cdots & x_{s}(t)
\end{array}\right]^{\top}
$$

2.6.1 Equations

We will use capital letters A, B, \ldots for names of chemical substances (molecules, ions, etc), and lower-case a, b, \ldots for their corresponding concentrations.
There is a systematic way to write down equations for chemical reactions, using a graph description of the reactions and formulas for the different kinetic terms. We discuss this systematic approach later, but for now we consider some very simple reactions, for which we can write equations directly. We simply use the mass-action principle for each separate reaction, and add up all the effects.
The simplest "reaction" is one where there is only one reactant, that can degrade ${ }^{26}$ or decay (as in radioactive decay, or be transformed into another species, or split into several constituents.
In either case, the rate of the reaction is proportional to the concentration:
if we have twice the amount of substance X in a certain volume, then, per (small) unit of time, a certain $\%$ of the substance in this volume will disappear, which means that the concentration will diminish by that fraction.
A corresponding number of the new substances is then produced, per unit of time.
So, decay $X \xrightarrow{k} \cdot$ gives the ODE:

$$
d x / d t=-k x
$$

a transformation $X \xrightarrow{k} Y$ gives:

$$
\begin{aligned}
d x / d t & =-k x \\
d y / d t & =k x
\end{aligned}
$$

and a dissociation reaction $Z \xrightarrow{k} X+Y$ gives:

$$
\begin{aligned}
d x / d t & =k z \\
d y / d t & =k z \\
d z / d t & =-k z
\end{aligned}
$$

A bimolecular reaction $X+Y \xrightarrow{k_{+}} Z$ gives:

$$
\begin{aligned}
d x / d t & =-k_{+} x y \\
d y / d t & =-k_{+} x y \\
d z / d t & =k_{+} x y
\end{aligned}
$$

and if the reverse reaction $Z \xrightarrow{k_{-}} X+Y$ also takes place:

$$
\begin{aligned}
d x / d t & =-k_{+} x y+k_{-} z \\
d y / d t & =-k_{+} x y+k_{-} z \\
d y / d t & =k_{+} x y-k_{-} z
\end{aligned}
$$

[^0]Note the subscripts being used to distinguish between the "forward" and "backward" rate constants. Incidentally, another way to symbolize the two reactions $X+Y \xrightarrow{k_{+}} Z$ and $Z \xrightarrow{k_{-}} X+Y$ is as follows:

$$
X+Y \underset{k_{-}}{\stackrel{k_{+}}{\leftrightarrows}} Z
$$

Here is one last example: $X+Y \xrightarrow{k} Z$ and $Z \xrightarrow{k^{\prime}} X$ give:

$$
\begin{aligned}
d x / d t & =-k x y+k^{\prime} z \\
d y / d t & =-k x y \\
d z / d t & =k x y-k^{\prime} z
\end{aligned}
$$

Conservation laws are often very useful in simplifying the study of chemical reactions.
For example, take the reversible bimolecular reaction that we just saw:

$$
\begin{aligned}
d x / d t & =-k_{+} x y+k_{-} z \\
d y / d t & =-k_{+} x y+k_{-} z \\
d z / d t & =k_{+} x y-k_{-} z .
\end{aligned}
$$

Since, clearly, $d(x+z) / d t \equiv 0$ and $d(y+z) / d t \equiv 0$, then, for every solution, there are constants x_{0} and y_{0} such that $x+z \equiv x_{0}$ and $y+z \equiv y_{0}$. Therefore, once that these constants are known, we only need to study the following scalar first-order ODE:

$$
d z / d t=k_{+}\left(x_{0}-z\right)\left(y_{0}-z\right)-k_{-} z .
$$

in order to understand the time-dependence of solutions. Once that $z(t)$ is solved for, we can find $x(t)$ by the formula $x(t)=x_{0}-z(t)$ and $y(t)$ by the formula $y(t)=y_{0}-z(t)$.
Note that one is only interested in non-negative values of the concentrations, which translates into the constraint that $0 \leq z \leq \min \left\{x_{0}, y_{0}\right\} .{ }^{27}$
The equation $d z / d t=k_{+}\left(x_{0}-z\right)\left(y_{0}-z\right)-k_{-} z$ is easily shown to have a unique, and globally asymptotically stable, positive steady state, subject to the constraint that $0 \leq z \leq \min \left\{x_{0}, y_{0}\right\}$.
(Simply intersect the line $u=k_{-} z$ with the parabola $u=k_{+}\left(x_{0}-z\right)\left(y_{0}-z\right)$, and use a phase-line argument: degradation is larger than production when to the right of this point, and viceversa.)
We'll see an example of the use of conservation laws when modeling enzymatic reactions.

2.6.2 Chemical Networks

We next discuss a formalism that allows one to easily write up differential equations associated with chemical reactions given by diagrams like

$$
\begin{equation*}
2 \mathrm{H}+\mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{O} . \tag{2.6}
\end{equation*}
$$

[^1]
[^0]: ${ }^{26}$ Of course, "degrade" is a relative concept, because the separate parts of the decaying substance should be taken account of. However, if these parts are not active in any further reactions, one ignores them and simply thinks of the reactant as disappearing!

[^1]: ${ }^{27}$ This is a good place for class discussion of necessary and sufficient conditions for forward-invariance of the nonnegative orthant. To be added to notes.

