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2.6.1 Equations

We will use capital letters A,B, . . . for names of chemical substances (molecules, ions, etc), and
lower-case a, b, . . . for their corresponding concentrations.

There is a systematic way to write down equations for chemical reactions, using a graph description
of the reactions and formulas for the different kinetic terms. We discuss this systematic approach
later, but for now we consider some very simple reactions, for which we can write equations directly.
We simply use the mass-action principle for each separate reaction, and add up all the effects.

The simplest “reaction” is one where there is only one reactant, that can degrade26 or decay (as in
radioactive decay), or be transformed into another species, or split into several constituents.

In either case, the rate of the reaction is proportional to the concentration:
if we have twice the amount of substance X in a certain volume, then, per (small) unit of time, a
certain % of the substance in this volume will disappear, which means that the concentration will
diminish by that fraction.
A corresponding number of the new substances is then produced, per unit of time.

So, decay X
k�! · gives the ODE:

dx/dt = �kx ,

a transformation X
k�! Y gives:

dx/dt = �kx

dy/dt = kx ,

and a dissociation reaction Z
k�! X + Y gives:

dx/dt = kz

dy/dt = kz

dz/dt = �kz .

A bimolecular reaction X + Y
k+�! Z gives:

dx/dt = �k+xy

dy/dt = �k+xy

dz/dt = k+xy

and if the reverse reaction Z
k��! X + Y also takes place:

dx/dt = �k+xy + k�z

dy/dt = �k+xy + k�z

dy/dt = k+xy � k�z .

26Of course, “degrade” is a relative concept, because the separate parts of the decaying substance should be taken
account of. However, if these parts are not active in any further reactions, one ignores them and simply thinks of the
reactant as disappearing!
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Note the subscripts being used to distinguish between the “forward” and “backward” rate constants.

Incidentally, another way to symbolize the two reactions X + Y
k+�! Z and Z

k��! X + Y is as
follows:

X + Y
k+�!
 �
k�

Z .

Here is one last example: X + Y
k�! Z and Z

k0�! X give:

dx/dt = �kxy + k0z

dy/dt = �kxy

dz/dt = kxy � k0z .

Conservation laws are often very useful in simplifying the study of chemical reactions.

For example, take the reversible bimolecular reaction that we just saw:

dx/dt = �k+xy + k�z

dy/dt = �k+xy + k�z

dz/dt = k+xy � k�z .

Since, clearly, d(x + z)/dt ⌘ 0 and d(y + z)/dt ⌘ 0, then, for every solution, there are constants x
0

and y
0

such that x+ z ⌘ x
0

and y+ z ⌘ y
0

. Therefore, once that these constants are known, we only
need to study the following scalar first-order ODE:

dz/dt = k+(x0

� z)(y
0

� z)� k�z .

in order to understand the time-dependence of solutions. Once that z(t) is solved for, we can find x(t)
by the formula x(t) = x

0

� z(t) and y(t) by the formula y(t) = y
0

� z(t).

Note that one is only interested in non-negative values of the concentrations, which translates into the
constraint that 0  z  min{x

0

, y
0

}.27

The equation dz/dt = k+(x0

� z)(y
0

� z) � k�z is easily shown to have a unique, and globally
asymptotically stable, positive steady state, subject to the constraint that 0  z  min{x

0

, y
0

}.

(Simply intersect the line u = k�z with the parabola u = k+(x0

� z)(y
0

� z), and use a phase-line
argument: degradation is larger than production when to the right of this point, and viceversa.)

We’ll see an example of the use of conservation laws when modeling enzymatic reactions.

2.6.2 Chemical Networks

We next discuss a formalism that allows one to easily write up differential equations associated with
chemical reactions given by diagrams like

2H +O $ H
2

O . (2.6)
27This is a good place for class discussion of necessary and sufficient conditions for forward-invariance of the non-

negative orthant. To be added to notes.


