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Abstract— We present a decentralized sliding mode control

strategy for collective payload transport by a team of robots.

The controllers only require robots’ measurements of their own

heading and velocity, and the only information provided to

the robots is the target speed and direction of transport. The

control strategy does not rely on inter-robot communication,

prior information about the load dynamics and geometry, or

knowledge of the transport team size and configuration. We

initially develop the controllers for point-mass robots that are

rigidly attached to a load and prove the stability of the system,

showing that the speed and direction of the transported load

will converge to the desired values in finite time. We also

modify the controllers for implementation on differential-drive

mobile robots. We demonstrate the effectiveness of the proposed

controllers through simulations with point-mass robots, 3D

physics simulations with realistic dynamics, and experiments

with small mobile robots equipped with manipulators.

I. INTRODUCTION

One potential application of autonomous robotic swarms
is cooperative manipulation in unstructured, uncertain en-
vironments that are inaccessible or hazardous to humans.
This type of task can arise in scenarios such as construction,
assembly in space and underwater, search-and-rescue opera-
tions, and disaster response. This application will require the
development of robot control strategies that rely on minimal
information and are robust to uncertainties in the payload
dynamics and to external disturbances. Toward this end,
we present, analyze, and implement a novel decentralized
control scheme based on a sliding mode control approach.
These types of controllers provide robust control of nonlinear
systems and only require bounds on uncertainties in the
dynamics instead of their precise characterization.

In recent years, various control methods have been pro-
posed for collective transport tasks in which there is no inter-
robot communication, some of which are leader-follower
strategies. For instance, in [2] and [3], a consensus-based
approach is presented in which the leader is more powerful
than the followers and is provided with a predefined path
to the goal, and the followers, which do not know anything
about the leader’s intention, can effectively attain a consensus
on the magnitude and the direction of the force they have
to apply to the load. Also, in [4], a leader robot applies a
force to move the load over a predefined path, and followers
can estimate the direction of the object movement using
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Fig. 1. Simulated Pheeno robots [1] performing a collective transport task.

force sensing at the attachment point and apply their forces
along this estimated direction in order to assist the leader.
Considering the load as the leader is another approach
presented in [5], where the followers (the transporting robots)
use a path planning approach to preserve their initial position
and orientation with respect to the virtual leader (load) during
the transport. In other works, all robots in the transport
team are assumed to be identical. In [6], a decentralized
approach is proposed for cooperative transport when the load
is significantly larger than robots, and robots push the load
to the goal only if their line of sight to the goal is occluded
by the object. In [7], a combination of four controllers are
presented by which robots can estimate the centroid of the
load in order to rotate and transport it over certain marked
points along the way that can be recognized by a guide robot.
Transporting a flexible payload is considered in [8] and [9],
where the reaction force between the robot and the payload
is modeled as the gradient of a nonlinear potential that
describes the load deformation. Inspired by ants, group food
retrieval is studied in [10], and a force sensing mechanism
is fabricated to develop a hybrid dynamical model that can
replicate collective behavior observed in ants. In [11], it is
supposed that all the robots know the target direction to the
goal, and a simple control law, which uses just the velocity
of the attachment point, is developed to calculate the force
that a robot has to apply to the load. In a similar scenario,
decentralized PID controllers were used in [1] for collective
transport by three small mobile robots.

In the present work, we consider scenarios that are similar
to those in [1] and [11] and design a control approach whose
stability can be proven to drive the transport system to a goal
position in a target direction. Although sliding mode control
has previously been used for cooperative manipulation in
[12], [13], [14], [15], these strategies require predefined



trajectories for each robot and/or for the payload. In contrast,
the control strategy proposed here only requires local robot
measurements of their own velocity and heading, and it
does not rely on information about the environment, load,
or transport team.

II. PROBLEM STATEMENT
We consider a team of identical autonomous ground

robots, each equipped with a manipulator arm, that are
arranged on a planar surface in an arbitrary configuration
around a payload. The robots are all grasping the load and
holding it above the ground (as in Fig. 1). We assume that
each robot can measure its speed and heading. The robots do
not have global localization or communication capabilities,
and they lack information about the payload dynamics, the
number of robots in the transport team and their distribution
around the payload, and the layout of the environment.

Our objective is to design decentralized controllers that
will drive the team of robots to collectively transport the
load at a desired speed along a straight path in a target
direction. We assume that each robot knows the target direc-
tion, although they are not assigned predefined trajectories.
To enable the robots to act autonomously during transport,
we do not assign them reference speed profiles that would
require the presence of a global supervisor with knowledge
about their positions with respect to the goal and their
distribution around the payload. Instead, the controllers must
depend only on the minimal information that is available to
the robots and should be robust to the uncertainties in the
highly nonlinear dynamics of the manipulated payload.

III. DYNAMICAL MODEL
We consider a load that is transported in the plane by a

group of N robots, each of which is modeled as a point-mass
agent. The position of robot i at time t in an inertial reference
frame is given by Xi(t) 2 R2. The robot’s actuating force
is denoted by ui 2 R2, and the reaction force exerted by the
load on the robot is Fi 2 R2. Given that robot i has mass
mi, the dynamics of the robot are:

mi
¨

Xi = ui � Fi . (1)

In order to develop a sliding mode controller for robot i,
we must be able to write the robot’s dynamics in the form

¨

Xi = h+Gui , (2)

in which G is an input matrix that is a function of the load
dynamics, and h is a nonlinear term that describes the effects
of both the load dynamics and the forces applied by the other
robots. The sliding mode controller will only require bounds
on this nonlinear term, not a precise characterization. In the
remainder of this section, we show that Equation (1) can be
put into the form Equation (2).

The notation for our dynamical model of collective trans-
port is shown in Figure 2. We define an inertial coordinate
frame I and a local coordinate frame B that is fixed to the
load. The matrix R

I
B is the rotation matrix from coordinate

frame B to coordinate frame I . We define ¨

X

B
o and r
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Fig. 2. Schematic representation of a collective transport task with four
robots and the associated coordinate systems.

both expressed in coordinate frame B, as the acceleration
of the load’s center of gravity (CG) and the vector from the
load’s CG to the attachment point of robot i, respectively.
We denote the load’s orientation in frame I by ✓, its angular
velocity by !, and its angular acceleration by ↵. We now
recall that the cross product of any two non-zero vectors
a and b can be expressed as a ⇥ b =

ˆ

ab, where ˆ

a is a
skew-symmetric matrix. Using this notation, we denote the
skew-symmetric matrix representations of ! and ↵ by !̂ and
↵̂, respectively.

Since we assume that each robot is rigidly attached to the
load, the acceleration of robot i can be written in terms of the
load’s angular velocity and angular acceleration as follows:

¨

Xi = R

I
B(

¨

X

B
o + ↵̂r

B
i + !̂(!̂r

B
i )) . (3)

Noting that
↵̂r

B
i = �ˆ

r

B
i ↵ = (

ˆ

r

B
i )

T
↵ (4)

and that ↵ =

¨

✓, we can rewrite Equation (3) as:

¨

Xi = R

I
B

✓⇥
I (

ˆ

r

B
i )

T
⇤  ¨

X

B
o
¨

✓

�
+ !̂(!̂r

B
i )

◆
, (5)

where I is the identity matrix.
We now represent the load’s translational and rotational

dynamics together in the following matrix form:

moI 0

0 Io

� 
¨

X

B
o
¨

✓

�
=


I · · · I

ˆ

r

B
1 · · · ˆ

r

B
N

�
FB

, (6)

FB
=

⇥
(F

B
1 )

T · · · (F

B
N )

T
⇤T

,

where F

B
i is force Fi in coordinate frame B, mo is the mass

of the load, and Io is the load’s moment of inertia about the
axis normal to the plane of the motion and passing through
its CG. Solving for the load’s acceleration vector from this
equation and substituting it into Equation (5), we obtain the
acceleration of robot i as:

¨

Xi = R

I
B

⇥
I (

ˆ

r

B
i )

T
⇤
M

�1
o


I · · · I

ˆ

r

B
1 · · · ˆ

r

B
N

�
FB

+ R

I
B!̂(!̂r

B
i ) , (7)

where
Mo =


moI 0

0 Io

�
. (8)



We can rewrite Equation (7) as the sum of two terms,
one containing the force applied by robot i and the other
containing the forces applied by all the other robots:

¨

Xi = Q+PFi , (9)

where
P = R

I
B

⇥
I (

ˆ

r

B
i )

T
⇤
M

�1
o


I

ˆ

r

B
i

�
R

B
I (10)

and
Q = R

I
BQ1Q2FB

r +R

I
B!̂(!̂r

B
i ) , (11)

Q1 =

⇥
I (

ˆ

r

B
i )

T
⇤
Mo

�1
,

Q2 =


I · · · · · · · · · . . . I

ˆ

r

B
1 · · · ˆ

r

B
i�1 ˆ

r

B
i+1 · · · ˆ

r

B
N

�
,

FB
r =

⇥
(F

B
1 )

T · · · (F

B
i�1)

T
(F

B
i+1)

T · · · (F

B
N )

T
⇤T (12)

From Equation (9), we can solve for Fi as

Fi = P

�1
(

¨

Xi �Q) . (13)

Finally, by substituting this expression into Equation (1), we
obtain an equation of the form Equation (2), where

h = M

�1
a P

�1
Q ,

G = M

�1
a , (14)

in which
Ma = miI+P

�1
. (15)

IV. CONTROLLER DESIGN
Our objective is for a team of robots to transport the load

at a constant speed vdes in a target direction, defined by
the angle � in Figure 1. To achieve this, we will design
controllers for each robot that regulate the magnitude of its
velocity to vdes and the direction of its velocity to �. Since
the controllers for each robot will be identical, we will drop
the subscript i from the robot state variables and parameters
in this section. We define the state vector for a robot as
x = [X

T
˙

X

T
]

T , where X = [x y]

T is the robot’s position in
inertial coordinate frame I and ˙

X = [ẋ ẏ]

T is its velocity in
frame I . The state vector of the robot is then x = [x y ẋ ẏ]

T .
It will be useful to define a second global coordinate frame

I� , with axes labeled x

⇤
I and y

⇤
I , by rotating coordinate frame

I by the angle � (see Figure 1). In this coordinate frame, the
axis labeled x

⇤
I points in the target direction of transport.

Denoting the rotation matrix from frame I to frame I� by
R

I�
I , the state vector in the coordinates of frame I� is given

by x

⇤
= R

I�
I x. The components of this state vector are

x

⇤
= [(X

⇤
)

T
(

˙

X

⇤
)

T
]

T
= [x

⇤
y

⇤
ẋ

⇤
ẏ

⇤
]

T . The transformed
control input is u

⇤
= R

I�
I u. We can then write the robot

dynamics Equation (2) in the frame I� as

¨

X

⇤
= h

⇤
+G

⇤
u

⇤
, (16)

in which h

⇤
= R

I�
I h and G

⇤
= R

I�
I GR

I
I�

.
We denote the components of the vector u

⇤ 2 R2 by
u

⇤
= [u

⇤
1 u

⇤
2]

T , where u

⇤
1 is the robot’s actuating force in

the desired direction of transport and u

⇤
2 is its actuating force

normal to this direction. We will design each of these control
inputs as a sliding mode controller that drives all possible
robot trajectories x

⇤
(t) to enter a sliding manifold in the

robot’s state space in finite time and remain on the manifold
thereafter [16]. The robot exhibits a desired dynamical be-
havior when its state evolves along the manifold. To regulate
the robot’s speed to vdes in the desired direction of transport
(along the x

⇤
I axis), we define a sliding manifold s1 as

s1 = ẋ

⇤ � vdes = 0 . (17)

To stabilize the direction of the robot’s velocity to the angle
�, we define a sliding manifold s2 that sets the component
of the robot’s velocity along the y

⇤
I axis to zero:

s2 = ẏ

⇤
= 0 . (18)

Using the approach for sliding mode control design in
[16], we define the control laws for u⇤

1 and u

⇤
2 as

u

⇤
1 = �k1 sgn(s1) , (19)

u

⇤
2 = �k2 sgn(s2) , (20)

where k1 and k2 are control gains. These gains must be large
enough to stabilize the system on the sliding manifolds. We
derive lower bounds on the gains in section V. To eliminate
chattering on the sliding manifolds without considerably
affecting the controller performance, the signum functions
in these controllers can be replaced by saturation functions,
as proposed in [16] and [17].

We note that since G

⇤ is not a diagonal matrix, u⇤
2 affects

the motion along x

⇤
I in addition to y

⇤
I , and u

⇤
1 influences the

motion along y

⇤
I in addition to x

⇤
I . We can describe these

effects as a bounded nonlinear term that is added to the
vector h

⇤ in Equation (16). Since sliding mode controllers
are robust to variations in the h

⇤ term, these effects will not
deteriorate the controller performance.

V. STABILITY ANALYSIS
We first derive some preliminary results that we will need

to prove the stability of the system driven by the sliding
mode controllers.

Proposition 5.1: The matrix P in Equation (10) is positive
definite.

Proof: We define a matrix P1 as:

P1 =

⇥
I (

ˆ

r

B
i )

T
⇤
M

�1
o


I

ˆ

r

B
i

�
. (21)

Then, by Equation (10), P = R

I
BP1R

B
I . Since rotation

matrices are invertible, the matrices P and P1 are similar,
and thus they have the same eigenvalues. Using the defi-
nition r

B
i =

⇥
ri,x ri,y

⇤T and the definition of Mo from
Equation (8), P1 can be calculated from Equation (21) as

P1 =

2

4
1

mo
+

r2i,y
Io

�ri,xri,y
Io

�ri,xri,y
Io

1
mo

+

r2i,x
Io

3

5
. (22)

The eigenvalues of P1 are

�1 =

1

mo
, �2 =

1

mo
+

||rBi ||2

Io
, (23)



which are both positive. Since these are also the eigenvalues
of P, the matrix P is positive definite.

Proposition 5.2: The matrix G in Equation (14), and
consequently G

⇤ in Equation (16), is positive definite and
has constant eigenvalues.

Proof: Since G = M

�1
a by Equation (14), we need to

show that Ma, and consequently M

�1
a , is positive definite

with constant eigenvalues. Let e1 and e2 denote the eigen-
vectors of Ma, with corresponding eigenvalues µ1 and µ2.
Using Equation (15) for Ma, we obtain

Maej = (miI+P

�1
)ej = µjej , j = 1, 2. (24)

This equation can be rearranged as

P

�1
ej = µjej �miej = (µj �mi)ej , j = 1, 2. (25)

Hence, the eigenvalues of P

�1 are µ1 � mi and µ2 � mi.
Since the eigenvalues of P were found to be �1 and �2 as
defined in Equation (23), and the eigenvalues of P�1 are the
inverses of the eigenvalues of P, we have that µ1 � mi =

�

�1
1 and µ2 �mi = �

�1
2 . Therefore, the eigenvalues of Ma

are µ1 = mi + �

�1
1 and µ2 = mi + �

�1
2 , which are both

positive and constant, making Ma a positive definite matrix
with constant eigenvalues.

Lemma 5.3: If all the robots in a transport team apply
control forces Equation (19) and Equation (20) to the load,
then the angular velocity of the load will remain bounded.

Proof: Since the robots are rigidly attached to the load,
the rotational dynamics of the entire system are given by

Is
¨

✓ =

NX

i=1

ˆ

r

B
i R

I
I�u

⇤
i , Is = Io +

NX

i=1

mi

��
r

B
i

��2
. (26)

We define the angular difference between the load’s orien-
tation and the target direction as � = ✓ � �. Since � is
constant, ˙

� =

˙

✓ and ¨

� =

¨

✓. Writing Equation (26) in terms
of � and substituting in the control laws Equation (19) and
Equation (20), we obtain:

Is
¨

� =

 
k1

NX

i=1

ri,ysgn(si,1)� k2

NX

i=1

ri,xsgn(si,2)

!
cos (�)

+

 
k1

NX

i=1

ri,xsgn(si,1) + k2

NX

i=1

ri,ysgn(si,2)

!
sin (�),

(27)

where si,1 and si,2 are the sliding modes Equation (17) and
Equation (18) that are defined in terms of the velocity ˙

X

⇤
i =

[ẋ

⇤
i ẏ

⇤
i ]

T of robot i in coordinate frame I� . Since ˙

X

⇤
i is a

function of ˙

Xo = [ẋo ẏo]
T , the velocity of the load’s CG in

coordinate frame I , and the load’s orientation ✓ = �+� and
angular velocity ˙

✓ =

˙

�, we can write Equation (27) in the
following form:

¨

� = ⌘(ẋo, ẏo,�,
˙

�) cos (�) + ⇣(ẋo, ẏo,�,
˙

�) sin (�), (28)

where the coefficients ⌘ and ⇣ are bounded since both are
finite summations of signum functions:

|⌘|  �⌘ , |⇣|  �⇣ . (29)

To prove the boundedness of the load’s angular velocity
˙

� from Equation (28), we can use the comparison lemma
presented in [16]. Here, we apply this lemma to the simpler
equation ¨

� = ⌘ cos (�), since a similar approach can be used
for the entire Equation (28). We define a function

v(t) =

1

2

˙

�(t)

2 (30)

whose time derivative can be calculated as

v̇ =

˙

�

¨

� =

˙

�⌘ cos(�)  �⌘
˙

� cos(�), (31)

with the bound on ⌘ defined in Equation (29). Using Equa-
tion (30), we can write the upper bound in Equation (31) in
terms of v(t) as:

v̇  �⌘

p
2v cos

✓Z t

0

p
2vd⌧

◆
. (32)

We now define another function, w(t), that is the solution to
the following equation:

ẇ = �⌘

p
2w cos

✓Z t

0

p
2wd⌧

◆
, w(0) = w0. (33)

By the comparison lemma from [16], we can conclude that
v(t)  w(t) for all t � 0. From the definition of v(t) in
Equation (30), this implies that ˙

�(t)

2
/2  w(t), and thus

we obtain an upper bound on the load’s angular velocity,

| ˙�(t)| 
p
2|w(t)|, t � 0. (34)

We can derive an expression for the upper bound in
Equation (34) by solving Equation (33) for w(t) and then
obtaining an upper bound for |w(t)|. To solve Equation (33),
we can use the following change of variables,

⇠ =

p
2w ) ˙

⇠ =

ẇp
2w

,

and rewrite Equation (33) as:

˙

⇠ = �⌘ cos

✓Z t

0
⇠d⌧

◆
, ⇠(0) =

p
2w0. (35)

Using another change of variables,

 =

Z t

0
⇠d⌧ ) ˙

 = ⇠,

¨

 =

˙

⇠,

Equation (35) can be written as

¨

 = �⌘ cos( ),  (0) =  0,
˙

 (0) =

p
2w0. (36)

This is the equation of motion of a simple pendulum, which
can be integrated once to obtain

1

2

˙

 

2 � �⌘ sin( ) =

1

2

˙

 

2
(0)� �⌘ sin( 0) ⌘ c. (37)

Using the fact that ˙

 = ⇠ =

p
2w, we have the relation

w =

˙

 

2
/2, and so by Equation (37),

w = �⌘ sin( )� �⌘ sin( 0) + w0. (38)

Then, using the triangle inequality and the fact that w0 > 0,

|w|  2�⌘ + w0.



If we use the same procedure for the term containing ⇣ in
Equation (28), we can modify the bound as:

|w|  2�⌘ + 2�⇣ + w0. (39)

Substituting Equation (39) into Equation (34) yields the
following finite upper bound on the load’s angular velocity:

| ˙�(t)| 
p

2|w(t)| 
p
4�⌘ + 4�⇣ + 2w0, t � 0. (40)

Note that since v(0)  w(0) = w0 by the comparison lemma
and v(0) =

˙

�(0)

2
/2 by Equation (30), setting w0 = 0

implies that ˙

�(0) = 0, meaning that the load starts with
zero angular velocity at t = 0.

The nonlinear term h defined in Equation (14) is a function
of the load’s angular velocity !, mass, and geometric prop-
erties, as well as the forces applied by the robots. Lemma
5.3 states that ! is bounded, and the other parameters are
bounded as well due to the fact that the load has finite
mass and dimensions and the robots’ forces cannot exceed a
saturation limit. This implies that h is bounded, a result that
we will use subsequently in our stability analysis.

To analyze the stability of the system, we follow the
approach in [16] and define the Lyapunov functions V1 =

1
2s

2
1 and V2 =

1
2s

2
2, which measure the distance of a robot

state trajectory x

⇤ from the sliding manifolds Equation (17)
and Equation (18), respectively. The time derivatives of these
functions are:

˙

V1 = s1ṡ1 = s1ẍ
⇤
, (41)

˙

V2 = s2ṡ2 = s2ÿ
⇤
. (42)

In order for the system to be asymptotically stable, these
functions should both be negative whenever |s1| , |s2| 6= 0.

We will conduct the analysis just for ˙

V1, since the analysis
for ˙

V2 is similar. The expression for ẍ⇤ can be obtained from
the first component of Equation (16) and substituted into
Equation (41), yielding

˙

V1 = s1(h
⇤
1 + g

⇤
11u

⇤
1 + g

⇤
12u

⇤
2), (43)

where h

⇤
1 is the first component of h

⇤ and g

⇤
ij is the entry

of matrix G

⇤ at row i and column j. Our finding that h

is bounded implies that h⇤
1 < ⇢1 for some positive constant

⇢1. In addition, suppose that ✏11, ✏12, and g0 are positive
constants such that g⇤11 � g0 > 0 and the following condition
is satisfied:

����
h

⇤
1 + g

⇤
12u

⇤
2

g

⇤
11

����  ⇢1 + ✏11 |u⇤
1|+ ✏12 |u⇤

2| . (44)

Here, the constants ✏ij incorporate the uncertainties associ-
ated with (g

⇤
12u

⇤
2)/g

⇤
11.

By Proposition 5.2, the matrix G

⇤ is positive definite,
which implies that its diagonal elements g

⇤
ii are positive.

Therefore, we can multiply both sides of Equation (44) by
g

⇤
11 |s1| to obtain:

|s1|(h⇤
1 + g

⇤
12u

⇤
2)  ⇢1g

⇤
11 |s1|+ g

⇤
11✏11 |u⇤

1| |s1|
+ g

⇤
11✏12 |u⇤

2| |s1| . (45)

Noting that s1  |s1| and that |u⇤
1| = k1, |u⇤

2| = k2 by
Equation (19) and Equation (20), we have that:

s1(h
⇤
1 + g

⇤
12u

⇤
2)  ⇢1g

⇤
11 |s1|+ g

⇤
11✏11k1 |s1|

+ g

⇤
11✏12k2 |s1| . (46)

If we add s1g
⇤
11u

⇤
1 to both sides of this inequality, the term

on the left side becomes ˙

V1 by Equation (43). Then, noting
that s1g⇤11u⇤

1 = �g

⇤
11k1 |s1|, this inequality can be written as

˙

V1  g

⇤
11 |s1| (⇢1 + ✏11k1 � k1 + ✏12k2) (47)

We can follow the same procedure to compute an upper
bound on ˙

V2.
From Equation (47), we can derive the following condition

on ⇢1 to ensure that ˙

V1 < 0 whenever |s1| , |s2| 6= 0:

⇢1  (1� ✏11)k1 � ✏12k2. (48)

Similarly, the following condition on a positive constant ⇢2
can be derived to ensure that ˙

V2 < 0 whenever |s1| , |s2| 6= 0:

⇢2  (1� ✏22)k2 � ✏21k1, (49)

where ✏21, ✏22 are positive constants. Now, by defining b =

[b1 b2]
T in which b1, b2 > 0, the inequalities Equation (48)

and Equation (49) can be written in the form of a matrix
equation as:

"
⇢1

⇢2

#
+

"
b1

b2

#
=

 
I�

"
✏11 ✏12

✏21 ✏22

#!"
k1

k2

#
. (50)

Define the matrix with entries ✏ij as E. Since ki, ⇢i, and bi

are positive, (I � E) must be nonsingular, and all elements
of (I�E)

�1 must be positive. This implies that (I�E) is
an M-matrix [16]. Then, Equation (50) can be solved for the
control gains k1 and k2:

"
k1

k2

#
= (I�E)

�1

"
⇢1 + b1

⇢2 + b2

#
. (51)

By choosing these control gains and substituting them into
the upper bound Equation (47) on ˙

V1 and the corresponding
upper bound on ˙

V2, we obtain the following inequalities:

˙

V1  �g0b1 |s1| , ˙

V2  �g0b2 |s2| . (52)

Since g0, b1, b2 > 0, it is evident that ˙

V1 < 0 and ˙

V2 < 0

when |s1| , |s2| 6= 0. Hence, the system is asymptotically
stable for these gains k1 and k2, meaning that all state
trajectories will reach the intersection of the two sliding
manifolds in finite time and remain on it thereafter.

VI. SIMULATION RESULTS
We validated our sliding mode control strategies with

simulations of point-mass robots in MATLAB and with
high-fidelity 3D physics simulations in the robot simulator
Webots [18]. The robots in the Webots simulations are 3D
models of the small mobile robot platform “Pheeno” that
has been developed in our lab [1]. To address the problem
of chattering on the sliding manifolds, we used the approach
mentioned in section IV: we replaced each signum function
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Fig. 3. Collective transport of a load by five point-mass robots.
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Fig. 4. Sliding mode parameters (s1 and s2) of the five robots.

sgn(si) in the controllers Equation (19), Equation (20) with a
saturation function sat(si/✏bi), where ✏bi is a boundary layer
parameter that gives the bounds on an envelope around si =

0 within which trajectories can evolve to avoid chattering.

A. Simulation with point-mass robots

We simulated a scenario in which five point-mass robots,
marked by the red dots in Figure 3, must transport an
asymmetric load to a goal, the heading to which is � = 30

�.
The desired load velocity was set to vdes = 0.1m/s, and
the controller parameters were set to k1 = k2 = 0.4,
✏b1 = ✏b2 = 0.01. The mass of the load is 1kg, and its
moment of inertia is 0.33kg/m

2. Each robot has a mass of
0.1kg and can apply a maximum force of 0.1N on the load.
The system was simulated for 120 s. As Figure 3 shows, the
load and the robots exhibit fairly straight trajectories that
are parallel to the desired path to the goal, illustrated by the
dashed line.

In addition, Figure 4 plots the values of the sliding mode
parameters, s1 and s2, for all the robots during the first
3 s of the transport. These values all quickly converge to
the boundary layer (|s1| < 0.01, |s2| < 0.01) within 1 s.
Figure 5, which plots the load’s angular position and its
drift from the desired path, shows that system converges to a
stable equilibrium state after a negligible initial load rotation
that produces a slight initial drift of about 0.03mm.
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Fig. 5. Load rotation (left) and its drift from the desired path (right).

B. Simulations with a model of Pheeno in Webots

We also developed 3D simulations that incorporate realis-
tic physical effects arising from the robots’ wheeled actuation
system and the additional degrees of freedom introduced by
the manipulator arms. In addition, these simulations required
modifications to the sliding mode controllers to account for
the fact that Pheeno is a nonholonomic, differential-drive
platform. As defined, the controllers require the velocity
of the attachment point of a robot to the load, and so
they require the velocity of Pheeno’s end-effector, which
necessitates computing the Jacobian matrix and consequently
including the geometry of the manipulator arm in the control
commands. However, there is an alternate way to control the
heading and velocity of Pheeno during transport, which we
pursue here. Let ˙

✓R and ˙

✓L denote the angular velocities of
the right and left wheel of Pheeno, respectively, and ⌧R and
⌧L be the corresponding actuation torques on the wheels.
These torques are the control inputs to the robot. We define:

˙

✓H =

1

2

(

˙

✓R � ˙

✓L), ⌧H =

1

2

(⌧R � ⌧L),

˙

✓V =

1

2

(

˙

✓R +

˙

✓L), ⌧V =

1

2

(⌧R + ⌧L). (53)

We diagonalize the linear model developed in [19] for a
differential-drive robot and write it in the following form:

A�B 0

0 A+B

� 
¨

✓H

¨

✓V

�
+


K 0

0 K

� 
˙

✓H

˙

✓V

�
=


⌧H

⌧V

�
, (54)

where the constants A and B depend on the geometry and
mass properties of the robot, and the constant K is the
damping in the wheels.

Equation (54) provides us with two decoupled equations.
One equation governs the robot’s heading angle ', which is
proportional to (✓R � ✓L), and the other governs the robot’s
speed v, which is proportional to (

˙

✓R +

˙

✓L). Defining sH =

' � � and sV = v � vdes, we can formulate the following
sliding mode controllers for the robot’s heading and speed:

⌧H = �kH sat

✓
sH

✏bH

◆
, ⌧V = �kV sat

✓
sV

✏bV

◆
. (55)

We implemented these controllers in a Webots simulation
in which five Pheeno robots grasp a load, lift it simulta-
neously, and transport it to a goal location at a heading of
� = 30

�. The desired load velocity, load mass and moment of
inertia, robot mass, and robot maximum force were all set to
the same values as in the point-mass simulations. The system



Fig. 6. Collective transport by five Pheenos simulated in Webots.
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Fig. 7. The trajectories of the Pheenos and the load during transport.

was simulated for 120 s. The controller parameters were set
to kH = 0.03, kV = 0.09, ✏bH = 0.01, and ✏bV = 0.1.
Snapshots of the simulation are shown in Figure 6. Figure 7
plots the load and the robot trajectories, which are straight
and parallel in the desired direction. Figure 8 shows the time
evolution of the sliding mode parameters, which all converge
within the specified boundary layers.

VII. EXPERIMENTAL RESULTS

To further validate the control strategies, we conducted
five experimental trials of collective transport with four
Pheeno robots and a rectangular load. The robots and load
were marked with 2D binary identification tags to enable
real-time tracking of their positions and orientations by an
overhead camera. The robots were initially placed in the
configuration shown in Figure 9. This configuration was
chosen to minimize unwanted effects such as wheel slip
and unnecessary stress on the central servo, which controls
the yaw angle of the manipulator arm about the central axis
of the robot. Each robot updated its state estimate using a
basic complementary filter acting on its onboard encoders,
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Fig. 9. A zoomed-in screenshot from the overhead camera that tracks the
load and robots during the experiment.

compass, and accelerometer.
We implemented controllers similar to those in Equa-

tion (55) on the robots. However, instead of using torque
inputs, the individual motor accelerations were controlled
directly, i.e. ⌧H and ⌧V in Equation (55) were replaced by ¨

✓H

and ¨

✓V , respectively. Thus, the controllers required measure-
ments of the wheel velocities and the robots’ heading. The
control parameters were set to kH = 0.01, kV = 0.05, and
✏bH = ✏bV = 0.01; the gains were lower than the gains in the
Webots simulation to avoid causing the motors to accelerate
too quickly, which results in wheel slip and odometry drift.

The robots were tasked with transporting the load at a
desired velocity of vdes = 10 cm/s along the x-axis of
the global frame defined by the overhead camera. Each trial
was run for 30 s. Figure 10 shows the paths of the load
and transporting robots during a single experiment, and Fig-
ure 11 plots the average and standard deviation of the load’s
velocity, heading, and trajectory over the five experiments.
These plots show that the sliding mode controllers are fairly
successful at achieving the control objectives. The slight
rotation of the load and its deviation from the desired path
in Figure 10, as well as the increasing standard deviations
in the plots in Figure 11, are due to unavoidable drift in the
onboard odometry caused by wheel slip, sensor noise, and
model error, among other factors. Sensor noise can result in
discrepancies in the robots’ velocities, causing the robots to
exert torques on each other through the load, which produces
wheel slip and error in the odometry.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a decentralized control strategy
for multi-robot collective transport based on sliding mode
control. The controllers do not require inter-robot commu-
nication, knowledge of the load dynamics and geometry, or



Fig. 10. The trajectories of the Pheenos and the transported load during
one experiment. The rectangle shows the orientation of the load at several
time points. The colored circles mark the robot attachment points at the
beginning and end of the experiment.
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Fig. 11. The states of the load during the transport experiments. The dark
blue lines are the mean states averaged over five trials, and the light blue
area shows the standard deviation. Top Left: The average velocity of the
load during transport. Top Right: The average heading of the load during
transport. Bottom: The average trajectory of the load during transport.

the size and spatial configuration of the transport team. We
validated this control strategy in simulations with point-mass
robots and with 3D models of robots with realistic dynamics,
as well as in experiments with a team of small mobile
robots. The simulations and experiments demonstrated the
effectiveness of the strategy at driving the transport team to
a target speed in a desired direction.

In future work, we will remove the assumption that all
the robots know the desired direction of transport. We will
consider the scenario where each robot knows its own
direction to the goal from its odometric readings, and all
robots must use a consensus protocol to reach an agreement
on the average direction to the goal. The controllers proposed
here could then be updated periodically with new outputs
of the consensus algorithm. We will also consider leader-

follower control strategies in which the leader robots know
the target direction to the goal, while follower robots must
infer the leaders’ intentions using tools from adaptive control.
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