
Coverage and Field Estimation on Bounded Domains by
Diffusive Swarms

Karthik Elamvazhuthi, Chase Adams, and Spring Berman

Abstract— In this paper, we consider stochastic coverage of
bounded domains by a diffusing swarm of robots that take
local measurements of an underlying scalar field. We introduce
three control methodologies with diffusion, advection, and re-
action as independent control inputs. We analyze the diffusion-
based control strategy using standard operator semigroup-
theoretic arguments. We show that the diffusion coefficient
can be chosen to be dependent only on the robots’ local
measurements to ensure that the swarm density converges to
a function proportional to the scalar field. The boundedness
of the domain precludes the need to impose assumptions on
decaying properties of the scalar field at infinity. Moreover,
exponential convergence of the swarm density to the equilib-
rium follows from properties of the spectrum of the semigroup
generator. In addition, we use the proposed coverage method
to construct a time-inhomogenous diffusion process and apply
the observability of the heat equation to reconstruct the scalar
field over the entire domain from observations of the robots’
random motion over a small subset of the domain. We verify
our results through simulations of the coverage scenario on a
2D domain and the field estimation scenario on a 1D domain.

I. INTRODUCTION

Distributed control laws for multi-robot coverage strate-
gies have been widely investigated [11], [44]. Applications
of coverage strategies include environmental monitoring,
surveillance, source localization [22], and vehicle scheduling
[36]. In this work, we consider a variant of the coverage
problem in which the goal is to achieve target coverage
of an environment in a statistical sense. This is a signif-
icant departure from methods such as [11], in which the
robots are required to converge to a precise configuration in
space and thus need more sophisticated sensing and control
capabilities. Our approach can be applied to scenarios in
which uncertainty in the strategy is beneficial, for instance
in surveillance or source localization problems where the
optimal coverage distribution is not known a priori. It
is also suitable for swarm robotic systems in which the
severe resource constraints on the robots make it infeasible
to implement global localization and extensive inter-robot
communication.

Various stochastic methods for applications such as multi-
robot task allocation and surveillance have been developed
recently [1], [2], [4], [6], [21], [33]. An important char-
acteristic of many of these methods has been the index-
free/permutation-invariant nature of the control laws, which
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can be beneficial for scalability in controller design [28], [5],
[27]. This advantage of permutation invariance has led to
multiple works on partial differential equation (PDE)-based
multi-agent control, in which the Eulerian perspective of
particles/agents is fundamental [9], [19], [40]. The models
that we present are largely based on those developed in our
previous work [7], [15], in which we used PDE optimization-
based methods to synthesize robot controllers for stochastic
coverage and task allocation problems in robotic swarms.
In contrast to these works, our work here does not require
knowledge of the target coverage distribution if this distribu-
tion depends on an environmental parameter, such as a scalar
field that can be measured by the robots.

Our approach can be viewed as a variant of the method
presented in [30] for unbounded domains. A similar problem
was considered in [23] in the discrete-time case for agents
with unicycle dynamics on bounded subsets of R2 for a
source localization problem. The analysis in [23] proves the
existence and uniqueness of some stationary distribution;
however, it is unclear whether this distribution may be any
desired invariant distribution. In our work, on the other hand,
we introduce a family of control laws that can achieve
any desired distribution that is uniformly bounded from
above and below, thus enabling optimization over different
coverage strategies, but we do not take robot kinematics into
account. Given that controllable driftless systems can track
a sufficiently rich set of trajectories arbitrarily well [25], we
do not view this simplification as a significant disadvantage.

In addition to the coverage strategy, we present a method
for estimating the scalar field by observing random walks
of robots over only a small subset of the domain. Our
method exploits the (approximate) observability of the heat
equation. In this way, it is similar in approach to the work
in [13], where the observability of the heat equation is
used to recover the initial temperature of a rod from point
measurements. Hence, our method relaxes the assumption,
required by similar stochastic multi-agent approaches for
estimating scalar fields [30], [23], that agents are observed
over the entire domain. Our estimation method is suitable
for independently operating, unidentified robots, unlike other
multi-agent approaches to scalar field mapping, e.g. [22],
which rely on interactions between agents or require agents
with unique identities.

Observability and controllability properties of the heat
equation have been well-studied in the PDE control com-
munity [12], [20], [49]. To characterize the uniqueness and
stability of the desired invariant distribution of the stochastic
process associated with the diffusion of the robots, we use the



corresponding system of parabolic PDEs, which determine
the evolution of transition probabilities over time. Toward
this end, we consider the PDEs in an operator semigroup-
theoretic framework, which enables a treatment of the PDEs
as an abstract system of ordinary differential equations on
an appropriately chosen function space.

Several complexities arise in the analysis of long-time
behavior of linear semigroups on infinite-dimensional spaces,
particularly the varied notion of the spectrum of a linear
operator acting on these spaces. Even when the complete
spectrum of the generator has been identified, the semigroup
behavior might not be determined by spectral information
alone.

II. PROBLEM FORMULATION

We consider a swarm of agents that are deployed into
a domain Ω, a bounded convex open subset of Rn with
Lipschitz continuous boundary ∂Ω. Each agent switches
probabilistically between an active state, during which it
explores the domain with a combination of deterministic
and random motion, and a passive state, during which it
stops to take a measurement. The deterministic motion is
governed by a time-dependent velocity v1(t) ∈ Rn, and the
random motion is represented as diffusion with an associated
diffusion coefficient v2(t). Diffusion can model probabilistic
search, exploration, and tracking strategies or stochasticity
arising from sensor and actuator noise. An agent switches
from the active state to the passive state at a time-dependent
probability rate v3(t), and it switches back to the active state
at a fixed probability rate k. The velocity v1(t), diffusion
coefficient v2(t), and state transition rate v3(t) are the control
parameters of the system.

Given these parameters, we can define a stochastic process
(X(t), Y (t)), with state space Ω×{0, 1}, that models the mo-
tion of an agent with single-integrator dynamics and stochas-
tic switching between states. Here, X(t) is the position of
the agent at time t, and Y (t) is a switching variable that
indicates whether the agent is in the active or passive state.
This variable is determined by the conditional probabilities
P(Y (t + h) = 1 | Y (t) = 0) =

∫ t+h
h

v3(τ)dτ + o(h2),
P(Y (t + h) = 0 | Y (t) = 1) = kh + o(h2). W(t) is the
standard Wiener process and ψ(t) is the reflecting function,
a process that characterizes the specular reflection of the
agent at the boundary [45], [46]. Then, the stochastic process
(X(t), Y (t)) satisfies a system of stochastic differential
equations given by:

dX(t) = Y (t)
(
v1(t)dt+

√
2v2(t)dW

)
+ dψ(t),

X(0) = X0, Y (0) = Y0.

We now present problems of coverage and estimation of
an unknown scalar field F : Ω→ R+ that is defined at each
location x ∈ Ω. We denote the normalized measure induced
by the scalar field F as µF , where µF (dx) = dx F (x)∫

Ω
F (y)dy

.
Here, dx is the Lesbesgue measure of the “infinitesimal
neighborhood” of x. In addition, we define µX(t) as the
distribution associated with the random variable X(t) for

each t ≥ 0. Our main objective is to design agent control
laws that drive the swarm to a steady-state distribution that
is proportional to the density of the field F (x), using only
local measurements of the field. We refer to this objective
as a distributional controllability problem and frame it as
follows:

Problem II.1. Determine whether there exist feedback con-
trol laws D : Ω → R, a : Ω → Rn, and H : Ω → R
such that µX(t) converges (weakly) to µF as t→∞ for the
following stochastic process:

dX(t) = Y (t)(a(X(t))dt+
√

2D(X(t))dW) + dψ(t),

X(0) = X0, Y (0) = Y0, t ≥ 0, (1)

where Y (t) is defined by the conditional probabilities
P(Y (t + h) = 1 | Y (t) = 0) =

∫ t+h
h

H(X(τ))dτ + o(h2),
P(Y (t+ h) = 0 | Y (t) = 1) = kh+ o(h2).

The spatiotemporal evolution of the population densities
of agents that follow process (1) is described by a set of
advection-diffusion-reaction PDEs. We define Q = Ω ×
(0, T ) and Σ = ∂Ω × (0, T ) for some fixed final time T .
The vector n is the outward normal to ∂Ω. The densities of
active and passive agents over the domain are denoted by
y1(x, t) and y2(x, t), respectively. Then the PDE model is
given by

∂y1

∂t
= ∆(D(x2)y1)−∇ · (a(x)y1)

−H(x)y1 + ky2 in Q,
∂y2

∂t
= H(x)y1 − ky2 in Q, (2)

with the zero-flux boundary condition

n · (∇(D(x)2y1)− a(x)y1) = 0 on Σ (3)

and initial conditions

y1(x, 0) = y10(x), y2(x, 0) = y20 on Ω. (4)

Using results from stochastic calculus [39], we can deter-
mine that for the process satisfying (1), we have µX(t)(dx) =
dx(y1(x, t) + y2(x, t)) for all t ∈ [0,∞). It can be shown
that there are multiple sets of control laws that solve Problem
II.1. By setting the time derivatives of the PDEs in (2) equal
to zero, for example, the choice (D,a, H) = (c1/F

1/2 +
c2, c2∇F/F, 0) for any c1 > 0 and c2 ≥ 0 makes
the desired distribution invariant. Additionally, (D,a, H) =
(c1 , 0 , c2F ) approximates the target distribution within an
arbitrary degree of accuracy for an appropriate choice of
c1, c2 > 0. Note that each set of control laws only requires
agents’ local measurements of the scalar field F (x). We
leave the analysis of this general class of control laws to
future work.

For the remainder of this paper, we consider purely
diffusion-based coverage, in which a = 0 and H ≡ 0. Then
the stochastic process (1) reduces to

dX(t) =
√

2D(X(t))dW + dψ(t). (5)



The corresponding PDE model governs the density of active
agents only, denoted here by y(x, t):

∂y

∂t
= ∆(D(x)2y) in Q,

n · ∇(D(x)2y) = 0 on Σ,

y(x, 0) = y0(x) in Ω. (6)

Given a swarm that performs diffusion-based coverage
with an unknown control law D(x), we want to additionally
determine whether we can reconstruct this control law by
observing the random motion of agents over a small subset
of the domain. The estimation problem can be formulated as
follows. Consider the SDE

dX(t) =
√

2D(X(t), t)dW + dψ(t), t ∈ [0, T2], (7)

where D(x, t) = c/F (x)1/2 over time t ∈ [0, T1], T1 ≤ T2,
for some c > 0, and D(x, t) = d > 0 otherwise.

Problem II.2. Let O ⊂ Ω be an open set, G be a finite
measurable partition of O, and {Xi(t)} be a set of N i.i.d.
random variables. Given yω(t) =

∑
1≤i≤N 1ω(Xi(t))/N

for each ω ∈ G, determine whether there exists a unique map
F : Ω→ R+ such that

{
Xi(t)

}
have the same distribution

as the process satisfying (7).

Note that in this problem, the identities of the agents are
not important. Thus, similar to index-free control strategies,
we can pose estimation problems in an index-free setting
(e.g. [14], [43], [48]).

III. PRELIMINARIES

In this section, we recall some standard notions from the
theory of operator semigroups [47]. Let H be a Hilbert space
and L(H) be the space of bounded operators on H .

Definition III.1. A family T = (T(t))t≥0 of operators in
L(H) is a strongly continuous semigroup on H if

1) T(0) = I
2) T(t+ τ) = T(t)T(τ)
3) limt→0T(t)z = z ∀z ∈ H

Definition III.2. The linear operator A : D(A) → H ,
defined by

D(A) =

{
z ∈ H : lim

t→0,t>0

T(t)z − z
t

exists

}
,

Az = lim
t→0,t>0

T(t)z − z
t

∀z ∈ D(A),

is called the infinitesimal generator (or just the generator)
of the semigroup T.

Remark III.3. Whenever we refer to the generator in this
paper, we refer to the adjoint of the generator of the
stochastic process.

Definition III.4. An unbounded linear operator A : D(A)→
H is said to be dissipative if

Re
〈
Av, v

〉
≤ 0 ∀v ∈ D(A) (8)

Let w ∈ L∞(Ω) such that 1
w ∈ L∞(Ω), i.e. w is

an essentially bounded Lesbesque measurable real-valued
function with an essentially bounded inverse. Additionally,
assume that w is positive almost everywhere (a.e.) on Ω. We
define the space of square-integrable, real-valued measurable
functions on Ω, L2

w(Ω), with the weighted 2-norm

‖f‖2w =

(∫
Ω

|f(x)|2w(x)dx

)1/2

, (9)

which is induced by the inner product (·, ·)w : L2
w(Ω) ×

L2
w(Ω)→ R, defined as

(f, g)w =

∫
Ω

f(x)g(x)w(x)dx. (10)

By Holder’s inequality, we have that c1‖f‖2w ≤ ‖f‖2 ≤
c2‖f‖2w for some c1 > 0 and c2 > 0. Hence, L2(Ω) '
L2
w(Ω), i.e. the spaces are isomorphic.
In the forthcoming definitions, all derivatives with

respect to spatial variables are to be understood as
weak/distributional derivatives. Define H1

w(Ω) as

H1
w(Ω) =

{
f ∈ L2

w(Ω) :
∂

∂xα
(wf) ∈ L2

w(Ω)

∀α ∈ {1, 2, ....n}
}
.

(11)

The norm on this space is induced by the inner product

(f, g)H1
w(Ω) =

∫
Ω

f(x)g(x)w(x)dx

+

n∑
i=1

∫
Ω

∂(wf)

∂xi
(x)

∂(wg)

∂xi
(x)dx.

(12)

Additionally, we define the space

H2
w(Ω) =

{
f ∈ H1

w(Ω) :
∂2(wf)

∂x2
α

∈ L2
w(Ω)

∀α ∈ {1, 2, ....n}
}
,

(13)

which is equipped with the inner product

(f, g)H2
w(Ω) =

∫
Ω

f(x)g(x)w(x)dx

+

2∑
j=1

n∑
i=1

∫
Ω

∂j(wf)

∂xji
(x)

∂j(wg)

∂x2
i

(x)dx
(14)

Note that for w ≡ 1, H1
w(Ω) and H2

w(Ω) are the same as the
traditional Sobolev spaces H1(Ω) and H2(Ω), respectively.
We can then consider the PDE (6) as an abstract system of
ordinary differential equations on L2

w(Ω),

ẏ(t) = Ay(t) (t ≥ 0) (15)
y(0) = y0

Af = ∆(wf), (16)

with D(A) =

{
f ∈ H2

w : n·∇(wf(x)) = 0 ∀x ∈ ∂Ω

}
and

the corresponding norm. The requirements on the behavior of
functions in D(A) on the boundary of Ω are to be understood



in the “trace sense.” Since D(A) is a subset of H2
w(Ω) and

∂Ω is at least Lipschitz, the trace operation corresponding
to the normal derivative is well-defined. From here on, we
focus our analysis on the system (6). We establish that the
operator defined in (16) generates a semigroup on L2

w(Ω).
The main advantage of considering the weighted space

L2
w(Ω), rather than L2(Ω), is that the operator A as defined

in (16) is self-adjoint as an operator on the former function
space, and hence this simplifies much of the analysis.

Remark III.5. By working in the L2 framework, we are
tacitly assuming that the distribution function of the initial
condition of the stochastic process is square-integrable. Due
to the inclusion of L2(Ω) in L1(Ω), whenever Ω is a bounded
domain, this assumption is not too restrictive. Moreover,
given the ultracontractivity of the semigroup of interest (not
proved in this work), initial conditions in L1(Ω) are mapped
to L∞(Ω) ⊂ L2(Ω) ⊂ L1(Ω) for any t > 0.

IV. ANALYSIS

A. Coverage

In this section, we derive a result (Theorem IV.4) that the
choice of the control law D(X) = c/F (X)1/2 in process
(5), where c > 0, yields limt→∞µX(t) → µF as speci-
fied in Problem II.1. In fact, we establish a stronger form
of convergence than the convergence required by Problem
II.1. Hence, the agent control law that solves the coverage
problem for a purely diffusive swarm is dependent only on
pointwise observations of the scalar field F .

We first introduce several results that are needed to prove
Theorem IV.4. Here, the operator A has the definition in
equation (16).

First, we establish that A generates a semigroup, and hence
a unique mild solution of the PDE (6) exists.

Proposition IV.1. A is a dissipative operator and generates
a strongly continuous semigroup on L2

w(Ω).

Proof. Using integration by parts, it can be verified that
for each z ∈ L2

w(Ω),
〈
Az, z

〉
L2

w(Ω)
≤ 0. Hence, A is a

dissipative operator. To show that A generates a strongly
continuous semigroup on L2

w(Ω), we first define the bilinear
form B : H1

w ×H1
w → R by

B(u, v) =

∫
Ω

∇(w(x)u(x)) · ∇(w(x)v(x))dx (17)

Then we have that

|B(u, v)| ≤ ‖u‖H1
w(Ω)‖v‖H1

w(Ω) (18)

for all u, v ∈ H1
w(Ω). In addition, for all u ∈ H1

w(Ω) such
that

∫
Ω
w(x)u(x)dx = 0, the following inequality holds for

some c > 0:
|B(u, u)| > c‖u‖2H1

w(Ω). (19)

Then, by the Lax-Milgram theorem [8][Corollary 5.8],
we can state that for each f ∈ L2

w(Ω) such that

∫
Ω
w(x)f(x)dx = 0, there exists a unique solution u ∈

H1
w(Ω) to the equation

B(u, v) = (f, v)L2
w(Ω) (20)

for all v ∈ H1
w(Ω). By a similar argument, a solution u ∈

H1
w(Ω) exists for each f ∈ L2

w(Ω).
Moreover, each solution u is in fact in D(A). Hence,

we have that R(I − A) = L2
w(Ω), where R(·) denotes the

range of the operator. Therefore, the result follows from the
dissipativeness of A and [16][Chapter II, Corollary 3.2].

Proposition IV.2. The unbounded operator A in (16) has a
compact resolvent.

Proof. Consider the Neumann Laplacian ∆N , defined on
L2(Ω), with domain D(∆N ) =

{
f ∈ H2 : n · ∇(f(x)) = 0

∀x ∈ ∂Ω
}

. The embedding γ : D(A) → L2
w(Ω) can be

written as a composition of maps i◦j◦k. Here, i is the natural
isomorphism f 7→ w · f from D(A) to D(∆N ), j is the
embedding of D(∆N ) into L2(Ω), and k is the isomorphism
f 7→ f/w from L2(Ω) to L2

w(Ω). Since i is a compact
operator, for any bounded sequence (un) ∈ D(A) there exists
a subsequence (um) such that γ(um) = (i ◦ j ◦ k)(um)
is a convergent sequence in L2

w(Ω). Hence, the embedding
D(A) ↪→ L2

w(Ω) is compact.

Lemma IV.3. A generates an immediately compact semi-
group.

Proof. Let (T(t))t>0 be the strongly continuous semigroup
generated by A. First, we note that (T(t))t>0 is analytic
since A is self-adjoint and negative. Hence, (T(t))t>0 is
immediately norm continuous [16]. Moreover, we note that
A has a compact resolvent from Proposition IV.2. The result
then follows from [16][Chapter II, Theorem 4.29].

Finally, using the results above, we can demonstrate that
the unique equilibrium of (15) is exponentially stable.

Theorem IV.4. For any y0 ∈ L2
w(Ω) such that y0 ≥ 0 (i.e.,

y0 is positive a.e. on Ω), the semigroup (T(t))t≥0 generated
by A satisfies

‖T(t)y0 − c/w‖2w ≤ Me−ωt‖y0 − c/w‖2w (21)

for all t ≥ 0, some ω, c > 0, and M ≥ 1.

Proof. First, we show that the integral of the solution y(x, t)
over the domain Ω remains conserved for any initial condi-
tion y0 ∈ L2

w(Ω). Let u ∈ D(A). We define a linear map
Rt : D(A)→ R by

Rtu =

∫
Ω

(T(t)u− u)dx (22)

for some t > 0. Then, using Green’s formula for twice
weakly-differentiable functions, we have

Rtu =

∫
Ω

∫ t

0

AT(s)u0dsdx

=

∫ t

0

∫
∂Ω

n · ∇(w(y)u(y, s))dyds = 0



from the boundary condition that is encoded in the definition
of A in (16). Due to the boundedness of the map Rt by
[37][Proposition 2.1.11], this map can be extended to a
bounded linear operator from L2

w(Ω) to R (since D(A) is
dense in L2

w(Ω)). Thus, Rt is in fact the zero map for every
t ≥ 0. Hence, the integral of the solution T(t)y0 over the
domain remains conserved.

To prove the uniqueness and stability of the equilibrium,
we make the following observations. It is well-known that
the Neumann Laplacian has a unique one-dimensional lin-
ear subspace of constant eigenvectors (constant functions)
corresponding to the eigenvalue 0 [17]. Since there is a
natural bijective correspondence between eigenvectors of
∆N and A for the eigenvalue 0, this implies that A has a
unique one-dimensional subspace of eigenvectors, spanned
by the function 1/w, corresponding to the eigenvalue 0.
Therefore, 0 is a first-order pole of A. The semigroup
under consideration is eventually compact by Lemma IV.3,
since immediate compactness implies eventual compactness.
Additionally, we can choose c =

∫
Ω
udx∫

Ω
1/wdy

in condition (21)
since the integral of the solution over the domain must be
conserved. Then from the positivity of the operator −A,
whose spectrum therefore lies in the closed left-half plane,
the result follows from the above arguments and [16][Chapter
V, Corollary 3.3].

As an alternative to the functional analytic methods used
here, it is possible to use probabilistic approaches to es-
tablish asymptotic stability of the desired distribution. See
for example [32], where such problems have been addressed
for discrete-time Markov processes. Similar methods exist in
the literature for Markov processes that evolve in continuous
time. Moreover, one can consider several other notions of
stability, such as stability in the total variation norm, the
Wasserstein distance, and convergence of Cesàro means.

An additional issue is the well-posedness of process (5)
when the control law D(x) = c/F (x)1/2 is implemented.
A sufficient condition for the well-posedness of an ODE or
SDE is that the coefficients are locally Lipschitz everywhere.
We note that global Lipschitzness of c/F (x)1/2 is ensured
whenever F is globally Lipschitz on Ω, positive, and uni-
formly bounded from below away from zero. Hence, there
exists a sufficiently rich class of scalar fields F that can be
used to define the control law D(x).

Remark IV.5. Analogously, we can consider a similar
diffusion process on a graph that is closely related to the
Metropolis-Hastings algorithm. If G = (V, E) is a connected
graph with undirected edges and f : V → R+ is a scalar
field on the graph, then we can consider the continuous-time
Markov chain on the graph whose generator is defined as
−DL, where L is the Laplacian of the graph and D is a
diagonal matrix with entries Dii = cf(i) for each i ∈ G and
a fixed c > 0. Then the evolution of transition probabilities
p ∈ R|V| is given by

ṗ(t) = −LDp(t) , p(0) = p0 .

We can view the above equation as the discretized approxi-
mation of the PDE (6) for the case where G is a lattice graph.
Note that the transition probabilities depend only on local
information, as in the case of the diffusion process (5). It
is straightforward to check the invariance of the distribution
π =

∑
i∈V f(i)

f .

B. Field Estimation

Our method for estimating a scalar field F : Ω → R+

from observations of agents consists of three steps, which
we describe and justify in this section:

1) Convergence: We assume that all agents know the time
parameter T1. During the time interval t ∈ [0, T1],
agents follow the closed-loop coverage control law
X(t) = (2/F (X(t))1/2dW + dψ(t). By the analysis
in Section IV-A, the agents will converge to the distri-
bution corresponding to F .

2) Dispersion: During the time interval t ∈ (T1, T2], the
agents perform a homogenous random walk, their posi-
tions evolving according to X(t) =

√
(2c)dW+dψ(t)

for some known c > 0.
3) Estimation: During the same time interval t ∈ (T1, T2],

an observer collects data {yω} over some finite parti-
tion of the domain of observation O, as described in
Problem II.2, and solves the optimization problem that
we present in this section (Theorem IV.6).

We use the following result to justify our method.

Theorem IV.6. Let Ω be a bounded subset of Rn with a
C2 boundary, O ⊂ Ω be an open subset, Hf be a finite-
dimensional subspace of L2(Ω), ŷ ∈ L2(T1, T2;L2(O)), and
d > 0. Then the following problem is well-posed and has a
unique solution:

min
uT∈Hf

‖y − ŷ‖2L2(T1,T2;L2(O))

s.t.
∂u

∂t
= d∆u in Q,

n · ∇u = 0 on Σ,

y(t) = Cu(t) ∀t ∈ (T1, T2],

u(T1) = uT ,

where C : L2(T1, T2 : L2(Ω)) → L2(T1, T2 : L2(O)) is
the observation operator defined as y(x, t) = Cu(x, t) =
u(x, t) for each (x, t) ∈ O × (T1, T2].

This result follows from the approximate observability of
the heat equation with Neumann boundary condition [18].
For the possibility of extending this result to more general
domains, see [3]. We note that we have only approximate
observability of the heat equation. While Hf can be any
finite-dimensional subspace of L2(Ω), we cannot replace Hf

by L2(Ω) (or any infinite-dimensional subspace of L2(Ω))
and retain a well-posed problem with a unique solution. This
requires having exact observability, which is generally only
true in the trivial case where O = Ω, that is, the evolution
of the process can be observed over the entire domain.



Remark IV.7. Here and in the following arguments, by
treating Problem II.2 as a PDE-constrained optimization
problem, we are implicitly considering an idealized version
of this problem in which N → ∞ and ω is taken over all
measurable subsets of O.

Then we can consider the PDE model

∂u

∂t
= ∆(D(x, t)2u) in Q,

n · ∇u = 0 on Σ,

y(t) = Cu(t) ∀t ∈ (T1, T2],

u(x, 0) = u0(x) in Ω,

where D(x, t) = c/F (x)1/2 over time t ∈ [0, T1] for
some c > 0, and D(x, t) = d > 0 otherwise. From
the analysis in Section IV-A, we know that ‖u(x, T1) −
F (x)/

∫
Ω
F (x)dx‖ ≤ ε(T1), where ε(T1) is the error be-

tween the distribution at time T1 and the desired distribution,
for all initial conditions u0 of this PDE model such that∫

Ω
u0dx = 1 and u0 ≥ 0. Moreover, ε(T1)→ 0 as T1 →∞

from the stability estimate (21). Therefore, by observing the
random walks of agents from time T1 to T2, the observer
can infer the density of agents at time T1, and hence obtain
an approximate estimate of the field F (x) over Ω up to
a proportional constant. Additionally, if the observer has
an estimate of F (x) for all x ∈ O, then the proportional
constant can be computed as well.

Remark IV.8. This technique has a graph analogue, as in
Remark IV.5. Observability of consensus protocols on com-
munication networks has been well-studied [29] and applied
to problems of sensing spatially-distributed parameters [26],
[38], [42]. In these works, agents are communication nodes
of the graph, whereas in our approach, they would be viewed
as random-walking agents on the graph.

Remark IV.9. The agents will attain the steady-state dis-
tribution µF only in infinite time, but the time T1, which is
defined a priori, is necessarily finite. The agent distribution
will converge toward µF at an exponential rate that depends
on the underlying scalar field. Since we do not assume prior
knowledge about this field, it is not possible to predict the
degree of convergence at time T1, which will affect the error
in the subsequent estimate of the field. Hence, an inaccurate
estimate may result if T1 is set to be too small for the agent
distribution to have converged closely to µF at that time.

V. SIMULATIONS

We validated our coverage approach in two different
simulated scenarios. In case 1, the scalar field is defined
as F1(x) = f1(x) − f2(x) + ε for all x ∈ Ω, where fn,
n = 1, 2, are given by

fn(x) = exp

(
−1

1− ‖anx− bn‖2

)
for ‖anx− bn‖2 < 1,

= 0 otherwise.
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Fig. 1. Case 1: Simulated agent densities at three times t and the underlying
scalar field
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Fig. 2. Case 2: Simulated agent densities at three times t and the underlying
scalar field

We set a1 = 2, a2 = 6, b1 = 1, b2 = 2, and ε = 0.01.
The field F1(x) is shown in the lower right plot of Fig. 1.
In case 2, we used the numerically constructed scalar field
F2(x) that is shown in the lower right plot of Fig. 2.

In each case, the diffusion-based feedback control law
was chosen to be Dn(x) = 10−5/Fn(x)1/2, n = 1, 2.
Since Dn is in C∞(Ω̄) and is uniformly bounded from
below away from zero, it is globally Lipschitz on Ω. For
each case, 3000 agents were simulated on a domain Ω =
(0, 1) × (0, 1). The agents were initially distributed as a
Gaussian centered at (0.5, 0.5). The stochastic motion of
each agent was approximated in discrete time using the



standard-form Langevin equation:

X(t+ ∆t)−X(t) = (2D2
n(X)∆t)1/2 Z(t), (23)

where Z ∈ R2 is a vector of independent, standard normal
random variables. When an agent encounters the boundary, it
performs a specular reflection. As shown in Fig. 1 and 2, the
steady-state swarm density closely matches the underlying
scalar field in each case.

The field estimation algorithm was validated for two
example scalar fields on a 1D domain, Ω = [0, 1]. These
fields were defined as F1(x) = c1(sin(πx) + 0.01) and
F2(x) = c2(x2 + 0.01) for all x ∈ Ω, where c1 and c2 are
normalization constants chosen such that the field integrates
to 1 over the domain. The region of measurement was set
to O = (0.7, 1) in each case. The agent motion was simu-
lated using the numerical approximation (23). The measure-
ment data {yω} was collected from both a coarse partition
(∪n∈Z+

[n−1
10 , n10 ) ∩ O) and a finer one (∪n∈Z+

[n−1
100 ,

n
100 ) ∩

O). The optimization problem in Theorem IV.6 was solved
using an “Optimize-then-Discretize” approach [41], along
with a projected gradient descent method. The objective
functional was modified to its regularized version, ‖y −
ŷ‖22 + λ‖uT ‖22, where λ was chosen to be 0.1. Since the
problem in Theorem IV.6 is a convex optimization problem
with linear (albeit infinite-dimensional) constraints, it is fairly
straightforward to construct the optimality system, which
consists of necessary and sufficient conditions associated
with the adjoint equation that the optimal solution must
satisfy. We exclude the analytical formulation of the gradient
here for the sake of brevity.

The results of the estimation procedure are illustrated in
Fig. 3 and 4. The observation data from the fine grid can be
seen to yield a more accurate reconstruction of the scalar field
than the data from the coarse grid. The estimation procedure
performs the best with larger numbers of agents, as would be
expected due to the relatively smaller amount of noise in the
data from larger populations. However, it is notable that the
method works well, qualitatively at least, with populations
of only 100 agents, which yield observation data with very
large fluctuations from the mean behavior.

VI. CONCLUSIONS

In this work, we have developed a diffusion-based ap-
proach to achieving a spatial distribution of swarm activity
that matches an underlying scalar field in the case where
the agents have only local sensing, heading information,
and no global position information or communication. We
also presented a method for mapping scalar fields using
observations of agents’ random walks over a small subset
of the domain by exploiting the observability properties of
the heat equation and its relation to random walks.

In future work, we will analyze the advection- and
reaction-based coverage schemes presented in this paper
and compare the relative advantages of each strategy. It
would also be useful to numerically compute the rate of
convergence of the swarm to a desired distribution using
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Fig. 3. F1(x) = c1(sin(πx) + 0.01)
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techniques such as spectral approximations [10] and sum of
squares methods [35], [31] for systems with polynomial data.
Additionally, we will develop coverage strategies for agents
with more complex dynamics and cooperative behaviors. In
future work on our field estimation approach, we plan to
improve the efficiency of the numerical method for solving
the optimization problem. Investigating the numerical well-
posedness of controllability and observability problems of
the heat equation is a challenge in itself [34]. We will
also consider Problem II.2 in a more natural setting as
a PDE coefficient identification problem [24], for which
specification of the T1 time parameter would not be required.
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