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Deciding on a new home: how do honeybees
agree?
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A swarm of honeybees (Apis mellifera) is capable of selecting one nest-site when faced with a choice of
several. We adapt classical mathematical models of disease, information and competing beliefs to such
decision-making processes. We show that the collective decision may be arrived at without the necessity
for any bee to make any comparison between sites.
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1. BIOLOGICAL INTRODUCTION: HONEYBEE
BEHAVIOUR

A fundamental issue in biology, and especially in animal
behaviour, is the evolution of decision-making systems.
Organisms must make resource-allocation choices,
throughout their lives, that are likely to determine their
fitness. There are both strategic and tactical issues
involved in decision-making: which is the best option and
how is that option recognized and selected?

Social insects provide some of the most thoroughly
studied examples in which both the strategy and the tac-
tics of decision-making have been elucidated (Bourke &
Franks 1995; Seeley 1995; Camazine et al. 2001). Most
intriguingly, in many of the well-known cases in social
insects the best strategy may be to keep several options
open rather than to make an all-or-nothing decision. For
example, honeybee colonies, through the dynamics of
dance recruitment, can allocate the vast majority of their
foragers to the most rewarding nectar-rich flower patches.
Nevertheless, some foragers remain faithful to currently
less rewarding food sources. This may represent strategic
bet hedging. Flowers are ephemeral and a good patch now
may be a poor one soon. By maintaining contact with, and
knowledge of, several patches of flowers a honeybee col-
ony should be able to reallocate its foragers more rapidly
and effectively over fields of capricious blooms (Seeley
1995).

Similarly, certain ants can select the shortest paths to
food sources. Indeed, where there is a short and a long
path to the same food source, the decision-making mech-
anism can be surprisingly simple. Those ants that happen
to take the shorter path get there and back more quickly
than those ants that happen to take the longer path. All
the ants lay trails of attractive pheromones and such pher-
omones get reinforced more rapidly on the shorter path,
simply because that path is shorter and quicker. In such
cases, individual ants do not directly compare the lengths
of the two paths but the colony is able to choose the
shorter one (Goss et al. 1989; Beckers et al. 1990, 1992).
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In certain cases, the shorter path is used exclusively, whilst
in others a small amount of traffic continues to use the
longer path. Some traffic continuing to use the longer path
may be costly in the short term, but it may represent a
beneficial insurance policy if the shorter path becomes
blocked or dangerous.

In the case of honeybee foragers or ant trail makers,
decision-making mechanisms that are not all-or-nothing
but retain the benefits of fuzzy logic can pay off. In these
systems what might be thought of as errors—honeybees
repeatedly going to the weaker nectar sources, ants stub-
bornly wasting energy on longer routes—can be adaptive
in the long term.

By contrast, in some situations social insects need to
make a dissent-free collective decision. For example, when
a honeybee swarm is faced with a choice among several
suitable nest-sites, it seems of paramount importance that
the swarm as a whole selects only one. How honeybee
swarms select a single new nest-site is the issue we will
consider in this paper.

Colony propagation in honeybees (Apis mellifera) is
described by Michener (1974), Seeley (1982) and Win-
ston (1987). A swarm of bees, consisting of the old
maternal queen and most of her workers, leaves the old
hive and typically settles in a tree. Scouts leave the swarm
and individually search for a tree hole or similar cavity as a
suitable new home for the colony. If they find a potentially
suitable nest-site, they measure a suite of its character-
istics, and represent their overall enthusiasm for that site
in the vigour of their dance back on the surface of the
swarm (Lindauer 1955, 1961; Seeley & Buhrman 1999,
2001). Their dance not only advertises the quality of the
nest-site, but also indicates its distance and direction to
other potential scouts, who may also go to that site and
in turn advertise its charms through vigorous dances. Dif-
ferent scouts may find different nest-sites and may adver-
tise them concurrently. In other words, dances leading to
further recruitment of scouts to different sites may occur
simultaneously on the swarm. Nest-site choice by honey-
bees can therefore involve different positive feedback loops
of recruitment by different scouts to different sites and can
be a protracted process taking several days. Nevertheless,
sooner or later the entire swarm takes off as a single cohes-
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Figure 1. Diagram of the possible transitions between states in the indirect switching model. In the text, and for numerical
simulations, we have made the simplifications �1 = �2 = �, �1 = �2 = �, �1 = �2 = �.
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Figure 2. Diagram of the possible transitions between states in the direct switching model. In the text and for numerical
simulations we have made the simplifications �1 = �2 = �, �1 = �2 = �, �1 = �2 = �.

ive entity and flies to only one new nest-site among the
many that have been advertised. How this apparent una-
nimity is achieved is the subject of this paper.

Recent studies (Camazine et al. 1999; Seeley & Buhr-
man 1999; Visscher & Camazine 1999a,b) have recorded
the behaviour through time (the time-lines) of all scouts
dancing on the surface of swarms during the entire nest-
choice process. Such studies show that

(i) the dances of individual scout bees tend to decrease
in strength and eventually cease, and that

(ii) some scouts switch allegiance between sites.

Thus, in honeybees, as in our own societies, a crucial
decision-making process involves competing advertise-
ment, recruitment to different political parties, opinion
polls, the growth of apathy and first-past-the-post elec-
tions. Here we review and extend classical mathematical
models of the spread of infectious diseases, and the spread
of infectious ideas, to elucidate what are likely to be the
most important factors in the decision-making processes
of house-hunting honeybees.

2. MATHEMATICAL INTRODUCTION: MODELS OF
SPREAD OF INFORMATION OR BELIEF

The spread of information has been thought of as math-
ematically equivalent to the spread of an infectious dis-
ease. The analogy is drawn between those ignorant of the
information and susceptibles, those spreading the infor-
mation and infectives, and, in some models, those no
longer spreading the information and those immune to the
disease. Let us denote these states by X, Y and Z respect-
ively. Individuals may move from the ‘susceptible’ X to
the ‘infective’ Y state, and from the ‘infective’ Y to the
‘immune’ Z state. Diagrammatically, the possible tran-
sitions between states are

X → Y → Z.

The information is spread by contact between an ignor-
ant individual and a spreader, so that the rate of ‘infection’
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is most simply modelled by �XY. The rate of ‘recovery’
is most simply modelled by �Y, where it is assumed that
any spreader stops spreading the information in the next
interval of time �t with probability ��t. The equations are
from Kermack & McKendrick (1927).

dX
dt

= ��XY,
dY
dt

= �XY � �Y,
dZ
dt

= �Y.

Let N = X � Y�Z. The basic reproductive ratio R0

= �N/� is the average number of individuals that a
spreader, in an ignorant population, tells before ceasing
to spread the information. It is straightforward to show
that, if a small number of spreaders are introduced into
an ignorant population, the information spreads if R0 � 1.
However, irrespective of how fast the information spreads,
there will be some individuals who never hear it.

At least in human societies, the process of leaving the
spreader class may be somewhat different. Daley & Kend-
all (1965) argued that spreaders will carry on spreading
the information until they meet someone who already
knows it, when, with some probability, they cease to
spread it. People who have ceased to spread the infor-
mation become ‘stiflers’. In this case, the information
always spreads if a small number of spreaders are intro-
duced into an ignorant population, but again there are
some who remain ignorant.

Things are different again if we model belief rather than
information. Now the X class represents unbelievers and
the Y class believers, who are assumed to be actively
spreading the belief. The motion from X to Y is now con-
version to the belief. The possibility that some believers
lapse into unbelief might also be included. This has anal-
ogies with diseases that do not impart immunity, where
recovered individuals return to the susceptible class.

Karmeshu & Pathria (1980) modelled the case of two
conflicting beliefs. They assumed, for simplicity, that all
believers are active spreaders, so that the population is
split into neutrals X and believers in each of the two camps
Y1 and Y2, and that the following transitions in state
could occur:
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Figure 3. Indirect switching. The vertical axis represents total support for each site as a fraction of the total population,
(1/N )(Y1 � Z1) and (1/N )(Y2 � Z2). In all four panels, �1N = 0.6, � = 0.3, � = 0.3, � = 0.5. In (a), �2N = 0.5, so that the
second site is of inferior quality and fails to win support. In (b), �2N = 0.7, so that the second site is of marginally superior
quality, but news of it arrives at t = 5, too late to change the consensus. Over a longer time-scale, support for it dies away to
zero. In (c), �2N = 0.7, news of the second site arrives at t = 2, and the colony consensus switches to it. In (d ), �2N = 0.9, so
that the second site is of much better quality than the first. A switch will take place however late the news arrives, and we have taken
t = 5 as an illustration.

(i) a believer in camp i converts a neutral, at rate
�i XYi;

(ii) a believer in camp i lapses to neutrality, at rate �i;
(iii) a believer in camp i proselytizes a believer in another

camp j, at rate 	jiYiYj. The equations become

dX
dt

= �1Y1 � �2Y2 � �1XY1 � �2XY2,

dY1

dt
= �1XY1 � �1Y1 � 	Y1Y2,

dY2

dt
= �2XY2 � �2Y2 � 	Y1Y2,

where 	 = 	12 � 	21. This parameter is proportional to the
net rate of flow from belief 1 to belief 2 as a result of
proselytization. If belief 2 is more credible than belief 1
then this net flow is positive, i.e. 	 � 0.

There are four possible steady states for these equations:

(i) naive (all neutrals);
(ii) all either belief 1 or neutral;
(iii) all either belief 2 or neutral;
(iv) no consensus, with both Y1 � 0 and Y2 � 0.

We shall refer to the second and third of these as the
dissent-free states.
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One may also include non-evangelical believers Z1 and
Z2, who believe in one of the two beliefs but who are not
actively spreading the word. These might, on occasion,
return to the evangelical classes Y1 and Y2. The equations
depend on the detailed assumptions made about the
mechanisms by which conversions and lapses occur.

3. MODELLING NEST-SITE CHOICE IN HONEYBEES

Potential nest-sites are only visited and evaluated by a
sub-population of bees in the swarm, the scouts (Lindauer
1955, 1961). We shall assume that a decision has been
made by the colony as a whole when a consensus has been
reached by the scouts, and will therefore model scouts
only.

We adapt the model of Karmeshu & Pathria (1980).
Since bees do not dance constantly for a particular site,
but often take up dancing again for the same site they
previously advertised (Camazine et al. 1999; Seeley &
Buhrman 1999; Visscher & Camazine 1999a,b) we
included non-evangelical believers Z. We assumed that
they take up dancing again when stimulated to do so by
an evangelist (a dancer) Y, although they could do so
spontaneously without altering the results qualitatively.

The recruitment process is begun by dancers converting
neutrals. There is no evidence in individual bee time-lines
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(Camazine et al. 1999; Seeley & Buhrman 1999;
Visscher & Camazine 1999b) for dancers suddenly switch-
ing allegiance from one site to another (a direct switch
from Yi to Yj), and we shall assume that this never occurs.
Two possibilities remain: (i) conversion from Zi to Yj

(direct switching of allegiance) and (ii) lapsing from Yi to
X, possibly via Zi (ceasing to dance and becoming
neutral), and then being recruited to Yj (indirect
switching). Empirically, it may be impossible to differen-
tiate between these possibilities, since a bee in state X may
be indistinguishable from one in state Z, but the two possi-
bilities lead to somewhat different outcomes. We modelled
both situations to decide whether direct switching is
important. To clarify the situation as much as possible,
we compared one model with direct switching only with
one with indirect switching only.

We assumed that no stifling process takes place, so that
bees do not stop dancing for a particular site when some
or many of those they meet already support that site.

We tested the hypothesis that no direct comparison of
sites is necessary. We further assumed that any decision
by a bee to support a site is made on the basis of infor-
mation about that site alone. The rate of switching
allegiance from site i to site j depends only on the quality
of site j and on how strongly it is being advertised, and
not on the quality of site i. Similarly, we shall assume that
the rate of lapsing from support for site i to neutrality is
independent of site i. Relaxation of these assumptions
could produce a more efficient decision process, but we
show that efficient decisions can be made even under
these conditions.

(a) Indirect switching model
A diagram of the transitions in this model is shown in

figure 2. Let �1 and �2 be measures of how vigorously the
bees dance for sites 1 and 2, and hence of their quality.
For the utmost simplicity, these are assumed to be the
only parameters that differ between bees supporting sites
1 and 2, either actively or inactively. The analogue of the
epidemiological force of infection, which we shall call the
force of persuasion, is the product �iYi of the persuasion para-
meter �i and the number of bees dancing for i. The per
capita rates at which the bees leave the naive X class and
the non-dancing Zi class for the dancing Yi class are pro-
portional to the force of persuasion, with constants of pro-
portionality 1 and � respectively, where � is independent
of the site supported. The per capita rates of ceasing to
dance and lapsing from the non-dancing class to the naive
class are taken to be constants, independent of the site
supported, and given by � and � respectively. The equa-
tions are

dX
dt

= ��1XY1 � �2XY2 � �Z1 � �Z2,

dY1

dt
= �1XY1 � �Y1 � ��1Y1Z1,

dY2

dt
= �2XY2 � �Y2 � ��2Y2Z2,

dZ1

dt
= �Y1 � �Z1 � ��1Y1Z1,

dZ2

dt
= �Y2 � �Z2 � ��2Y2Z2.
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(b) Direct switching model
A diagram of the transitions in this model is shown in

figure 1. The equations are

dX
dt

= ��1XY1 � �2XY2,

dY1

dt
= �1XY1 � �Y1 � ��1Y1Z1 � ��1Y1Z2,

dY2

dt
= �2XY2 � �Y2 � ��2Y2Z2 � ��2Y2Z1,

dZ1

dt
= �Y1 � ��1Y1Z1 � ��2Y2Z1,

dZ2

dt
= �Y2 � ��2Y2Z2 � ��1Y1Z2.

There is now no return to the naive state, and hence no
indirect switching, but direct switching takes place at a per
capita rate proportional to the force of persuasion, with
the constant of proportionality � independent of the site
supported. This assumes that the bees do not make a
direct comparison between sites and are converted to a
new site at a rate that depends only on its quality and how
strongly it is being advertised.

4. RESULTS

(a) Indirect switching model
Naive, dissent-free and no-consensus steady states are

possible. For belief i to grow in a naive population of size
N, we require that the basic reproductive ratio
Ri = �iN/� � 1. We shall always assume this to be the case,
otherwise support for site i can never grow and we can
immediately eliminate it from consideration. Under these
conditions, the naive steady state is unstable, and news of
a single site results in a dissent-free choice of that site.
Can such a verdict be overturned by news of a second
site? There are three cases.

(i) If the second site is less good than the first, �2 
 �1,
the verdict remains unchanged.

(ii) If the second site is very much better than the first,
the consensus switches to the second site.

(iii) If the second site is marginally better than the first,
the verdict will be changed only if the news comes
in sufficiently early in the process. If the news arrives
too late then the verdict will remain fixed on the less
good first site.

These results are summarized in figure 3.

(b) Direct switching model
Naive, dissent-free and no-consensus steady states are

again possible. The naive steady state is always unstable,
and news of site 1 only will lead to a dissent-free state
(Y∗

1,Z∗
1) for site 1. However, the character of this steady

state is quite different, depending on the quality parameter
�1. If this is high enough, �1N � �/�, then Y∗

1 � 0, but if
it is lower than this, then Y∗

1 = 0. In the first case, the site
is danced for indefinitely, but in the second case dancing
ceases after a time, and support for the site only comes
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Figure 4. Direct switching. The vertical axis represents total support for each site as a fraction of the total population,
(1/N )(Y1 � Z1) and (1/N )(Y2 � Z2). In the first three panels, �1N = 1.0, �2N = 1.2, � = 0.3, � = 0.5, so that the second site is
marginally superior to the first. In (a), � = 0.2 
 �, news of the second site arrives too late and fails to win support. In (b),
� = � = 0.5, the colony consensus always switches to site 2, however late the news arrives. In (c), � = 0.7, and no consensus is
reached. Over a longer time-scale, the system tends to a steady state with positive support for each site. In (d), � = 0.7 again, but
�2N = 1.5, so that the second site is much better than the first. The colony consensus switches to site 2.

from non-dancers Z∗
1. Since these non-dancers presum-

ably cannot rouse the whole colony, then this may be
interpreted as saying that a site of such low quality will
never be chosen. It may, however, prevent consensus from
being reached on a site of slightly higher quality.

Now let us assume that news of site 1 arrives first. What
effect does the later arrival of news of an alternative site
2 have? The consequences depend on the relative sizes of
� and �, and there are three cases.

(i) If � 
 �, the situation is similar to the indirect
switching model; site 2 is chosen if it is much better,
or if it is marginally better and the news arrives early.

(ii) If � = �, site 2 is chosen if and only if it is better.
(iii) If � � �, site 2 is chosen if it is much better. How-

ever, if it is marginally better, no consensus is
reached.

These results are summarized in figure 4.

5. DISCUSSION

Very similar results to ours have been observed and ana-
lysed in decision-making in other societies. For example,
ant colonies presented with two foraging sites will gener-
ally choose the better of them, but may become fixed on
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the worse if it is discovered sooner (Pasteels et al. 1987;
Deneubourg & Goss 1989). In this case, the decision is
encoded in pheromone trails leading to each site rather
than in the individuals in the colony.

We have assumed that scouts recruit more strongly to
a better site because a measure of the quality of the site
is encoded in their dance, possibly through its vigour
(Seeley & Buhrman 2001). Alternatively, only a fraction
of scouts returning from a site may dance at all, as Seeley
et al. (1991) found in their study on nectar sources, with
this fraction depending on the site quality. Either alterna-
tive may be modelled by taking the persuasion parameter
� to be larger for better sites. Dances for better sites are
also longer (Seeley & Buhrman 2001). This may be mod-
elled by taking the parameter �, the probability of ceasing
to dance per unit time, to be smaller for a better site; such
a modification makes no qualitative difference to the
results.

In their study on recruitment to foraging sites, Seeley et
al. (1991) use a force of persuasion proportional to
(�iDi)/(�iDi � �jDj), whereas ours is simply proportional to
Yi. Here Di includes both those bees dancing for i and
those that have ceased dancing for i but are still in the
dancing compartment, and is therefore equivalent to our
Yi � Zi. The parameter �i represents the time spent danc-
ing for site i, and so corrects from Yi � Zi to Yi. Their
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force of persuasion therefore depends on the fraction of
dancers that are dancing for site i, whereas ours depends
on the numbers dancing for site i. We have chosen our
form for simplicity and because it seems reasonable that
if the total number of dancing bees is reduced, while keep-
ing the proportions dancing for each site the same, then
recruitment will also be reduced. The alternative form
does not change the results qualitatively.

We have not taken into account in this paper the time
taken by scouts to find and evaluate nest-sites and return
to the swarm. It is straightforward to do so, and results in
a slower build-up of support for any given site. However,
the results are qualitatively unchanged, and we have there-
fore neglected these effects for the sake of simplicity.

Both indirect and direct switching models seem to work
well. Direct switching allows a greater number of possible
behaviours, due to the difference between the parameters
� and �. In the particular case � = �, the best site is always
chosen, whereas in the indirect switching model a mar-
ginally inferior site is chosen if the news of the superior
site does not arrive in time. This may be a shortcoming
of the indirect switching process, or it may be that the
benefits of a quick decision outweigh the costs of choosing
a marginally worse site.

The possibility of no consensus in the direct switching
model is presumably non-adaptive, although it does allow
the colony to wait for news of a third better site. It can
occur if � � �, i.e. if it is easier to stimulate believers in
an alternative site to dance than believers in your own site.
If � � �, which may be more realistic, then consensus is
always reached. The results of Visscher & Camazine
(1999a) suggest that � = �. They found that dancers who
followed other dances on the swarm chose them at ran-
dom from those available, rather than preferentially fol-
lowing dancers for their own site (as might be expected if
� 
 �) or dancers for other sites (as might be expected
if � � �).

It is not known whether bees are capable of the cogni-
tive processing required to make a direct comparison
between nest-sites. This paper shows that there is no need
for any individual bee to make such a direct comparison
in either the indirect or the direct switching model, she
needs only to judge the quality of one site at a time. A
decision between sites is then made at the colony level.

Recently, the importance of information flow in social
insect colonies has been emphasized (Detrain et al. 1999).
Information flow between individuals in many other social
animals is also of great interest (Giraldeau 1997). We have
shown that the classical model of Karmeshu & Pathria
(1980) in human societies can illuminate decision-making
in other animal societies.
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