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1.1 Introduction

The swarming behavior of ants, wasps and bees
demonstrates the emergence of stupendously com-
plex spatio-temporal patterns ranging from a
swarm finding shortest paths to the assembly of
three-dimensional structures with intrinsicate ar-
chitecture and well-regulated thermodynamics [1,
2]. In the bigger scheme of things, these systems
represent just the tip of the iceberg; their behav-
ior is considerably less complex than that of the
brain, cities or galaxies, all of which are essen-
tially swarming systems (and all of which can be re-
duced to first principles and interactions on atomic
scale). Yet, social insects make the world of self-
organization accessible to us as they are compa-
rably easy to observe. Studying these systems is
interesting from an engineering perspective as they
demonstrate how collectives can transcend the abil-
ities of the individual member and let the organism
as a whole exhibit cognitive behavior.

“Cognition” is derived from the Latin word
cognescere and means “to know”, “to recognize”
and also to “conceptualize”. In the human brain,
cognition emerges — to the best of our knowledge
— from the complex interactions of highly con-
nected, large-scale distributed neural activity. We
argue that “cognition” can manifest itself at multi-
ple different levels of complexity ranging from con-
ceptualizing collective decisions such as assuming
a certain shape or deciding between different ab-
stract choices in social insects to reasoning on com-
plex problems and expressing emotions in humans,

the combination of the latter two often framed as
the “Turing test” in Artificial Intelligence. This
chapter aims at developing formal models to cap-
ture the characteristic properties of the most sim-
ple cognitive primitives in swarming systems. In
particular, we wish to understand the relationship
between the activities of the individual member of
the swarm and the dynamics that arise at collec-
tive level. The resulting models can be matched
to data recorded from physical systems, be used to
predict the outcome of a robot’s individual behav-
ior on a larger swarm, and used in an optimization
framework to determine the best parameters that
help improving a certain metric [4].

This chapter reviews probabilistic models of
three swarming primitives that are examples of
conceptualizations that are exclusively represented
at the collective level: collaboration, collective de-
cision making, and collective optimization. Guided
by examples from social insects, we present mod-
els that generalize to arbitrary agent systems and
can serve as building blocks for more complex sys-
tems. The probabilistic component of the mod-
els arises from (1) the agent’s motion which of-
ten has a random component, (2) explicit random
decisions made by individual agents, and (3) ran-
dom encounters between agents. Randomness in
an agent’s motion can be introduced, for example,
by physical properties such as slip, by deficits in
robot hardware, or by explicitly explorative behav-
ior, e.g., based on random turns. It is therefore
reasonable to model at least the single-agent be-
havior with probabilistic methods. Yet, it is pos-
sible to model the expected swarm-level behavior
using deterministic models. In such a swarm-level
model the underlying stochastic motion of agents

1



2 CHAPTER 1. PROBABILISTIC MODELING OF SWARMING SYSTEMS

is summarized in macroscopic properties, which are
averages such as the expected swarm fraction in a
certain state or at a certain position [11, 26, 24, 20].

Such probabilistic models are in contrast with
deterministic models of swarming systems, which
explicitly model the positions of individual robots.
Representative examples include controllers for
flocking [17], consensus [25], and optimal sensor
distribution for sampling a given probability den-
sity function [5]. While the robots’ spatial distri-
bution is explicitly modeled, those models have dif-
ficulties dealing with randomness or robot popula-
tions in which robots can be in different states at
the same time.

After providing a brief background on phe-
nomenological probabilistic models based on the
master equation, this chapter will first review pop-
ulation dynamic models that ignore the spatial dis-
tribution of the individual robots and the swarm
and then present models that explicitly model the
spatial distribution of the robot swarm using time-
dependent, spatial probability density functions.

1.2 Master equation

Let a robot be in a discrete set of states with prob-
ability pi ∈ ~P , with ~P a vector maintaining the
probabilities of all possible states and

∑ ~P = 1.
These states model internal states of the robot, de-
termined by its program, or external states, deter-
mined by the state of the robot within its envi-
ronment. Actions of the robot and environmental
effects will change these probabilities. This is cap-
tured by a phenomenological set of first-order dif-
ferential equations, also known as the master equa-
tion [30],

d~P

dt
= A(t)~P (1.1)

where A(t) is the transition matrix consisting of
entries pij(t) that correspond to the probability
of a transition from state i to state j at time t.
Multiplying both sides with the total number of
robots N0, allows us to calculate the average num-
ber of robots in each state. For brevity, we write
Ni(t) = N0pi(t). Similarly, when expanding the
master equation for a continuous space variable,
one finds the Fokker-Planck equation, also known
as Kolmogorov Forward equation or the Smolu-
chowski equation [9, 29].

1.3 Non-spatial Probabilistic
Models

1.3.1 Collaboration

An important swarming primitive is collaboration,
which requires a number of agents (n) to get to-
gether at a site. Collaboration is different from
the more general task allocation problem, in which
the number of agents is not explicitly specified. In
swarm robotics, a “site” can have spatial meaning,
but can also be understood in an abstract way as
means to form teams. Although there are many
different algorithms for team formation, we focus
on a collaboration mechanisms that was introduced
in the “Stick-Pulling Experiment” [16] and turned
out to be a recurrent primitive in swarm robotic
systems, e.g., in swarm robotic inspection, where
robots can serve as temporary markers in the en-
vironment [3]. Here, collaboration happens when
an inspecting robot encounters a marker, which in-
forms it that this specific area has already been
inspected. The collaboration model therefore finds
application in studying trade-offs between serving
as “memory” to the swarm and actively contribut-
ing to the swarming behavior’s metric.

Figure 1.1: A collaboration example. N0 = 5
robots (black) in a bounded environment with
M0 = 3 collaboration sites, each requiring n = 2
robots to be present simultaneously for collabora-
tion to happen.

In the Stick-Pulling experiment N0 robots are
concerned with pulling M0 sticks out of the ground
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ns(t) Average number of searching agents
nw(t) Average number of waiting agents
p Probab. to encounter/match a waiting agent
c(t) Average rate of collaboration matches
N0 Total number of agents
M0 Total number of collaboration sites
Tw Waiting time

Table 1.1: Notation used in the Collaboration
model.

in a bounded environment. This task requires ex-
actly n = 2 robots. Physically, this can be under-
stood as a stick that is too long to be extracted from
the ground by a single robot. Rather, every robot
that grabs the stick can pull it out a little further
and keeps it there until the next robot arrives. In
this work, we abstract the classical stick-pulling ex-
periment to a generic collaboration model in which
robots are simply required to meet, see also Figure
1.1. Intuitively, the amount of time spent waiting
for collaboration to happen is a trade-off between
(1) waiting at a site to find a collaborator and (2)
having the chance to find a collaborator oneself by
actively browsing the environment. Finding the
collaboration rate, and the individual parameters
that lead to it, that is optimal for a given environ-
ment, i.e., the number of collaboration sites and
the number of agents, illustrates how probabilistic
models can be employed to design this process and
finding optimal collaboration.

The following model is loosely based on the
development in [23], which applies discrete time dif-
ference equations. For simplicity, we assume that
collaboration happens instantaneously, and focus
on a continuous-time representation and stochastic
waiting times. Please refer to [23] for an extensive
treatment of deterministic waiting times and [21]
for an extension to n > 2 agents. Variables used in
the equations that follow are summarized in Table
1.1.

Let ns(t) with ns(0) = N0 be the number of
searching agents at time t ∈ R+ and N0 the total
number of agents. Let nw(t) = N0 − ns(t) be the
number of waiting agents at time t. With p the
probability to encounter or match a waiting agent
and Tr the average time an agent will wait for col-
laboration, we can write

ṅs(t) = −p(M0 − nw(t))ns(t) (1.2)

+
1

Tr
nw(t)

+pns(t)nw(t) (1.3)

Thus, ns(t) decreases by the rate at which search-
ing agents encounter empty collaboration sites (of
which exist M0 − nw(t) at time t), and it increases
by those agents that return either from unsuccess-
ful (at rate 1

Tr
) or successful collaboration, i.e., find

any of the nw(t) waiting agents.
In order to maximize the collaboration rate

in the system we are interested in maximizing the
rate at which robots return from successful collab-
oration, i.e., c(t) = pns(t)nw(t).

Solving for ṅs(t) = 0 and substituting nw(t) =
N0−ns(t) allows to calculate the number of robots
at steady-state n∗s:

n
∗
s =

(2N0 −M0)pTr − 1 +
√

8N0pTr(1 + (M0 − 2N0)pTr)2

4pTr

(1.4)

As n∗w = N0 − n∗s by definition, we can write

c∗ = p(n∗sN0 − n∗s
2) (1.5)

The collaboration rate as a function of Tr and N0

is shown in Figure 1.2. By solving dc∗

dn∗
s

= 0, we can

calculate n∗s,opt = 1
2N0 that maximizes c∗. Substi-

tuting n∗s,opt into (1.4) and solving for Tr, we can
calculate the optimal waiting time Tr,opt as

Tr,opt =
1

(M0 −N0)p
(1.6)

As Tr,opt cannot be negative, an optimal waiting
time can only exist if M0 > N0. This intuitively
makes sense, as if there are less agents than col-
laboration sites, waiting too long might consume
all agents in waiting states. We can also see, that
the more collaboration sites there are, the less an
agent should wait. There are two interesting spe-
cial cases: first, N0 = M0. In this case Tr,opt is
undefined. Considering that collaboration sites ex-
ceed agents by exactly one, Tr,opt is fully defined by
1/p. Thus, the higher the likelihood is that agents
find a collaboration site, the lower the waiting time
should be. In this case, it makes sense to release
searching agents from wait states to find another
agent to collaborate. If this likelihood is low, how-
ever, agents are better of waiting to serve as col-
laborators for few searching agents.

With Tr,opt given by (1.6) we can derive the
following guidelines for agent behaviors. First, an
optimal wait time exists only if there are less agents
than collaboration sites. Otherwise, longer waits
improve the chance of collaboration. Second, if
the number of agents, the number of collaboration
sites and the likelihood to encounter a collaboration
site are known to each agent at all times, e.g., due
to global communication or shared memory, agents



4 CHAPTER 1. PROBABILISTIC MODELING OF SWARMING SYSTEMS

Figure 1.2: The collaboration rate as a function of
Tr and N0 for M0 = 10 collaboration sites. There
exists an optimal Tr for N0 < M0, whereas the
collaboration rate increases steadily otherwise for
increasing values of Tr.

could calculate Tr,opt at all time. If these quanti-
ties are not known, however, agents could estimate
these quantities based on their interactions in the
environment, by observing the rates at which they
encounter collaboration and empty sites. Individ-
ual agent learning algorithms that accomplish this
goal are discussed in detail in [22].

1.4 Collective Decisions

Another collective intelligent swarming primitive
are collective decisions. These can be observed in
path selection of ants [6], or shelter selection of
cockroaches [10] or robots [8], but can also have
non-spatial meaning, for example when a consen-
sus on M0 different discrete values is needed. An
example of such a situation is shown in Figure 1.3.
While the above references provide models that are
specific to their application, this chapter provides
a generalized model for collective decisions that
rely on different ways of social amplification, i.e.,
a change of the behavior based on the activities of
other swarm members, or the absence thereof.

Let ns(t) with ns(0) = N0 be the number of
searching/undecided agents at time t ∈ R+

0 and N0

the total number of agents. Let pi, 0 < i ≤ M0,
be the unbiased probability for an agent to select
value i from M0 different values. This probability
is unbiased as it does not depend on social amplifi-
cation. We can then write the following differential
equations for the number of agents ni(t) that have

Figure 1.3: Collective decision example. N0 = 6
robots decide between M0 = 2 choices. Three plus
one robot have already made decisions, two robots
remain undecided.

ns(t) Average number of searching agents
ni(t) Average number of agents committed to choice i
pi Unbiased probability to select choice i
Ti Unbiased time to stay with choice i
N0 Total number of agents
M0 Total number of choices
Tw Waiting time

Table 1.2: Notation used in the collective decision
model.

selected value i:

ṅi(t) = ns(t)piRi(t) −
1

Ti
ni(t)Qi(t), ni(0) = 0 (1.7)

ns(t) = N0 −
M0∑
i=1

ni(t) (1.8)

where Ti is the average time spent on solu-
tion i before resuming search, and Ri(t), Qi(t) :
ni(t), ns(t) → R+ are functions that might or
might not depend on the number of agents in
other states, and therefore making the differential
equation for ni(t) linear or non-linear, respectively.
There are four interesting cases: both Ri(t) and
Qi(t) being constant, both being functions of one
or more states of the system, e.g., ni(t) or ns(t),
and combinations thereof.

In case both Ri(t) and Qi(t) are constants,
one can show that the number of agents selecting
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choice i at steady state n∗i is given by

n∗i =
Ri
Qi
n∗s (1.9)

with n∗s the number of agents that remain unde-
cided at steady-state. (This results from agents
discarding choices at rate 1/Ti.) For example, for
a two-choice system, using n∗s = N0−n∗1−n∗2 yields
the steady states

n∗1 =
Q2R1

Q1Q2 +Q2R1 +Q1R2
(1.10)

n∗2 =
Q1R2

Q1Q2 +Q2R1 +Q1R2
(1.11)

A solution for R1 = 0.01 and R2 = 0.04 and Q1 =
Q2 = 1/10 is depicted in Figure 1.4 and leads to
≈ 7% and ≈ 27% of agents in states one and two
respectively, while most agents remain undecided.
In this system, the speed at which the steady-state
is reached depends on the values of Ri, with higher
values of Ri leading to faster decisions, whereas the
steady-state of undecided agents is determined by
Qi, with lower values of Qi corresponding to lower
values of n∗s. In particular, values for Qi = 1/100 or
Qi = 1/1000 will drastically increase convergence,
in this example to 67% and 78% for the majority
choice, respectively.

In case Qi(t) is constant, but Ri(t) is a non-
linear function of the form Ri(t) = f [ni(t)]

α
i with

αi > 1 a constant, we observe ni(t) to grow faster
due to social amplification of attraction; the larger
ni(t) is, the larger is the positive influx into ṅi(t).
Systems with this property usually converge much
faster than linear systems. For example, a system
with

Ri(t) =

(
1 +

ni(t)

N0

)αi

(1.12)

shows faster convergence than a linear system for
αi ≥ 1. Here, normalizing social attraction withN0

provides independence of the dynamics of the num-
ber of agents. An example with αi = 5 is shown in
Figure 1.4(b).

Similarly, in caseRi(t) is constant, butQi(t) is
a non-linear function of the form Qi(t) = f [ni(t)]

β

with β < 0 a constant, we observe ni(t) to grow
faster due to social amplification of rest; the larger
ni(t), the smaller is the out-flux from ṅi(t). For
example, a system with

Qi(t) =

(
1 +

ni(t)

N0

)βi

(1.13)

also shows faster convergence than a linear system.
Notice that we do not consider positive exponents

for βi as this will drive agents away from decisions
exponentially fast and will simply increase ns(t),
i.e., the number of undecided agents. Results for a
two-choice system with βi = 5 is shown in Figure
1.4(c).

Finally, systems that rely both on social am-
plification of attraction and rest exhibit the best
convergence, when compared with a purely linear
system as well as systems that rely only on either
social amplification mechanism. Results for a two-
choice system with αi = βi = 5 is shown in Figure
1.4(d).

Similar models, i.e., models that rely on non-
linear amplification of either attraction, rest or
both have been proposed for a series of social insect
experiments. For example, in [6] an ant colony is
presented with a binary choice to select the short-
est of two branches of a bridge that connect their
nest to a food source. Here, a model with social
amplification of attraction — by means of an ex-
ponentially higher likelihood to chose a branch with
higher pheromone concentration — is chosen and
successfully models the dynamics observed experi-
mentally. In [10] a model that uses social ampli-
fication of rest is chosen to model the behavior
of a swarm of cockroaches deciding between two
shelters of equal size but different brightness. The
preference for cockroaches for darker shelters is ex-
pressed with a higher pi for this shelter. Conver-
gence to the dark shelter is then achieved by so-
cial amplification of rest, increasing the time cock-
roaches remain in a shelter exponentially with the
number of individuals that are already in the shel-
ter. Here, all cockroaches converge to a single
shelter, even though the model proposed in [10]
employs negative social amplification of attraction
by introducing a notion of shelter capacity, which
cancels the positive term in ṅi(t) when the shel-
ter reaches a constant carrying capacity. Finally,
[18] presents a model for cockroach aggregation in
which the likelihood to join an aggregate of cock-
roaches increases with the size of the aggregate,
whereas the likelihood to leave a cluster exponen-
tially decreases with its size.

The examples from the social insect domain
are trade-offs between expressiveness of the model
and its complexity. As the true parameter values
of αi and βi are unknown, the same experimental
data can be accurately matched by models with
different dynamics. For example, social amplifica-
tion of attraction as observed on larvae of German
cockroaches in [18] was deemed to have negligible
influence on mature American cockroaches select-
ing shelters with limiting carrying capacity in [10].
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(a) Linear system achieving steady-states of ≈ 20%
and ≈ 80%, matching analytical results.
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(b) Time evolution of a system with social amplifica-
tion of attraction using Ri given by (1.12) and αi = 5
for both choices.
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(c) Social amplification of rest using (1.13) and βi =
5.
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(d) Social amplification of both attraction and rest
with αi = βi = 5.

Figure 1.4: Time evolution of a collective decision where solution two is picked four times as likely as solution
one, and both solutions are re-evaluated after an average of 100s, for different non-linear dynamics. Graphs
shows the fraction of agents picking solution one and two.

With respect to artificial agent and robotic
systems, the presented models can instead provide
design guidelines for achieving a desired conver-
gence rate. At the same time, the models are able
to support decisions on sensing and communication
sub-systems that are required to implement one or
the other social amplification mechanism.

1.5 Collective Optimization

The concept of optimization in collective systems
is difficult to separate from the concept of collec-
tive decisions. Rather there seems to be a contin-
uous transition. Collective decisions are made be-
tween several distinct alternatives implying a dis-
crete world of options (e.g., left and right branch
in path selection, two shelters etc.). Typically one
refers to the term ‘optimization’ in collective sys-
tems in the case of tasks that allow for a vast (pos-
sibly even infinite) number of alternatives implying
a continuous world of options.

For this optimization scenario we apply a
probabilistic model that was reported before [11,
26, 14, 15, 27]. It is based on a stochastic differ-
ential equation (SDE, Langevin Equation) and a
partial differential equation (PDE, Fokker–Planck
Eq.) which can be derived from the former. While
the Langevin Equation is a stochastic description of
the trajectory in space over time of a single robot,
the Fokker–Planck Equation describes the tempo-
ral evolution of the probability density in space for
these trajectories. Hence, it can be interpreted as
the average over many samples of robot trajecto-
ries (i.e., ensembles of trajectories). Even a second,
more daring interpretation arises. We can interpret
this probability density directly as a swarm density,
that is, the expected fraction of the robot swarm
for a given area and time. The deterministic PDE
describes the mean swarm fraction in space and
time. Interactions between robots can be modeled
via dependence on the swarm density itself [11].

We introduce our formalism (see Table 1.3 for
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R robot position
A direction & intensity of robots’ directed motion
B intensity of robots’ random motion
F stochastic process (fluctuating directions)
r point in space
Q theoretic term describing intensity of collisions
ρs expected density of robots in state stopped
ρm expected density of robots in state moving
w waiting time
ϕ rate of stopping robots

Table 1.3: Notation used in the Optimization
model.

a summary of all used variables). The Langevin
Equation which gives the position of a robot R at
time t is

Ṙ(t) = −A(R(t), t) +B(R(t), t)F(t), (1.14)

whereas A defines directed motion via drift de-
pending on the current position R and B(R(t), t)F
defines random motion based on F which is a
stochastic process (e.g., white noise). Based on
the Langevin Equation the Fokker-Planck Equa-
tion can be derived [30, 9, 7, 11]

∂ρ(r, t)

∂t
=−∇(A(r, t)ρ(r, t))

+
1

2
Q∇2(B2(r, t)ρ(r, t)), (1.15)

for a swarm density ρ(r, t) (according to the above
interpretation) at position r and time t, a drift term
(−∇(A(r, t)ρ(r, t))) due to directed motion and a
diffusion term (1

2Q∇
2(B2(r, t)ρ(r, t))) due to ran-

dom motion whereas typically we set Q = 2 for sim-
plicity. According to our general approach [11] we
introduce a Fokker–Planck Equation for each robot
state and manage the transitions between states by
rates similar to the rate equation approach of the
above sections.

The optimization scenario considered here is
inspired by the behavior of young honeybees. The
algorithm, that defines the robots’ behavior, is de-
rived from a behavioral model of honeybees [28, 19].
Honeybees of an age of less than 24 hours stay in
the hive, cannot yet fly, navigate towards spots
of a preferred warmth of 36◦C, and stay mostly
inactive. An interesting example of swarm intel-
ligent behavior is how they search and find the
right temperature that their bodies need. It turns
out that they do not seem to do a gradient as-
cent in the temperature field but rather a corre-
lated random walk with inactive periods triggered

by social interaction. Both the above mentioned
behavioral model and the robot controller–called
BEECLUST–are defined by the following.

1.) Each robot moves straight until it

perceives an obstacle Ω within sensor

range.

2.) If Ω is a wall the robot turns away and

continues with step 1.

3.) If Ω is another robot, the robot

measures the local temperature. The

higher the temperature is the longer the

robot stays stopped. When the waiting

elapses, the robot turns away from

the other robot and continues with

step 1.

The temperature field, that we investigate in
the scenario here, has one global optimum (36◦C)
at the right end of the arena and one local optimum
(32◦) at the left end of the arena. In analogy to the
behavior observed in young honeybees the swarm
is desired to aggregate fully at the global optimum
but, at the same time, should also stay flexible
within a possibly dynamic environment. The lat-
ter is implemented by robots (bees) that leave the
cluster from time to time and explore the remain-
ing arena. If a more preferable spot would emerge
elsewhere they would start to aggregate there and
the former cluster might shrink in size and finally
vanish fully.

Now we apply the above modeling approach
to this scenario. We have two states: moving and
stopped. It turns out that in the moving state we do
not have any directed motion, hence, we will turn
the bias in the Langevin Eq. off (eq. 1.14, A = 0).
Without any directed motion in BEECLUST (no
gradient ascent, actually movement fully indepen-
dent from the temperature field) the Fokker–Planck
Equation can be reduced to a mere diffusion equa-
tion in order to model the moving robots

∂ρ(r, t)

∂t
= ∇2(B2(r, t)ρ(r, t)). (1.16)

This equation is our approach for state moving yet
without addressing state transition rates.

The state stopped is even easier to model as it
naturally lacks motion. That way it can be viewed
as a reduction to a mere rate equation defined in
each position r. The state transition rates are de-
fined by a stopping rate ϕ which can be deter-
mined, for example, empirically or by geometrical
investigations (e.g., calculation of collision proba-
bilities) [11]. For state stopped we obtain

∂ρs(r, t)

∂t
= ρm(r, t)ϕ− ρm(r, t− w(r))ϕ, (1.17)
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for a stopping swarm fraction ρs(r, t)ϕ at spot r
and time t and an awakening swarm frac-
tion ρs(r, t − w(r))ϕ. The robots stop and wait
for a time period w(r) which depends on the tem-
perature at spot r.

Here, we choose to approximate the robots’
correlated random walk as mere diffusion in a rough
estimation. The function B in eq. 1.16 is reduced
to a diffusion constant D. We add the rates of stop-
ping/awakening and obtain the equation for state
moving

∂ρm(r, t)

∂t
=D∇2ρm(r, t)− ρm(r, t)ϕ (1.18)

+ ρm(r, t− w(r))ϕ.

If we ignore diffusion and focus on one point in
space we would have a mere rate equation similar
to the above sections (except for the time-delay):

ρ̇m(t) = −ρm(t)ϕ+ ρm(t− w(r))ϕ. (1.19)

Using eq. 1.18 (eq. 1.17 is mathematically not
necessary) we can model the BEECLUST behavior.
For a provided initial distribution of the robots we
end up with an initial value problem for a PDE
which we can solve numerically. The solution of
this initial value problem is the temporal evolution
of the swarm density. In Fig. 1.5 we compare the
model to the results obtained by a simple agent-
based simulation of BEECLUST. This comparison
is meant to be qualitative only. The model catches
most of the qualitative features that occur in simu-
lation although we approximate the robots’ motion
in a rough estimation by diffusion.

Our approach shows how borders between the
fields of engineering and biology vanish in swarm
robotics. The BEECLUST algorithm is at the
same time a controller for robots but also a behav-
ioral model of an animal. The same Fokker–Planck
model is used to model the macroscopic behavior
of honeybees and robot swarms.

The Fokker–Planck model gives good esti-
mates for expected swarm densities in space, the
transient/asymptotic behavior of the swarm, and
density flows. Modeling space explicitly allows for
specific investigations such as objective areas and
obstacles of certain shapes. Other case studies in-
cluded an emergent taxis task which relies on one
group of robots that is ‘pushing’ another group by
collision avoidance [11], a collective perception task
in which robots have to discriminate aggregation
areas of different sizes [13], and a foraging task [12].
This model is mostly relevant to scenarios with
spatially inhomogeneous swarm densities, that is,

swarms forming particular spatial structures that
cannot be averaged over several runs.

1.6 Conclusion

We presented mathematical models for three dis-
tributed swarming behaviors: collaboration, de-
ciding between different choices, and optimization.
Each of these processes are collective decisions of
increasing complexity.

While the behaviors and trajectories of indi-
vidual robots might be erratic and probabilistic,
the average swarm behavior might be considered
deterministic. This holds for both the models and
the observed reality in robotic and biological exper-
iments. An analogy is the distinction between the
complex, microscopic dynamics of multi-particle
systems and the much simpler properties of the cor-
responding ensembles of such systems in thermody-
namics. This insight is important as it allows us to
design the individual behavior so that the expected
value of collective performance is maximized.

Although we presented models with increas-
ing level of spatiality — from collaboration sites
in the environment to modeling the distribution of
robots over continuous space — modeling swarm-
ing systems with heterogeneous spatial and state
distributions using closed form expressions is still
a major challenge. Better understanding swarming
systems with non-uniform spatial distributions will
help us to better understand the impact of environ-
mental patterns such as terrain, winds or current,
thereby enabling swarm engineering for a series of
real world applications that swarming systems have
yet to tackle.
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(a) simulation, t = 30 (b) model, t = 30

(c) simulation, t = 130 (d) model, t = 130

(e) simulation, t = 200 (f) model, t = 200

Figure 1.5: Comparison of histograms of swarm density obtained by an agent-based simulation and the
corresponding model based on eq. 1.18 for different times and an initial state with equal distribution of
robots. An optimal temperature peak of 36◦C is at the right end of the arena, at the left end there is a
suboptimal peak in temperature of 32◦C, the middle part is cooler. We observe that in average at first
clusters form at both ends of the arena but later those at the left vanish. Swarm size is N = 25. The
histograms obtained by simulation are based on 106 samples.
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