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Coordination of Groups of Mobile Autonomous
Agents Using Nearest Neighbor Rules

Ali Jadbabaie, Jie Lin, and A. Stephen Marellow, IEEE

Abstract—in a recent Physical Review Lettersurticle, Vicsek There is a large and growing literature concerned with
et al. propose a simple but compelling discrete-time model of.  the coordination of groups of mobile autonomous agents.
autonomous agents (i.e., points or particles) all moving in the plane Included here is the work of Czirokt al. [3] who propose
with the same speed but with different headings. Each agent’'s . . . -
heading is updated using a local rule based on the average of itsone-dl_mensmnal models which exhibit the same type of
own heading plus the headings of its “neighbors.” In their paper, P€havior as Vicsek’s. In [4] and [5], Toner and Tu construct
Vicsek et al. provide simulation results which demonstrate that a continuous "hydrodynamic" model of the group of agents,
the nearest neighbor rule they are studying can cause all agents while other authors such as Mikhailov and Zanette [6] consider
to eventually move in the same direction despite the absence Ofthe behavior of populations of self propelled particles with

centralized coordination and despite the fact that each agent’s | int fi Scheek al det ined int i
set of nearest neighbors change with time as the system evolves,0Ng range interactions. scheerk al. determined interactions

This paper provides a theoretical explanation for this observed Petween individual self-propelled spots from underlying reac-
behavior. In addition, convergence results are derived for several tion-diffusion equation [7]. Meanwhile, in modeling biological

other similarly inspired models. The Vicsek model proves to be systems, Griinbaum and Okubo use statistical methods to
a graphic example of a switched linear system which is stable, ol ; : ;
but for which there does not exist a common quadratic Lyapunov analyze group behavior in animal agg'regatlons [8]. This paper
function. and, for example, the work reported in [9]-[12] are part of a
large literature in the biological sciences focusing on many
aspects of aggregation behavior in different species.
In addition to these modeling and simulation studies, research
papers focusing on the detailed mathematical analysis of emer-
|. INTRODUCTION gent behaviors are beginning to appear. For exampleetail.
N [1], Vicsek et al. propose a simple but compelling[lg] use Lyapunov methods and Leonadal. [14] and Ol-

discrete-time model of, autonomous agents (i.e pointfti and Murray [15] use potential function theory to understand
.e., |

Index Terms—Cooperative control, graph theory, infinite prod-
ucts, multiagent systems, switched systems.

or particles) all moving in the plane with the same speed b cking behavior, and Ogrest al. [16] uses control Lyapunov

with different headings. Each agent's heading is updated usit ction-based ideas to analyze formation stability, while.Fax
a local rule based on the average of its own heading plus d Murray [17] and Desait al. [18] employ graph theoretic

headings of its “neighbors.” Agerlits neighborsat timet, are te?rhhnlques 1]‘cor :he sarr?ehpuLpost. distinauish .
those agents which are either in or on a circle of pre-specifi?d ef onetheta urg V\; II<C i arp yth |stt|ﬂgms es prel\(lqtlletaEa-
radius r centered at agents current position. The Vicsek lyzes from that undertaken here 1s that this paper explicily takes

model turns out to be a special version of a model introducl-gilo ac_count possible. changes in.neargst neighbors over time.
previously by Reynolds [2] for simulating visually satisfying™. angkglng ge?res(tj r?el?glbortsets IS ;r: inherent p'rdoper_}_y of the
flocking and schooling behaviors for the animation industry.g#{ICSe T}O edaln _;n €o erfn:c; es Weltionm "eli' 0 ana-
their paper, Vicselet al. provide a variety of interesting simu- yz€ such modets, It proves usetul to appeal to well-known re-

lation results which demonstrate that the nearest neighbor rﬁ%ts [%9]’ [2(.)] charact?rlzmg the convergence _?_L'nf'mtg pr?(j—
they are studying can cause all agents to eventually move in tS 0 c:a.rtam t()j/pets 0 nonnggat|2v1e mzagrlcesa ‘ne Ztu gtodlm-
same direction despite the absence of centralized coordina Bie matrix products IS ongoing [ ]_.[ ] and s undoubtedly
and despite the fact that each agent's set of nearest neigh%Psduc'ng results which will find application in the theoretical

change with time as the system evolves. In this paper, \%,de of emergent behaviors.

provide a theoretical explanation for this observed behavior. .\ﬁcseks madel is .set up in Sectlon_ Il as a systemmf
simultaneous, one-dimensional recursion equations, one for

each agent. A family of simple graphs envertices is then
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heading provided the:. agents are all “linked together” via Because of this, it makes sense to represent headings at any

their neighbors with sufficient frequency as the system evolvdgite time ¢, as real numbers if), 27). Of course it is entirely

The model under consideration turns out to provide a graphpossible that in the limit as — oo, a heading might approach

example of a switched linear system which is stable, but ftre value2r; any such limiting value is interpreted as a heading

which there does not exist a common quadratic Lyapuna¥ 0. Analogous statement apply to all other models considered

function. in the sequel. Accordingly, throughout the paper headings at any
In Section 1I-B, we define the notion of an average headirfinite time ¢, are represented as real numbergirer).

vector in terms of graph Laplacians [27] and we show how The explicit form of the update equations determined by

this idea leads naturally to the Vicsek model as well as {&) and (2) depends on the relationships between neighbors

other decentralized control models which might be used for tiaich exist at timef. These relationships can be conveniently

same purposes. We propose one such model which assudescribed by a simple, undirected graplwith vertex set

each agent knows an upper bound on the number of agent§in2, ..., n} which is defined so thati, j) is one of the

the group, and we explain why this model has convergengeaph’s edges just in case ageh@nd; are neighbors. Since

properties similar to Vicsek’s. the relationships between neighbors can change over time, so
In Section Ill, we consider a modified version of Vicsek’s disean the graph which describes them. To account for this we

crete-time system consisting of the same group adents, plus will need to consider all possible such graphs. In the sequel we

one additional agent, labeled 0, which acts as the group’s leadsse the symbdP to denote a suitably defined set, indexing the

Agent 0 moves at the same constant speed asfdBowers but class of all simple graph®,, defined onn vertices.

with a fixed heading,. Thesth follower updates its heading just The set of agent heading update rules defined by (1) and (2),

asinthe Vicsek model, using the average of its own heading pken be written in state form. Toward this end, for each P,

the headings of its neighbors. For this system, each followedsfine

set of neighbors can also include the leader and does so when-

ever the leader is within the follower's neighborhood defining Fy=(1+Dp) (A, +1) 3)

circle of radiusr. We prove that the headings of allagents h is the adi i of d he di
must converge to the leader’s providedrakhgents are “ linked where4, is the adjacency matrix of grajgh, andD),, the diag-

to their leader” together via their neighbors frequently enoué’rp"’_‘lhmatﬂx whos:éth ﬁliagonal element is the valence of vertex
as the system evolves. Finally, we develop a continuous-tirh&/thin the graph. Then
analog of this system and prove under condition milder than im-

1) = F, , 1,2, ... 4
posed in the discrete-time case, that the headings ofajkents 6t +1) 7@ 0(t), te{0. 1,2} “)

again converge to the heading of the group’s leader. wheref is the heading vectod = [6; 6, --- 6,] and
a: {0, 1, ...} — P is a switching signal whose value at time
II. L EADERLESSCOORDINATION t, is the index of the graph representing the agents’ neighbor

The system studied by Vicsedt al. [1] consists ofn au- relationships at time¢. A complete description of this system
tonomous agents (e.g., points or particles), labeled 1 thraughwvould have to include a model which explains hevehanges
all moving in the plane with the same speed but with differever time as a function of the positions of theagents in the
headings. Each agent’s heading is updated using a simple loddane. While such a model is easy to derive and is essential for
rule based on the average of its own heading plus the headinggimmation purposes, it would be difficult to take into account in
its “neighbors.” Agent’s neighborsat timet, are those agents a convergence analysis. To avoid this difficulty, we shall adopt
which are either in or on a circle of pre-specified radiusen- @ more conservative approach which ignores hotepends on
tered at agent's current position. In the sequdl;(¢) denotes the agentpositionsin the plane and assumes instead thigit
the set of labels of those agents which are neighbors of ageRg any switching signal in some suitably defined set of interest.
at timet. Agenti’s heading, writter#;, evolves in discrete-time ~ Our goal is to show for a large class of switching signals

in accordance with a model of the form and for any initial set of agent headings that the headings
of all n agents will converge to the same steady state value
0i(t + 1) = (0:(t))r (1) 4,,. Convergence of thé; to 6., is equivalent to the state

wheret is a discrete-time index taking values in the nonnegati\\/eeACtor f converglng/] to a vector of the for'nﬁss} where
1 - 1] Naturally, there are situations where

integers{0, 1, 2, ...}, and(6;(¢)), is the average of the head-! = [1 nx1: )
ings of agent and agent’s neighbors at time; that is convergence to a common heading cannot occur. The most

obvious of these is when one agent—say itle—starts so
1 far away from the rest that it never acquires any neighbors.
= Tl 6;(t) + Z 6;(t) (2) Mathematically, this would mean not only th@t, ;) is never
¢ FEN(t)

(6(t))r

2By an undirectedgraph G on vertex set/ = {1, 2, ...n} is meantV
Whereni(t) is the number of neighbors of agenat time . together with a set of unordered pafrs= {(, j): ¢, 7 € V} which are called

. : G’s edges. Such a graphssnpleif it has no self-loops [i.e(z, j) € £ only if
Observe that the preceding heading update rule maps headm7g§] or repeated edges (i.€. ,contains only distinct elements). By thalence

with values|0, 27) into a heading with a value also [, 7). of a vertexv of G is meant the number of edges®fwhich are “incident” on
v where by anindicantedge ornv is meant an edgg, ;) of G for which either
IThe Vicsek system also includes noise input signals, which we ignore in this= v or j = v. Theadjacency matrivof G is ann x n matrix of whoseijth
paper. entry is 1 if(4, j) is one ofG's edges and O if it is not.
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connectedl at any timet, but also that vertex remains an  Theorem 2: Let #(0) be fixed and let: {0, 1,2, ...} = P

isolated vertex of5, ;) for all ¢. This situation is likely to be be a switching signal for which there exists an infinite sequence

encountered ifr is very small. At the other extreme, whichof contiguous, nonempty, bounded, time-intervls ¢;.1),

is likely if r is very large, all agents might remain neighbors > 0, starting attgy = 0, with the property that across each

of all others for all time. In this case; would remain fixed such interval, the, agents are linked together. Then

along such a trajectory at that valuezine P for which G,

is a complete graph. Convergencefofo 6,1 can easily be lim 6(t) = 8.1 ©)

established in this special case because witko fixed, (4) t—00 58

is a linear, time-invariant, discrete-time system. The situation

of perhaps the greatest interest is between these two extreqjRgred,, is a number depending only @10) ando.

whenG, ;) is not necessarily complete or even connected for The hypotheses of Theorem 2 require each of the collec-

anyt > 0, but when no strictly proper subset®f, ;,'s vertices tions {Gy (1,), Go(t,41)s -+ » Go(tisr—1)}+ 3 > 0, t0 be jointly

is isolated from the rest for all time. Establishing convergenegnnected. Although no constraints are placed on the intervals

in this case is challenging becausehanges with time and (4) [¢;, ¢;,1), 7 > 0, other than that they be of finite length, the con-

is not time-invariant. It is this case which we intend to stud¥traint ono is more restrictive than one might hope for. What

Toward this end, we denote hg the subset of” consisting one would prefer instead is to show that (6) holds for every

of the indices of the connected graphs{i&,: p € P}. Our switching signals for which there is an infinite sequence of

first result establishes the convergence dor the case when pounded, nonoverlappingout not necessarily contiguolin-

o takes values only Q. tervals across which the agents are linked together. Whether

Theorem 1:Let#(0) be fixed and let: {0, 1, 2, ...} — P or not this is true remains to be seen.

be a switching signal satisfyingt) € Q,t € {0, 1, ...}. Then A sufficient but not necessary condition ferto satisfy the

hypotheses of Theorem 2 is that on each successive interval

lim 6(t) = 6,1 ) [t;, ti+1), o take on at least one value ®. Theorem 1 is thus

t—o0 an obviously a consequence of Theorem 2 for the case when all
intervals are of length 1. For this reason we need only develop
whered,, is a number depending only @0) ando. a proof for Theorem 2. To do this we will make use of certain

It is possible to establish convergence to a common head®#uctural properties of the, . As defined, eaclh, is square and
under conditions which are significantly less stringent that tho§énnegative, where by @onnegativematrix is meant a matrix
assumed in Theorem 1. To do this we need to introduce s¥(P0se entries are all nonnegative. E&gfalso has the property
eral concepts. By thenion of a collection of simple graphs, that its row sums allequal 1 (i.a?Pl = 1). Matrices with thes.e
{6,,.6,,, ..., G, }, each with vertex seV, is meant the two properties are callgﬁtqchasth28]. TheF, have the addi-
simple grapt® with vertex se’ and edge set equaling the unioﬁ'onal property that th_e|r diagonal e_zlements are aI_I nonzero. For
of the edge sets of all of the graphs in the collection. We say tH3f ¢as€ when € Q (i.e., whenG, is connected), itis known

o P o i
such a collection ipintly connectedf the union of its members e (I.+. Ap)™ becomes a '.’”a”'x with al posmye entries for
%tsufﬂuently large [28]. It is easy to see that(if + 4,)™

is a connected graph. Note that if such a collection contains 7 .
graph. - . has all positive entries, then so dogg'. Such(/ + A,) and
least one graph which is connected, then the collection must hé o . b
are examples of “primitive matrices” where bypamitive

jointly connected. On the other hand, a collection can be joint atrix is meant any square, nonnegative matdxfor which

conr_1ected even if none of its members are conn_ected: M™ is a matrix with all positive entries for. sufficiently large

' It is natural to say that 'Fhe ggents under. conS|derat|9n aretzs]. It is known [28] that among the eigenvalues of a prim-
linked togetheracross a time intervall, 7] if the collection e matrix, there is exactly one with largest magnitude, that
of graph{G, (1), Go(i+1), -- -+ Go(r)} €NCOUNtered along the yiq eigenvalue is the only one possessing an eigenvector with
interval, is jointly connected. The_orem 1 says, in essence, “&ﬂtpositive entries, and that the remaining— 1 eigenvalues
convergence of all agents’ headings to a common headinggi al| strictly smaller in magnitude than the largest one. This
for certain provided alk agents are linked together across eagheans that fop € Q, 1 must beF,’s largest eigenvalue and
successive interval of length one (i.e., all of the time). Of courgg remaining eigenvalues must lie within the open unit circle.
there is no guarantee that along a specific trajectoryrtheas g consequence, each sugh must have the property that
agents will be so linked. Perhaps a more likely situation, at leagh, __ F;; = 1¢, for some row vector,,. Any stochastic ma-
whenr is not too small, is when the agents are linked togethgices M for which lim;_,.., M? is a matrix of rank 1 is called
across contiguous intervals of arbitrary but finite length. If thergodic[28]. Primitive stochastic matrices are thus ergodic ma-
lengths of such intervals are uniformly bounded, then in thiices. To summarize, eadh, is a stochastic matrix with pos-
case too convergence to a common heading proves to beifive diagonal elements and jif € Q thenF}, is also primitive

certain. and, as a result, ergodic. The crucial convergence result upon
which the proof of Theorem 2 depends is classical [19] and is
3A simple graphG with vertex setV = {1, 2, ..., n} and edge sef is  as follows.
connectedf has a “path” between each distinct pair of its verticesd; where Theorem 3 (WoIfowitz):Let M., M, ..., M,, be a fi-

by apath(of lengthm) between verticesand; is meant a sequence of distinct . . . .
edges of5 of the form(i, k1), (k1. ka), ... (k. 7). G is completef hasa NIt€ S€t of ergodic matrices with the property that for each

path of length one (i.e., an edge) between each distinct pair of its vertices. sequenceM;,, M;,, ..., M;, of positive length, the matrix
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M;, is ergodic. Then for each infinite primitive matrix and if B > A, then B is primitive as well.
,, - - . there exists a row vectersuch that Lemma 1 is a simple consequence of the following result.

Lemma 2:Let m > 2 be a positive integer and let

productM;, M,

Qg1

sequence);,, M,

,ILH;O M; M;,_, ---M;, =1lc. Ay, Ay, ... A, be nonnegative, x n matrices. Suppose that
! the diagonal elements of all of th& are positive and let and
The finiteness of the setf;, Mo, ..., M,, is crucial to Wol- p denote the smallest and largest of these, respectively. Then

fowitz’'s proof. This finiteness requirement is also the reason ox (mo1)

why we've needed to assungentiguous bounded intervals in Ay A > [ Ao Ayt A 10
the statement of Theorem 2. taze e Am =\ 9, (A1 + A2 4+ Ap). (10)

In order to make use of Theorem 3, we need a few facts con- _ ) _ _ _

cerning products of the types of matrices we are considering. Proof: Seté = ;1% /2p. It will be shown by induction that
First, we point out that the class of x n stochastic matrices (i-1)

with positive diagonal elements is closed under matrix multi- ArAp - Ai 26 (Ai+ A2 +--- 4+ 4)) (11)
plication. This is because the product of two nonnegative Mgy|qs for; ¢ (2,3, ..., m}. Toward this end. note that it is

trices with positive diagonals is a matrix with the same pmpeﬁbssible to write eacH; asA; = ul + B; whereB; is nonneg-
ties and because the product of two stochastic matrices is Sifye. Then, for any, P {12. 9 mb} ‘

chastic. Second, we will use the following key result.
Lemma 1:Let{pi, p, ..., pm} be asetofindicesi®wfor A A, = (ul + B,)(ul + By) = p*I + u(B; + By,) + B;By.
which{G,,, G,,, ..., G, _} is ajointly connected collection
of graphs. Then the matrix produk}, £, , ..., F,,, isergodic. Hence
Proof of Theorem 2: Let T' denote the least upper 9
bound on the lengths of the intervals;, t;11), ¢ > 0. AjAy > 1+ u(Bj + By) > p*l + lL(Bj + By)
By assumptionl’ < oo. Let ®(¢t,t) = I,t > 0, and 2p
(1, 7) 2 Fy1)- FotranFoiryn t > 7 > 0. Clearly =0((pI + Bj) + (pl + Br)).

6(t) = @(¢, 0)6(0). To complete the theorem’s proof, it iS'Since(pI+ B;) > A; and(pl + By) > Ay it follows that
therefore, enough to show that - -

tliHl B(t 0) = 1c @) AjAL > 6(A; + Ay) Vi ked{l,2,...,m}. (12)

o Setting; = 1 andk = 2 proves that (11) holds far = 2. If
for some row vectorc since this would imply (6) with m = 2, the proof is complete.
0, 2 cf(0). In view of Lemma 1, the constraints om Now, suppose thatn > 2 and that (11) holds for
imply that each such matrix produdt(t; 1, t;), 5 > 0,is i€ {2, 3, ...1} wherel is some integerif2, 3, ..., m — 1}.
ergodic. Moreover the set of possible(t;1, t;), 5 > 0, ThenAjAy---Ajyy = (Ag,..., A7) Arq1 so by the inductive
must be finite because eadh(t;,1, t;) is a product of at hypothesis
most T matrices from{F,: p € P} which is a finite set. a-1)
But ‘P(tj, 0) = ‘I)(tj, t]'_l)q)(tj_l, tj_g),...,‘l)(tl, t()). A1A2"'Al+1 >0 (Al + A2+ "'+A1)Al+1~ (13)
Therefore, by Theorem 3 . . .

However, using (12) times, we can write

thgo ®(t;,0) = 1c. (®) (Av+ A+ -+ ADAr

For eacht > 0, let j, be the largest nonnegative integer 2 8{(Ar+ Arr) + (A2 + Appr) -+ (A4 A}

>
such thatt;, < t. Then, ®(t, 0) = ®(t, t;,)®(%;,, 0) and 11
O(t, t;,)1 = 1so
Ayt Aot ot A) Ay > 8(Ay + Ag + -+ + Aryy).
Bt 0) = Te= 0t 1)@, 010, @ T i 2 oL+ A )
_ _ This and (13) imply that (11) holds fér= [ + 1. Therefore, by
Note thatt +— &(t,t;,) is a bounded function becausgnqyction (11)istrue forall € {2, 3, ..., m}. -
®(t, t;,) is the product of at most’ — 1 matricesF, which Proof of Lemma 1:SetF — (j n D)—l(l + A) where
come from a bounded set. Moreovgb(i;,, 0) — 1¢) — 0 4 and D are respectively the adjacency matrix and diag-
ast — oo because of (8). From this and (9), it follows thapng| valence matrix of the union of the collection of graphs
(@(t, 0) — 1c) — 0 ast — oo. Therefore, (7) holds. ® 1G,,6,, ...,G,. }. Since the collection is jointly con-

To prove Lemma 1 we shall make use of the standard particted, its union is connected which means fi primitive.
ordering> on n x n nonnegative matrices by writing > gy | emma 2

A wheneverB — A is nonnegative. Let us note thatAf is a
FplFPQ"'FPmZ’V(FP1+FP2+"'+Fm) (14)

4We are indebted to M. Artzrouni, University of Pau, France, for his help with
the proof of an earlier version of this lemma. . . . . .
SThe authors thank D. Liberzon for pointing out a flaw in the original versiowhere'}/ IS a positive constant dependlng on the matrices in the

of this proof, and S. Meyn for suggesting how to fix it. product. Since fof € {1, 2, ..., m}, F,, = (I+ Dp,) *(I +
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A,,) andD > D, it must be true thaf),, > (I + D)~'(I + products of thelZ; converge to zero. It is known [29] that con-
A,,),1€{1,2,..., m}. Fromthis and (14) it follows that ~ vergence to zero of all such infinite products is in fact equiva-
lent to the “joint spectral radius” aM being strictly less than

F, F,, - F, >~yI+D) YmI+A, +A,,+-+4, ). 1where byoint spectral radius of\ is meant

(15)
However, A, + A, +---+ A, > Aandml > I so prm = lim sup{ max —max
k—oo | Mi €M M;,eM
F, F,, ---F,, >~F. 1/k
) e p_ . J\}H%}f\/{ “MhMizw"?M‘k“} .

Since the produck), F}, - - - F}, is bounded below by a prim- "

itive matrix, namelyy F’, the product must be primitive as well.Here,|| - || is any norm on the space of real x m matrices. It
SinceF,, F,, - -+ F,,, . is also a stochastic matrix, it must thereturns out thap . does not depend on the choice of norm [21,
fore be ergodic. B p. 237]. On the other hand, a “tight” sufficient condition for the

As we have already notedi,1 = 1, p € P. Thus, spaf{1} existence of acommon quadratic Lyapunov function for the ma-
is an Fj-invariant subspace. From this and standard existengiges inM, isprq € [0, 1/y/m) [30]. This condition igightin
conditions for solutions to linear algebraic equations, it follomhie sense that one can find a finite setof< m matrices with
that for any(n — 1) x n matrix P with kernel spanned by, the joint spectral radiup = 1/./m, whose infinite products con-
equations verge to zero despite the fact that there does not exist common

~ guadratic Lyapunov function for the set. From this one can draw
PF, = F,P, peP (16) the conclusion that sets of matrices with “large’are not likely

. to possess a common quadratic, even though all infinite products

have unique solution),, p € P, and moreover that of such matrices converge to zero. This can in turn help explain
. why it has proved to be necessary to go as high as 10 to

spectrum Fy, = {1} U spectrumé;,, peP. (17)  find a case where a common quadratic Lyapunov function for a

: : family of £}, does not exist.
As a consequence of (16) it can easily be seen that for any se-

guence of indexegy, p1, -..,p; iN P A. Generalization

v Fy (18) It i_s possible to interpret the Vicsek model analyzedin thellast
section as the closed-loop system which results when a suitably
Since P has full-row rank andP1 = 0, the convergence of defined decentralized feedback law is applled to ﬁhagent
a product of the form¥,, F, , F,, to 1c for some row heading model
vector ¢, is equivalent to convergence of the corresponding
product £, F,._,,..., F,, to the zero matrix. Thus, for ex-
ample, if pg, p1, ... is an infinite sequence of indices i@,
then, in view of Theorem 3

F,.F,._.,...,F, P=PF,F,

i—17"

B(t+ 1) = () + u(t) (20)

with open-loop controk. To end up with the Vicsek model,
would have to be defined as

,./liln FP{ FP{—17 Tt Fpo =0. (19) ’U,(f) = _(I + D(r(t))_le(t) (21)

Some readers might be tempted to think, as we first did, th4feree is theaverageheading errorvector

the validity of (19) could be established directly by showing A P

that theF,, in the product share a common quadratic Lyapunov e(t) = Lo 0(t) (22)
function. More precisely, (19) would be true if there were gnd, for eachy € P, L, is the symmetric matrix

single positive—definite matrid/ such that all of the matrices

EyMF, — M, p € Q were negative definite. Although each L,=D,- 4, (23)
F,, p € Q can easily be shown to be discrete-time stable, thelg
are classes af), for which that no such common Lyapunov ma
trix M exists. While we have not been able to construct a sim
analytical example which demonstrates this, we have been a

Fown in graph theory as theaplacianof G, [27], [31]. It is
'(?asily verified that equations (20) to (21) do indeed define the
fcsek model. We have elected to calthe average heading

for because i£(t) = 0 at some time, then the heading of

&¥ch agent with neighbors at that time will equal th f
function exists for the class of all, whose associated graphﬁhechgsdei:gvswof irt]:Ir?eig(;]rt')soarls attime wi equalthe average o

have 10 vertices and are connected. One can verify that this 1% the present context, Vicsek’s control (21) can be viewed as

SO -by using semidefinite programming and r_estrlctlmg the Chegikspecial case of a more general decentralized feedback control
to just those connected graphs on ten vertices with either niNg,

the form
or ten edges.

It is worth noting that existence of a common quadratic Lya- u(t) = G Lo0(t) (24)
punov function for all discrete time stable x m matrices o (t)
M, M, ... in some given finite sef\, is a much stronger where for eactp € P, G, is a suitably defined, nonsingular

condition than is typically needed to guarantee that all infinitdiagonal matrix withith diagonal elemeryt;'). This, inturn, is an
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abbreviated description of a systemmghdividual agent control This means that the eigenvalueg df g) L must be smaller than

laws of the form 1 sinceg > n. From these properties it clearly follows that the
) eigenvalues ofI — (1/g)L) must all be between 0 and 1, and
ui(t) = —— ni(t)0:(t) + Z 0,(t) that if G is connected, then aII.W|II be stnct!y less than 1 except
9i(t) JENL(D) for one eigenvalue at 1 with eigenvectorSince eaclf), is of

(25) the form(I—(1/g)L), eachF, possesses all of these properties.

Pe{l 2 m) Let o be a fixed switching signal with valyge € Q at time

where fori € {1, 2, ..., n}, u;(¢) is theith entry ofu(¢) and ¢ > 0. What we’'d like to do is to prove that as— oo, the
gi(t) 2 gt 1+ Application of this control to (20) would result in matrix product,, Fy, ., .. ., I, converges td.c for some row
the closeé-loop system vectore. As noted in the Section II-A, this matrix product will
. SO converge just in case
0(t +1) = 6(t) — G Loy 0(). (26) o N
Note that the form of (26) implies thatffando were to con- Lllnolo Fpilpissees Fpy =0 (30)

verge to a constant valués andz, respectively, thed would
automatically satisfy.z# = 0. This means that control (24) au-% ; : i
tomatically forces each agent's heading to converge to the dw!> P € P andP is any full rank(n — 1) x n matrix satis-
erage of its neighbors, if agent headings were to converge at N9 1 = 0. For simplicity and without loss of generality we
In other words, the choice of th&, does not effect the require-Sha” henceforth assume that the rowdform a basis for the

ment that each agent's heading equal the average of the headffficgonal complement of the spaneofThis means thap P’

of its neighbors, if there is convergence at all. equalsthgn—1)x (n—1)identity 7, thatFy, = PF, I, p € P

The preceding suggests that there might be useful choices?8f: thus, that each, is symmetric. Moreover, in view of (17)

the G, alternative to those considered by Vicsek, which alyd the spectral properties of thg, p € Q, itis clear that each
lead to convergence. One such choice turns out to be Fy, p € Q, must have a real spectrum lying strictly inside of
the unit circle. This plus symmetry means that for each Q,
Gp=gl, peP (27) F, — I is negative definite, thak” £, — I is negative definite
whereg is any number greater than Our aim is to show that 2nd thus, thaf is a common discrete-time Lyapunov matrix for
with the G, so defined, Theorem 2 continues to be valid. 1§l SUChF}. Using this fact it is straight forward to prove that

sharp contrast with the proof technique used in the last sectia—rl?,?orem 1 holds for system (26) provided tig are defined

convergence will be established here using a common quadr&fdn (27) withg > n. , _ » _
Lyapunov function. In general, each), is a discrete-time stability matrix for

As before, we will use the model which F/ F,, — T is negative definite only ip € Q. To crafta
proof of Theorem 2 for the system described by (26) and (27),
O(t + 1) = Foy0(t) (28) one needs to show that for each interjfal #;,1) on which
{Gottis1-1)s -+ Got,41), Gor,)} is @ jointly connected
collection of graphs, the produdt, ;.. 1)+ Fir(e,+1) Fo(er)
) is a discrete-time stability matrix and
Fy=I= Ly, peP. (29) .

here as in Section II-AF), is the unique solution t®F, =

where, in view of the definition of thé&r,, in (27), theF,, are
now symmetric matrices of the form

To proceed we need to review a number of well known ang

easily verified properties of graph Laplacians relevant to tr|]enegat|ve definite. Thisis a direct consequence of the following

proble_m at hand. For t_his, I€ be any given simple graph with pr%eg;gg;an 1:1f {G,,,G,,,....G,, } is a jointly con-

n vertices. LetD be a diagonal matrix whose diagonal elememr?ected collection of gra;)hs then

are the valences @’'s vertices and writed for G’s adjacency '

matrix. Then, as noted before, the LaplaciarGofs the sym- (Fp Epyroo By ) (Bp By By ) — 1

metric matrixL = D — A. The definition ofL clearly implies : )

that L1 = 0. Thus,L must have an eigenvalue at zero dnd is a negative—definite matrix.

must be an eigenvector for this eigenvalue. Surprisidgiy al- In the light of Proposition 1, it is clear that the conclusion
ways a positive semidefinite matrix [31]. Thus,must have a Theorem 2 is also valid for the system described by (26) and
real spectrum consisting of nonnegative numbers and at le@&t). A proof of this version of Theorem 2 will not be given.

one of these numbers must be 0. It turns out that the number ofo summarize, both the Vicsek control defined by
connected components 6f is exactly the same as the multi-u = —(I + D, ))~"e(t) and the simplified control given by
plicity of L’s eigenvalue at 0 [31]. Thu& is a connected graphu = —(1/g)e(t) achieve the same emergent behavior. While
just in casd. has exactly one eigenvalue at 0. Note that the tratater is much easier to analyze than the former, it has the
of L is the sum of the valences of all vertices®fThis number disadvantage of not being a true decentralized control because
can never exceeth — 1)n and can attain this high value onlyeach agent must know an upper bound (ig.on the total

for a complete graph. In any event, this property implies that timber of agents within the group. Whether or not this is really
maximum eigenvalue ok is never larger that(n — 1). Actu- a disadvantage, of course depends on what the models are to
ally, the largest eigenvalue @f can never be larger than[31]. be used for.
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The proof of Proposition 1 depends on two lemmas. In thehich is valid form > 1. Since all matrices in (35) are posi-
sequel, we state the lemmas, use them to prove Propositiotiide semidefinite, any vectar which makes the quadratic form
and then conclude this section with proofs of the lemmas thent{L(G,, )+ L(G,,)+- - -+ L(G,,, ) }x vanish, must also make

selves. the quadratic form’ L(G,, UG,, U---UG,, )z vanish. Since
Lemma 3:If {G,,, G,,, ..., G, } is a jointly connected any vector in the kernel of each matifiXG,, ) has this property,
collection of graphs with Laplaciarss,, , L,,, ..., L, ,then we can draw the following conclusion:
() kernelL,, = span{1}. (31) () kemelL(G,,) C kernelL (U Gpi> .
i=1 =1 =1
Lemma 4:Let My, My, ..., My, be a set ofn x n real  syppose now thafG,,, G,,, ..., G, } is a jointly con-
symmetric, matrices whose induced 2-norms are all less thaécted collection. Then the unid®,, U G, U --- UGy, is
or equal to 1. If connected so its Laplacian must have exactly spgnfor its
m kernel. Hence, the intersection of the kernels of 11&,,)
(] kemnel(I — M;) =0 (32) must be contained in spdn}. But span{1} is contained in
i=1 the kernel of each matrik(G,, ) in the intersection and, there-
then the induced two-norm @ff, Mo, ..., M,, islessthan 1. fore, in the intersection of the kernels of these matrices as well.
Proof of Proposition 1: The definition of theF,, in (29) It follows that (31) is true. [ |
implies thatl — F,, = (1/g)L,. Hence, by Lemma 3 and the Proof of Lemma 4:In the sequel we writgz| for the
hypothesis tha{G,,, G,,, ..., G, } is a jointly connected 2-norm of a reah-vectorxz and|M | for the induced 2-norm of
collection arealn x n matrix. Letz € R™ be any real, nonzere-vector.
m It is enough to show that
Dl kernel(T — F,,) = span{1}. (33) MMy M| < [o]. (36)
We claim that In view of (32) and the assumption that£ 0, there must be a
m o largest integek; € {1, 2, ..., m} such that: ¢ kernel(M;, —
[ kernel(7 — F;,) = 0. (34)  I). We claim that
1=1
To establish this fact, lat be any vector such théf — F), )7 = M| <lal- (37)
0,7 € {1,2,...,m}.SinceP has independent rows, there is &o show that this is so we exploit the symmetryidf, to write
vectorz such that = Pz. But P(I — F,,) = (I — F,,,)P,S0 z asz = aiyi + asys + -+ + any, Whereas, as, ..., a,
P(I — Fp, )z = 0. Hence(I — F,,, )= = a;1 for some number are real numbers and;, s, ..., y»} is an orthonormal set of
a;. Butl’(I — F,,) = (1/9)1'L,, = 0,s0a;1'1 = 0. This eigenvectors of/,, with real eigenvalued, A, ... \,. Note
implies thate; = 0 and, thus, thatl — F},,)z = 0. However, that|\;| < 1,7 € {1,2, ..., n}, becausd M| < 1. Next,
this must be true forafl € {1, 2, ..., m}. Itfollows from (33) observe that sinc8/,z = ay A\1y1 + asdayo + - - - + A Anyn
thatz € span{1} and, sincer = P, thatz = 0. Therefore, and M,z # =, there must be at least one integesuch that
(34) is true. aj\;j # aj. Hence,la;)\y;| < |ajy;|. However,|Myz|? =

As defined, thd@, are all symmetric, positive semi—definite|a1,\1yl|2 N |Oéj/\jyj|2 + o+ o Anyn|? SO
matrices with induced 2-norms not exceeding 1. This and (34) ) ) )
imply that the family of matrices),, £, ..., F, satisfythe  |Mrz[” <laihiyn|”+ -+ |ajy;]” + - - + [an Anyn
hypotheses of Lemma 4. It follows that Proposition 1 is tme. \15reover

Proof of Lemma 3:In the sequel we writd,(G) for the

Laplacian of a simple graph. By theintersectionof a collec- |a1 Aiy1|? + -+ + |ajy; > + - + | Anyn
tion of simple graphs{G,, , G,,, ..., G,,. }, each with vertex <oy 4 -+ |ajyi > + - + |anya)? = |z)?
setV, is meant the simple graghwith vertex sel’ and edge set
equaling the intersection of the edge sets of all of the graphsSig| Mrz|* < |z|?; therefore, (37) is true.

%

| 2

the collection. It follows at once from the definition of a Lapla- !N view ofthe definition of¢, Mz = «, j € {k+1, ..., m}.
cian that From this and (37), it follows that|M;--- M,z| =
|M1 R Mkil,’| < |M1 s Mk,1||Mk£l?| < |M1 s Mk,1||£l7|.
L(Gyp) + L(Gy) = L(6, N Gy) + L(G, U Gy) However,|M; - -- Mj,_;| < 1 because each/; has an induced
for all p, ¢ € P. Repeated application of this identity to the sév0-norm not exceeding 1. Therefore, (36a) is true. u
{6,,, G,,, ..., G, } yields the relation
o lll. L EADER FOLLOWING
Z L(G,,) = In this section, we consider a modified version of Vicsek’s
i=1 discrete-time system consisting of the same group afents
m m—1 i as before, plus one additional agent, labeled 0, which acts as the
L (U GPT) + Z L|G,,, ﬂ U Gy, (35) group’s leader. Agent 0 moves at the same constant speed as its
i=1 i=1 j=1 n followers but with a fixed headingy,. Theith follower updates
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its heading just as before, using the average of its own headthgir leader across an intervaljust when then + 1-member
plus the headings of its neighbors. The difference now is thgitoup consisting of the agents and their leader is linked to-
each follower’s set of neighbors can include the leader and dagsher acros%. Note that for the:-agent group to be linked to
so whenever the leader is within the follower’s neighborhodts leader across does not mean that theagent group must be
defining circle of radius.. Agent:’s update rule, thus, is of the linked together across. Nor is then-agent group necessarily

form linked to its leader acrosEwhen it is linked together acrogs
1 Our main result on discrete-time leader following is next.
0i(t +1) = ——Fc———"x Theorem 4:Let 6(0) and 6, be fixed and let

L4 nit) +0:() o: {0, 1,2, ...} — P be a switching signal for which there

exists an infinite sequence of contiguous, nonempty, bounded,
| 0i(t) + ' Z 0;(t) + bi(t)00 (38) time-intervals[t;, t;11), ¢ > 0, starting att, = 0, with the
JENi() property that across each such interval, thagent group of

where as beforeV;(t) is the set of labels of ageis neighbors followers is linked to its leader. Then

from the original group of. followers, andn;(t) is the number lim 6(t) = 1. (40)

of labels within\;(¢). Agent O's heading is accounted for in t—oo

theith average by defining;(¢) to be 1 whenever agent 0 is aThe theorem says that the members of thagent group all

neighbor of agent and 0 otherwise. eventually follow their leader provided there is a positive integer
The explicit form of then update equations exemplified by7 which is large enough so that theagent group is linked to its

(38), depends on the relationships between neighbors whigBder across each contiguous, nonempty time-interval of length

exist at timet. Like before, each of these relationships can bg mostr. In the sequel, we outline several ideas upon which the

conveniently described by a simple undirected graph. In thisoof of Theorem 4 depends.

case, each such graph has vertex{getl, 2, ..., n} and is  To begin, let us note that to prove that (40) holds is equivalent

defined so thati, j) is one of the graph’s edges just in casgy proving thatlim,_,. €(f) — 0 wheree is the heading error

agentsi andj are neighbors. For this purpose we consider %ctore(t) A 8(t) — 6o1. From (39) it is easy to deduce that
agent—sayi—to be a neighbor of agent 0 whenever agent Qitisfies the equation

is a neighbor of agent We will need to consider all possible

such graphs. In the sequel we use the symibtb denote a set €(t+1) = Fopye(t) (42)
indexing the class of all simple graplss, defined on vertices _ )

0,1,2, ..., n. We will also continue to make reference to th&vhere forp € P, F, is

set of all simple graphs on verticés2, ..., n. Such graphs are F,=(+D,+ B,,)‘l(I+ A). (42)

now viewed as subgraphs of tig,. Thus, forp € P, G, now
denotes the subgraph obtained frémby deleting vertex 0 and Note that the partitioned matrices
all edges incident on vertex 0.

The set of agent heading update rules defined by (38) can be F, 2 [FP le} ; peP (43)
written in state form. Toward this end, for eagte P, let A, 0 1
denote ther x n adjacency matrix of the-agent grapl®,, and

g . ! are stochastic where, fore P
let D, be the corresponding diagonal matrix of valence® pf

Then, in matrix terms, (38) becomes H, 2 (I+ D, + B,)"'B,. (44)
0(t+1) = + Dogy + Ba(t))*l((l + Ag))0(1) To proceed, we need a few more ideas concerned with non-
+By(1)16p), te{0,1,2, ...} (39) negative matrices. In the sequel, we wrie > N whenever

M — N is a positive matrix, where byositive matrixs meant
whereo: {0, 1, ...} — P is now a switching signal whose a matrix with all positive entries. For any nonnegative matrix
value at timet, is the index of the grapl®, representing the R of any size, we writd| R|| for the largest of the row sums of
agent system’s neighbor relationships at tivend forp € P, R. Note that||R|| is the induced infinity norm of? and con-
B, is then x n diagonal matrix whoséh diagonal element is sequently is sub-multiplicative. We denote pi], the matrix
1,if (4, 0) is one of@,,’s edges and 0, otherwise. obtained by replacing all aR’s nonzero entries with a 1. Note

Much like before, our goal here is to show for a large class @iatR > 0 if and only if [R] > 0. Itis also true for any pair of
switching signals and for any initial set of follower agent head: x n nonnegative matriced and B with positive diagonal el-
ings, that the headings of alifollowers converge to the headingements, thafAB| = [[A][B1]. Moreover, in view of Lemma
of the leader. For convergence in the leaderless case we requigany such pair of matrices must also satisfy3| > [B] and
all n-agents to be linked together across each interval withiBA] > [B].
an infinite sequence of contiguous, bounded intervals. We will Let pq, po, ..., p,, be a given set of indices irP. It
need a similar requirement in the leader following case under possible to relate the connectedness of the collection
consideration. Let us agree to say that thagents ardinked {G,,, G,,, ..., G, } to properties of the matrix pairs
to the leadelacross an intervdt, ] if the collection of graphs (F,,, H,,1), i € {1, 2, ..., m}. Let us note first that for any
{Go(t): Go(t+1), - - -» Go(r)} €NcouNtered along the interval isp € P, the indices of the nonzero rows &,1 are precisely
jointly connected. In other words, the agents are linked to the labels of vertices i, which are connected to vertex O
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by paths of length 1. More generally, for any integer- 0, Suppose that/ is a matrix which occurs in the sequence at least
the indices of the nonzero rows Of + 4,)U~YB,1 are the m > 0 times. Then

labels of vertices i, connected to vertex 0 by paths of length m
less than or equal tg. Hence, for sucly, the nonzero rows [MiMs - Mi] > [M™]. (49)
of the sumd_y'_, (1 + 4,,)Y~" B, 1 must be the labels of Proof: We claim that forj > 1

vertices in the union of the collchthapl, pas <oy Gp. } '
which are connected to vertex 0 by paths of length less than [MyMy--- My, | > [M7] (50)
or equal toj. It follows that if {G,,, G,,, ..., G, } is

providedM; M, - - - My, is a product within which\Z occurs at
leastj times. Supposé!; M, - - - My, is a product within which
M occurs atleastonce. Thady M, - - - My, = AM B whereA
andB are honnegative matrices with positive diagonal elements.
By Lemma 2,[AMB] > [MB] and[MB] > [M]. Thus,
[AM B] > [M] which proves that (50) is true fg’r: 1.

Now suppose that (50) holds fgr € {1, 2, ...4} and let
MM, --- My, , be a product within which\/ occurs at least

jointly connected, there must be a vaIueJcrtufflcientIy large
so thatS>7, (I + A,,)9~YB, 1 > 0. Since any vertex
in a connected graph with + 1 vertices is reachable from
any other vertex along a path of length of at mest- 1, it
follows that if {G,,, G,,, ..., G, } is jointly connected,
thend )L, (I + A4,,)YB, 1 > 0 Vi > n. Now it is easy
to see from the deflnltlons of the, and H,, in (42) and (44)

respectively, thaprij_ﬂ = [(/ + Af’)ijﬂ’ j 2 0. We 1+ 1 times We can writeV/y M, - - - My, ., = AM B whereA
have proved the following lemma. o

Lemma 5: Let { } be any set of indices i andB are nonnegattvg matr_ices with positive diggonal elements
for which (G Gpl D2, -_-- ) ]ﬁs a jointly connected collec- gndA isa product w|th|n whichM/ occurs atleasttimes. By the
o graphpsUThpétt ooy Gy, inductive hypothesis,A] > [M"]. By Lemma 2,JAM B] >

[AM]. Itfollows that[AM] = [[A][M]] > [[M"][M]] =

mo [M#+17 and thus that (50) holds fgr= i+1. By induction, (50)
S BVH,1>0,  i>n. (45) therefore holds forall € {1, 2, ..., m}. Hence, the lemma is
true. =

Now, consider the partitioned matricé, defined by (43). Proof of Proposition 2: It will be enough to prove that

Since each of these matrices is stochastic and products of sto- 1 Fp-Fp_ - Fpll <1 (51)
chastic matrices are also stochastic, for each P and each )
i> 1, F;') is stochastic. However for every sequence, P2, Py of Iength_at most’ possessing
valuesyy, ¢, ..., gn Which each occur in the sequence at least
, n + 1 times and for which{G,,, G,,, ..., G, } is a jointly
i Z Fzgj_l)le — connected collection of graphs. For if this is so, then one can
P ' ’ PEP. define the uniform bound
0 1
A2 max||Fy By o Byl
Moreover, ifG,, is connected, then . ,
whereS is the set of all such sequences. Note that 1 if (51)
i ) holds, becaus§ is a finite set.
Z F;’_l)le > 0, i>n (46) Letp1, po, ...p; be a sequence of at length at m@spos-
j=1 sessing valueg, 2, ..., ¢, Which each occurin the sequence

at leastn + 1 times and for which{G,,, G,,, ..., G, } isa

because of Lemma 5. It follows that &, is connected and ;4 connected collection of graphs. The definition of g
i > n, the row sums oFZ must all be less that 1. In other wordsj, (43) implies that

HF;)” <1, i>n, p€Q. 47) t
R LTS T DL
P —

1

The following proposition generalizes (47) and is central to thelr:F'p-_,
proof of Theorem 4. 0 1
Proposition 2: LetT be afinite positive integer. There exists
a positive numbeh < 1, depending only off’, for which wheredy = I anddy; = Fy k. - F,, forj <. Since
the FF,, are all stochastlcEp Fp1 must be stochastic
b o Fp ]l < A (48) as well, Thus, to establish (51) itis sufﬁment to prove that

for every sequence , po, ... p; € P of atlength at most pos-

sessing valueg , ¢, ..., ¢, Which each occurinthe sequence Z @3 Hp,1 > 0.

at leastn + 1 times and for which{G,,, G,,, ..., G, } is a

jointly connected collection of graphs. By assumption, each member éf1, o, ..., ¢} OCCUIS
The proof of this proposition depends on the following basio the sequence:, p», ...p; at leastn + 1 times. Fork €

property of nonnegative matrices. {1, 2, ...m}, leti;, be the smallest integer such thgt = ¢.
Lemma6: Let My, M, ..., My be afinite sequence efx  Since eacly; occurs at least + 1 times, eacly, must occur at

n nonnegative matrices whose diagonal entries are all positil@astr times in the subsequengg 1, pi, +2, . ..p;. ltfollows

(52)
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from Lemma 6 and the definition ab;; that[®;; ] > [F ]. agent’s heading, defined by (38), is what results when the local
Thus, [, Hy 1] > [Fg Hp, 1]. Since this hold for alk €  feedback law
{1,2, ..., m}, 1

it) = —————~"7T7 7
N N ) = T O T 0
Z ti Z FZH(Ik]‘—I
paet o =1 (ni(t) + bi( - > 05 oo | (54)
. . FEN(t)
Ff(t_)m this and (45) it follows tha} 7, _, P, Hy 1 > 0. But applied to the open-loop discrete-time heading model
Y=t P Hp 1> 30 @y Hy, 1,50 (52) is true. u
Propositlon 2 actually implies that any finite product 0:(t+1) = 0;(t) + u(t). (55)

F, F,,---F,, wil be a discrete-time stability matrix pro-

vided there |s a set of indicesqi, g2, ...qm} for which The continuous-time analog of (55) is the integrator equation

i) each g, occurs in the sefp;, po, -~-pj} at leastn + 1

times and ii) {G,,, G,,, ..., G4, } is a jointly connected

collection of graphs. From this it is not difficult to see thatvhere nowt takes values in the real half intervil, oo).

any finite productF,th) ---F,. will be ergodic provided On the other hand, the continuous time analog of (54) has

{64, 6y, ..., Gy, } is a jointly connected collection of exactly the same form as (54), except in the continuous time

graphst Itis possible to use this fact together with Wolfowitz'scase, n;(t), b;(t), and 6;(¢t) are continuous-time variables.

theorem (Theorem 3) to devise a proof of Theorem 4, mutinfortunately, in continuous time control laws of this form

like the proof of Theorem 2 given earlier. On the other handan lead to chattering because neighbor relations can change

it is also possible to give a simple direct proof of Theorem 4pruptly with changes in agents’ positions. One way to avoid

without using Theorem 3, and this is the approach we take. this problem is to introduce dwell time, much as was done in
Proof of Theorem 4:Let J denote the set of all [32]. What this means in the present context is that each agent

subsets {pl, P2, ---, pm} Of P with the property that is constrained to change its control law only at discrete times.

{G,,, Gy,, ..., G, } is a jointly connected collection. Theln particular, instead of using (54), to avoid chatter agent

constraints orv |mpIy that o(t) takes on every value in onewould use a hybrid control law of the form

such subset on every intervgl, ¢;11), ¢ > 0. Letw be the

number of elements iff . Then for any integer > 0 there must 1

be at least one subsetJhwhose elements are each valuesof %i() = ~7 + ni(tin) + bi(tir) (ni(tir) + bitix)) 03 (1)

at least times on any sequence®f contiguous time-intervals.

Sett; = titm+1ym, ¢ > 0 and letT" be the least upper bound on

the lengths of the interval$t;, t;11), « > 0. By assumption, _ 0;(t) — bi(tir)bo | t € [tir, tin +75) (57)

1" < oo. Let ®(t, s) denote the state transition matrix defined ;¢\ ,,)

by (¢, t) = I,t > 0 and®(t, s) 2 Fa(t—l)Fa(t—Q) s Fg(s),

t > s > 0, Thene(t) = ®(¢, 0)e(0). To complete the

theorem’s proof, it is, therefore, enough to show that

b; = u; (56)

wherer; is a pre-specified positive number calledwell time
andto, t1, ... is an infinite time sequence such thgt, 1) —
tik, = Ti, k > 0. In the sequel we will analyze controls of this
lim ®(F;, 7o) = 0. (53) form subject to two simplifying assumptio_ns. Firs_t we will as-
j—o0 0 sume that alh agents use the same dwell time which we hence-
forth denote byrp. Second we assume the agents are synchro-
Clearly ®(t;, 0) = ®(t;, tj—1) - D(t2, t1)®(1, o). More- nized in the sense thay, = ¢ forall i, j € {1,2,..., n}
over, fori > 0, [#;, ;1) is an interval of length at mog¢t: + and allk > 0. These assumptions enable us to wiites
1)n T on whicho (¢) takes on at least+ 1 times, every valug; .
in some subsefp, p2, ..., pm} in J. It follows from Propo- ~(I+ Do+ Bs) (Lo + Bo)# — B,160) (58)
sition 2 a_md the d_e_zfinition ob that||<I>(t_j, i) <A j>1 whereP, D,, B, and A, are as beforel,, = D, — A, is the
where ) is a positive number depending only 6m + )n'T" | apjacian ofG,, ando: [0, o) — P is a piecewise constant
which satisfies\ < 1. Hence ||®(#;, 0)| < M, j > 1from  gyjtching signal with successive switching times separated by

which (53) follows at once. ® ., time units. Application of this control to the vector version of
(56) results in the closed-loop continuous-time leader-follower
IV. LEADER FOLLOWING IN CONTINUOUS TIME model

Our aim here is to study the convergence properties of the f=_(I+D +BVYYIL +~BY—B
- = o o o o — 0—10 . 59
continuous-time version of the leader-follower model discussed (I+ +B5)" (Lo + Bo) 0) (59)
in the last section. We begin by noting that the update rule forin analogy to the discrete-time case, let us agree to say
that then agents ardinked to the leademcross an interval

6Using this fact and the structure of ti#&, it is also not difficult to show
that any finite producf, F By will be a discrete-time stability matrix [ ) between SWItChlng tlmes and 7, if the collection of

provided only tha{G,, , G,,, .- .. G , } is ajointly connected collection of graphs {G’a(t o(t+1)y + v a(r 1)} encountered along
graphs. the interval, is jointly connected. Much like before, our goal
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here is to show for a large class of switching signals and foratrix exponentials in (66) depend continuously on then
any initial set of follower agent headings, that the heading#ew of the definition ofA and the definitions of thév; in (64),
of all n followers converge to the heading of the leader. For
convergence, we shall continue to require there to exist infinite
sequence of bounded, nonoverlapping time-intervals acregsyever
which then-agent group is linked to its leader. However, unlike ) :
the discrete-time case we shall not require this sequenceedfi+1 " --- e+t e = (eN7'1'+1*1 -~-eA“'J'+‘“J)
intervals to be contiguous. N N N
. ; SletatRiTt et e j > 1.
Theorem 5:Let 7p > 0, 6(0) and f, be fixed and let ( )7 J =
o: [0, 00) — P be a piecewise-constant switching signaj, . (65), (67) and the sub-multiplicative property of the in-
whose switching times,, ¢, ... satisfyt;11 —t; > 7p,i > 1. e .
: P . duced infinity norm imply that
If there is an infinite sequence of bounded, nonoverlapping
time-intervalst; , t;,1«,), 7 > 1, with the property that across ‘
each such interval the-agent group of followers is linked to
its leader, then Setd(t) = 6(t) — 16, and note that

.
||6N7j+]\‘j*1 . BN’jJrleA’j

<A gL (67)

N,

eNijri-1 ... eNij+leNij

<A g1 (698)

lim 6(t) = fo1. (60) G=—(I+Dy+By) Lo+ B,)o

t—o0

Theorem 5 states thatwill converge tof,1, no matter what because of (59). Le®(t, 1) be the state transition ma-
the value ofrp, so long asrp is greater than zero. This is intfix of —(I + Dyuy + Bow) ' (Low) + Bogy). Then
sharp contrast to other convergence results involving dwell tirflé) = @(t, 0)6(0). To complete the proof it is, therefore,
switching such as those given in [33], which hold only for suffienough to show that

ciently large values ofp. Theorem 5 is a more or less obvious

R j—1 ;
consequence of the following lemma. 1P CE;, L)l < A7 7z 1L (69)
Lemma 7: Let In view of the definitions of theV;,
M,2 —(I+D,+B,) "(L,+B,), peP. (61) Bty o ty,) =Nt NumeNy >
Then From this and (68) it follows that
Mt <1 VE>0,peP. (62) @t s i) <A G221 (70)
Moreover, for each finite set of indices, pa, ..., pm in P for However
which{G,,, G,,, ..., G, }isjointly connected, and each set Bty b)) =D(t; , t; ) Dy, i)
of finite, positive timeg1, ta, ..., tm, ’ v ’
S0
”elupmtm . elwpztg e]Mpltl || <1. (63)

1@ty t)I < ARCEiys b - (1R (it
Proof of Theorem 5:Let M, £ — (I+ D, + B,) (L

D »+  From this and (70), it now follows that (69) is true m
B,),p € P and fori > 1, set (70), (69) .

Proof of Lemma 7:Fix ¢t > 0 andp € P. Observe first
N; = e]ud(tq)(t“ﬂ_tr)_ (64) that

From inequality (62) in Lemma 7 it follows that My =Fp =1 (71)

whereF, is the matrix¥, = (I + D, + B,)"'(I + 4,). As

N; ;
lle™ I <1, t2 L (65) noted previously, the partitioned matrix
By assumption there is a finite upper boufidn the lengths of _ A [F, H2
the intervalsft;,, t;,+«,) across which the: agents are linked Fp= { 0 1 } (72)

to their leader. This and the assumption that — ¢; > 7p,
i > 0, imply thatk; < m,j > 1, wherem is the smallest originally defined in (43), is stochastic with positive diagonal
positive integer such thaf < mr7p. Let J be the set of all elements as are the matrices

sequences;, po, ...p; € P of at length at mostn for which i G

G, , G, , ..., G,}isjointly connected. Define _. Fi EY"VH A

{Gp, ;s Gp,, , Gp }is y Fi= P ; p p 7 P> 1. (73)
A= max max --- max max 0 1

T1€lmp, T = €[rp,T) T €lrn,T] T
.”ej\/lplﬂ._.ej\/lpz-rgej\fpl-rl||. (66) Since

Note that\ < 1 because the inequality in (63) is strict, because oFrt — Z (tFy)’ (74)
J is a finite set, becausep, 7] is compact and because the
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ef'»* must also be nonnegative with positive diagonal elements. V. CONCLUDING REMARKS

But e.(Fp_I)t = el whereT s the(n + 1) x (n + 1) ag stated in the abstract, the main objective of this paper has
identity, so the same must be truecof»~"*. Moreover(F, —  peento provide a theoretical explanation for behavior observed
1)1 = 0 which means that(">~1)'1 = ¢"1 = 1 and, thus, in the simulation studies reported in [1]. We refer the interested
thate(*’» =D is stochastic. In summany!*»=")* is a stochastic reader to Vicsek’s paper and references cited therein, for a more
matrix with positive diagonal entries. thorough description of the model considered and for data doc-
Equations (72)—(74) imply that umenting the simulation studies performed.
_ Fpt The theorems in this paper all provide convergence results
Fpt = [e 0 {5’} for rich classes of switching signals and arbitrary initial heading
¢ vectors. Of course as soon as one elects to interpret these results
where in the context of heading models for mobile autonomous agents,
- one needs to add qualifications, because the actual switching
_ t* =1 signalo generated along a particular model’s trajectory would
hp = Z il Z FyVH,L. (75) have to depend on the model’s initial heading vector. To make
such a dependence explicit (and to run meaningful simulations)
Therefore more complete models would have to be defined. In carrying out
oFo=Dt . this step, one can expect to obtain a variety of results. For ex-
0 11"] (76) ample, with very large agent sensing regions (i.every large)
and agents initially near each other, one would expect enough
However,eF»~Dt is row-stochastic, seF»~ 1t must have its connectivity alpng resultant trajectories for convergence to a
row sums all bounded above by 1. From this and (71) it followMmmon hgadlng to oceur. On the other hand, with widely dis-
that (62) is true. tributed initial _agent _posmons andve_ry sm_al!, one would ex- _
pectto see a bifurcation of the group into distinct subgroups with
different steady state headings. In other words, a complete deter-
ministic understanding of the flocking problems we’ve consid-
m (1) ) ered would require both more complete agent motion models as
Z By Hp, 1 >0, t>n. ("7)  wellasan understanding of the nonlinear feedback process upon
7=l which ¢ actually would depend. An alternative probabilistic ap-
This and (75) imply that proach might enable one to circumvent or at least simplify the
analysis of the feedback process.
i k>0 Some versions of the Vicsek model and others considered
7j=1

i=0 = j=1

JFo-Tot _ {

Now suppose tha{G,,, G,,, ..., G, } is a jointly con-
nected collection of graphs. Then by Lemma 5

(78) in this paper may ultimately find application in coordination
of groups of mobile autonomous agents. Of course before this
because all of the matrices in the sums definingithén (75) can happen many compelling issues such as collision avoidance,
are nonnegative. and the effects of disturbances, noise, sensing errors, vehicle
Using (76) and the definition a¥/,, in (71) we can write modeling errors, etc. would have to be satisfactorily addressed.
For example, the collision avoidance question might also be ap-
e proached by replacing the point models implicitly used in this
Myt Moy tmet . My ty Zm:q) " paper, with the model of a bumper-like “virtual shell” within
2 Fmit; (79) which each agent vehicle is constrained to remain [34].
=t While the analysis in this paper is deterministic and does
not address the noise issue, the results obtained suggest that
whered,,,,, = I and®,,; = eMrntm ... Mrsiativt j < to understand the effect of additive noise, one should focus on

Since the matrix on the right in (79) is stochastic, its row s nl;g)w noise inputs effect connectivity of the associated neighbor

all equal one. To complete the proof it is, therefore, enough ggaphs. Simulation results presented in [1] indicate that when
show that noise intensity in the system is fixed, there iplaase transi-

tion as the density of the agents is increased, i.e., there is a crit-

G(Fpm _T)tm. e(fpm',l _T)tm—l .. (fpl —T)tl

0 1

M, t

i O k>0 (80) ical dens_ity after which all agents eventually become aligngd.
: TP ’ Itis possible that this phenomenon can be adequately explained
=t using percolation theory of random graphs [35].

Note that for any nonnegativen x n matrix N, The results of this paper have been extended to the case
eV > I because the matriy ;- (1/i')N’ in the def- where there are inter-agent forces due to attraction, repulsion
inition eV = > (1/i))N* is nonnegative. Thus, for and alignment [36]. The new results indicate that the conver-
jed{1,2, ..., m}, e]‘%’ftj > I and consequentl®,,; > I. gence arguments used in this paper also apply to the more

Therefore,®,,;k; > k;, j € {1,2,..., m}. From this and general problem considered in [36] under similar assumptions
(78) it follows that (80) is true and, thus, that the inequality inegarding the connectivity of the graph representing the nearest
(63) is correct. ® neighbor relationships.
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The convergence proof for Vicsek’s model presented in Sec-8]
tion Il relies heavily on Wolfowitz’'s theorem. By generalizing
some of the constructions Wolfowitz used in his proof, it is 9]
possible to develop a convergence result for a continuous-time
analog of the Vicsek model which is quite similar to Theorem 5.[10]

In studying continuous-time leader-following, we imposed[11
the requirement that all followers use the same dwell time. This
is not really necessary. In particular, without much additiona
effort it can be shown that Theorem 5 remains true under th
relatively mild assumption that all agents use dwell times which
are rationally related. In contrast, the synchronization assum[.{:13]
tion may be more difficult to relax. Although convergence is
still likely without synchronization, the aperiodic naturedd$é
switching times which could result, make the analysis problem
more challenging.

The use of simply averaging rules such as those discussed in
this paper can sometimes have counter-intuitive consequencgg;
which may be undesirable in some applications. For example

the average of headings 0.01 ahd— 0.01 is = so this might
cause two agents with headings both close to 0, to both appro

imately reverse direction to a headingmobn the next step. It
would be of interest to determine how update rules might bé'el
modified to avoid this type of behavior. Of course issues along

these lines would not arise at all if the systems we've considH9]

ered were modeling other physically significant variables suc

as agent speed or temperature where one could take Rl of
rather than jusf0, 27) as the set in which thé; take values.
The models we have analyzed are of course very simple and
as a consequence, they are probably not really descriptive of a@z2]
tual bird-flocking, fish schooling, or even the coordinated move-
ments of envisioned groups of mobile robots. Nonetheless, thegg)
models do seem to exhibit some of the rudimentary behaviors of
large groups of mobile autonomous agents and for this reasqn,,
they serve as a natural starting point for the analytical study
of more realistic models. It is clear from the developments in25]
this paper, that ideas from graph theory and dynamical system
theory will play a central role in both the analysis of such biolog-[26]
ically inspired models and in the synthesis of provably correct
distributed control laws which produce such emergent behay;
iors in man-made systems.
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