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Abstract This paper presents an approach to mapping a region of interest using ob-
servations from a robotic swarm without localization. The robots have local sensing
capabilities and no communication, and they exhibit stochasticity in their motion.
We model the swarm population dynamics with a set of advection-diffusion-reaction
partial differential equations (PDEs). The map of the environment is incorporated
into this model using a spatially-dependent indicator function that marks the pres-
ence or absence of the region of interest throughout the domain. To estimate this in-
dicator function, we define it as the solution of an optimization problem in which we
minimize an objective functional that is based on temporal robot data. The optimiza-
tion is performed numerically offline using a standard gradient descent algorithm.
Simulations show that our approach can produce fairly accurate estimates of the
positions and geometries of different types of regions in an unknown environment.

Key words: distributed robotic systems; stochastic robotics; mapping GPS-denied
environments; unlocalized robotic swarm

1 Introduction

In recent years, there has been an increasing focus on the development of robot plat-
forms that can be deployed in swarms to perform tasks autonomously over large
spatial and temporal scales. In addition, swarms of nanoscale structures and devices
such as nanoparticles, molecular machines, and magnetic nanocarriers are being de-
veloped for biomedical applications such as imaging and targeted drug delivery [21].
Many potential applications for robotic swarms, including exploration, environ-
mental monitoring, disaster response, search-and-rescue, mining, and intelligence-
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surveillance-reconnaissance, will require the robots to operate in dynamic, uncer-
tain environments. Moreover, the robots’ highly restricted onboard power may pre-
clude the use of GPS and communication devices, or the robots may be located in
GPS-denied environments where communication is impractical or unreliable. De-
spite these limitations, it may still be necessary for the swarm to characterize its
surroundings, for instance to map obstacles, target payloads, or hazardous areas to
avoid. Nanoscale swarms, which will have extremely limited capabilities, may be
used to map cellular structures inside the human body.

To address these challenges, we present a method for mapping a feature of in-
terest in an unknown environment using a swarm of robots with local sensing capa-
bilities, no localization, and no inter-robot communication. We consider scenarios
where the robots exhibit significant randomness in their motion due to sensor and
actuator noise or, at the nanoscale, the effects of Brownian motion and chemical
interactions. Our mapping approach is scalable with the number of robots, so that
arbitrary swarm populations can be used.

Our method relies on developing a continuous abstraction of the swarm popula-
tion dynamics in the form of an advection-diffusion-reaction PDE model, which we
call the macroscopic model. This model describes the spatial and temporal evolution
of the population densities of robots in different states throughout the domain. To
represent individual robots, we define a microscopic model that describes how each
robot moves and responds upon encountering a feature of interest. The state transi-
tion of a robot is modeled as a irreversible chemical reaction with a high reaction
rate. The macroscopic model becomes a more accurate model of the microscopic
model as the number of robots increases.

We pose our mapping problem as the computation of a spatially varying function
that represents the map of the feature of interest. To estimate this function, we use
temporal data that is recorded by the robots during their exploration of the envi-
ronment. This data yields the time evolution of the number of robots that are still
exploring the domain; i.e., robots that have not encountered the feature. In practice,
this data could be collected from the robots after their deployment by retrieving
their recorded times of encounter with the feature. In biomedical imaging applica-
tions with nanoscale swarms, this data could be obtained from a measurable signal
that corresponds to the density of the population that is still in the exploring state.

Once this data is obtained, we use techniques from optimal control to compute
the function that represents the feature map. In general, optimal control entails the
minimization or maximization of an objective functional that is defined in a finite-
dimensional space and is subject to a set of ordinary or partial differential constraint
equations, which govern the system of interest. From a computational perspective,
optimal control methods are more effective than black box techniques, such as ge-
netic algorithms and particle swarm optimization, in terms of the number of objec-
tive functional evaluations per cycle. This computational advantage mainly arises
from their use of the problem structure to calculate the gradient of the control-to-
state maps using the adjoint equation. The feature map is defined as the solution of
an optimization problem that minimizes an objective functional which is based on
the robot data. This optimization problem is solved numerically offline using stan-
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dard techniques such as gradient descent algorithms. We validate our approach in
simulation for features of varying shape, size, orientation, and location.

1.1 Related work

In the literature, there have been exhaustive studies on mapping and exploring an en-
vironment using robots. SLAM (simultaneous localization and mapping) [18, 16],
probabilistic mapping [19, 3], and topological and metric map building [20, 15] are
some of the techniques that have been developed for environmental mapping by
robots. These techniques have been used for path planning and mapping in small
multi-robot groups. However, the problem of scaling these approaches to larger
groups becomes intractable for swarms of hundreds or thousands of robots, due
to their limitations on communication bandwidth and their spatially distributed na-
ture. In addition, these techniques require the robots to have sophisticated sensing
and processing capabilities, which are not feasible in swarm robotic platforms.

Mapping an environment using a robotic swarm is a relatively new area of re-
search in the robotics community. An approach to this problem is given in [6, 7],
in which a robotic swarm is used to identify the topological features of an environ-
ment from information about the times at which robots encounter other robots and
environmental features. This work borrows tools from algebraic geometry and topo-
logical data analysis to compute a metric that can be used to classify the topological
structure of the environment. The approach requires some minimal inter-robot com-
munication, unlike our strategy which is communication-free.

Our mapping approach uses methods from [9], a stochastic task allocation ap-
proach that achieves target spatial distributions of robot activity without using com-
munication or localization. Also, our approach is inspired by [13], a method for
reconstructing environmental features from minimal robot data using compressed
sensing techniques. In contrast to the scenarios that we consider, the robots in [13, 9]
can move over the features to be mapped, which allows the mapping problem to be
formulated as the inversion of a linear operator. Approaches with a similar math-
ematical framework for parameter estimation have been used extensively in the
area of biomedical imaging, especially with MRI and CT scan images. In these
approaches, the system is excited with a stimulus such as a magnetic field, X-rays,
or ultrasound, and the system response is used to identify and estimate a spatially-
dependent parameter that corresponds to the image [1, 17, 23].

2 Problem Statement

We consider a scenario in which N robots are deployed into an unknown, bounded
environment to map a single feature of interest. We exclude cases in which the fea-
ture is located very close to the domain boundary, since robot collisions with this
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boundary and the high diffusion of swarms that start far from the feature will de-
grade the estimation. If a robot encounters the feature, it stops moving and records
the time at which it stopped. Using data on the number of robots that are still mov-
ing at each instant, we aim to estimate the position and geometry of the encountered
feature. We can improve the accuracy of this estimate by deploying the swarm in dif-
ferent directions from various locations, which will ensure greater coverage of the
domain and result in robot collisions with a larger portion of the feature boundary.
This approach may be used to map multiple sparsely distributed features by recon-
structing each individual feature from its corresponding data set and computing the
entire map as a linear combination of single-feature maps.

Robot capabilities: The robots are assumed have sufficient power to complete the
mapping operation. The power requirement for the robots is low, since they
are not equipped with communication devices or GPS. The robots have local
sensing capabilities and can identify the feature at distances within their sensing
range. We may also assume that the robots can can detect other robots within
their sensing range and perform collision avoidance maneuvers, although we
do not simulate collision avoidance in this work. Each robot is equipped with
a compass and thus can move in a specified heading. Additionally, the robots
have sufficient memory to store the time of their encounter with the feature.

Robot controller: The robots begin at a specified location in the domain. During
a swarm deployment, the robots move with a predetermined time-dependent
velocity, v(t) € R?. This velocity is designed to guide the center of mass of the
swarm along a desired trajectory through the environment. The velocity field
may be initially transmitted to the robots by a computer at their starting location,
or the robots may be directed according to the field using external stimuli such
as magnetic fields or radiation. The robots’ motion is affected appreciably by
sensor and actuator noise, due to lack of feedback. If a robot detects a feature
within its sensing range, it stops moving and records the time. At a predefined
time 77, the stationary robots around the feature boundary return to the starting
point of the deployment and upload their encounter times to a computer. The
computer then applies the optimal control method described in Section 4 to
estimate the map of the feature using this robot data.

3 Models of the Mapping Scenario

3.1 Microscopic Model

This model is used to simulate a robot’s motion and its response to an encounter with
a feature in its path. The change in a robot’s state that is triggered by an encounter
is modeled as an irreversible chemical reaction,

A =P (1)
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where the species A represents an active (moving) robot, P represents a passive
(stationary) robot, and k& is the reaction rate constant, which in this case is a fixed
probability per unit time. This constant is assigned a high value to enforce a high
probability of transitioning from active to passive.

We model the robots as point masses with negligible size compared to the area
of the domain. A particular robot i has position X;(¢) = [x;() y;(¢)] at time ¢. The
deterministic motion of the robot is directed by the time-dependent velocity field
v(t) = [ve(t) vy(¢)]". The noise in the robot movement is modeled as a Brownian
motion that drives diffusion with an associated diffusion coefficient D. We assume
that the robots’ navigation error can be modeled as diffusive noise and that the value
of D can be estimated. The displacement of robot i over a time step At is given by
the standard-form Langevin equation [11]:

Xi(t+Ar) =X;(t) + (V2DAt)Z(t) + v(t) At, )

where Z(t) € R? is a vector of independent standard normal random variables that
are generated at time ¢. The robots avoid collisions with the domain boundary by
performing a specular reflection when they encounter this boundary.

3.2 Macroscopic Model

The macroscopic model governs the time evolution of the expected spatial dis-
tribution of the robotic swarm. For a swarm whose members move according to
Equation (2), the macroscopic model is given by an advection-diffusion PDE, as
described in [5]. Since our microscopic model includes robot state changes that
can be represented as chemical reactions, our macroscopic model takes the form of
an advection-diffusion-reaction (ADR) PDE. The model is defined over a domain
Q C R? with Lipschitz continuous boundary 9 and over a time interval 7. We
define L= Q x [0,T] and I = dQ X [0,T]. The state of the macroscopic model is
the population density field u(x, ) of active robots in the domain at points x € 2 and
times ¢ € T. We specify a spatially varying indicator function, K(x) : Q — {0,1},
that equals O at points x where the feature of interest is absent and equals 1 at points
where it is present. The reaction term of the macroscopic model is determined by the
rate constant k in Equation (1), which is switched on or off by the indicator function
K(x) depending on whether the feature of interest occupies point x. This term mod-
els the switching of individual robots from the active state to the passive state when
they are in the vicinity of the feature. The advection term of the macroscopic model
is governed by the velocity field v(z) that is defined in the microscopic model.
From the above definition, the macroscopic model is given by:

Ju

P V- (DVu—v(t)u) —kK(x)u in L 3)

with the no-flux boundary condition
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n-(DVu—v({t)u)=0 on I, 4)

where n € R? is the outward normal of the boundary 9. We specify that all robots
start in the active state and set the initial condition,

u(x,0) = u, (5)

to a Gaussian density centered at a point Xo, which we assume is far from the fea-
ture. The macroscopic model is numerically solved using the explicit finite-volume
method that is described in [9].

Our approach relies on the close correspondence of the macroscopic model so-
lution to the average swarm density over an ensemble of microscopic model simu-
lations. Therefore, the approach is robust to robot malfunctions and external distur-
bances as long as these factors do not significantly affect the model correspondence.
This implies that the number of failed robots should be small compared to the total
swarm size, and that the robots’ trajectory drift due to wind, currents, and other envi-
ronmental influences should be small relative to their modeled motion. In scenarios
that violate these conditions, it would be necessary to improve the accuracy of the
macroscopic model by estimating the components of v, D, and k that are affected by
unmodeled dynamics and disturbances. This is a topic of future work.

4 Optimal Control Approach to Mapping Features

The feature reconstruction problem is framed as an optimal control problem. A gra-
dient descent algorithm is used to compute the optimal control for the problem. An
adjoint state equation approach is used to compute the gradient required for the al-
gorithm [4]. The key advantage of this approach is that it derives an explicit formula
for the gradient of the objective functional with respect to the control, subject to
the constraints. The Hamiltonian and Pontryagin maximum principle can be to used
to derive the adjoint equation for finite-dimensional systems. However, in the case
of infinite-dimensional systems, the existence of the Hamiltonian has been proven
only for a limited class of systems [10]. This motivated us to derive the directional
directive of the control-to-state mapping and use the generalized chain rule of dif-
ferentiation of composite mappings in Banach spaces, as is found in the literature
[2, 22]. In order to make the derivatives of certain maps well-defined, an appro-
priate choice of spaces is made for the parameters and the solutions satisfying the
system of differential equations. We present a Lagrangian-based analysis of these
derivatives in the Appendices. The proof for the existence of optimal control for the
problem is the same as the one shown in [§].

The optimization procedure uses data on the ratio of the number of active robots
at each instant of time to the initial number of active robots at the start of the
swarm deployment. To ensure sufficient coverage of the domain, the swarm can
be deployed from multiple starting positions and directed along different trajecto-
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ries. Once this data is obtained, the optimization procedure is performed to find
the feature map that would produce data that is similar to the data obtained from
the deployments. The computational cost increases greatly with the number of data
sets (one from each deployment) that are used for optimization, since the number
of PDEs to be solved per iteration varies linearly with the data sets. However, we
can obtain a better estimate of the feature map with more data. Hence, there is a
tradeoff between the computational cost of the optimization and the accuracy of the
estimate. In order to resolve this issue, we discard data sets from deployments in
which few robots undergo a state transition compared to the other deployments. A
paucity of state transitions indicates that the swarm trajectories infrequently inter-
sect the feature. In addition, our procedure can be easily parallelized since the most
computationally intensive part is the solution of the PDEs.

The optimal control problem is formulated as follows. Each of the i swarm de-
ployments yields a sequence of times at which active robots encounter the fea-
ture and switch to the passive state. From this data, we can determine the frac-
tion g;(t) € L*([0,T]) of active robots in the swarm at each time ¢ during deploy-
ment i. The solution u;(x,¢) of the corresponding macroscopic model Equation (3)-
Equation (5) can be used to compute the integral [, u;(X,)dXx, the expected fraction
of active robots in the domain at time . We assume that the swarm size is sufficiently
large for g;() to closely match this integral if the feature map, represented by the
function K(x) in Equation (3), is known. Therefore, we can frame our optimization
objective as the computation of the input K(x) that minimizes the function

2

s0) = 3| [ txnax—i0 ©

2(07])

Suppose that the data from N deployments are selected to compute the optimal
controls. The swarm velocity and initial distribution for deployment i are given by
v;(¢) and uf), respectively. The macroscopic model with these parameters is con-
sidered to be the i’ set of constraints, which we denote by ¥(u;,K) as in [22].
The solution to this model is given by u;, and the set of solutions for all N de-
ployments is u := {uy,uy, ..., u;, ..., uy }. We define the space of macroscopic model
solutions as U = C([0,T];L*(£2)) and the space of admissible input functions as
Ou = {K(x) € L*(Q); Kpin < K(X) < Kpayx}. Furthermore, W; is a weight that
quantifies the significance of the data from deployment i relative to data from the
other deployments, and A is the Tikhonov regularization parameter [14]. Using these
definitions, we can frame the optimal control problem as:

N A
i Jw,K) = Y Widi(ui) + S| KX)[|22,01 7
(U,K(x))nélglvx@ad (u ) 1=Z] (u ) 2 || (X) HLZ(_Q) ( )

subject to the constraints ¥(u;,K),i=1,...,N.

We must compute the gradient of the objective functional J(u,K) with respect
to the control inputs in order to perform the gradient descent algorithm for mini-
mizing this functional. We introduce the Lagrangian functional .#’ and Lagrangian
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multipliers p;, with p := {Pl y P25+ Dis -~-,PN}3
N

ZL(u,p,K) =J(u,K)+ Y (pi, ¥(ui,K)). ®)
i=1

The functions p;, also known as the adjoint variables, express the sensitivity of the
objective functional to variations in the input control variable K (x). The necessary
condition for optimality is V. = 0, which implies the following three conditions:
(1) Vy.Z = 0, the adjoint equation; (2) Vp.Z = 0, the state equation in weak form;
and (3) Vg.Z = 0, the optimal control constraint. These three equations are used to
compute the gradient of J(u, K). The derivation of the adjoint and gradient equations
is described in the Appendices.

The solution to an optimization problem that is obtained by a gradient descent
algorithm is sensitive to the choice of the initial guess and may be a local minimum
of the objective functional rather than the global minimum. To increase the likeli-
hood of obtaining the global minimum, we choose an initial guess for the feature
map, represented by K(x), that is guaranteed to include the actual map. This initial
guess is that the feature covers the entire area traversed by the swarm during each
of its i deployments (in actuality, the feature will occupy a subset of this area). For-
mally, we define % :=[0,1] — RR? as the trajectory of the swarm center during the /"
deployment and B»(7;(7),d) as a ball with radius 6 centered at the point ¥;(7), and
we initially set K(x) =1 forall x € (UY_B(¥i(7),8)) N2, 7 € [0, 1]. We choose &
to be 3 times the standard deviation of the initial Gaussian swarm distribution.

5 Simulated Mapping Scenarios

We developed microscopic and macroscopic models of a robotic swarm for six map-
ping scenarios, each with a single feature in the domain. The six features varied in
position, size, shape, and orientation. We applied the method described in Section 4
to reconstruct each feature from the simulated robot data on feature encounter times.
For each simulation, we used a swarm of 1000 robots in a normalized domain of size
1 m x 1 m. The value of k was chosen to be 1/dr, where dt is the time step of the
microscopic model, in order to ensure that robots always switched to the passive
state when they encountered the feature boundary. For simplicity, the designated
velocity fields v;(¢) of the robots were each assigned a constant heading. The robots
moved at a speed of 0.012 m/s with a diffusion coefficient of D = 5 x 10™* m? /s,
and each simulation ran for 80 s. The microscopic model was simulated in a 26 x 26
grid, while the macroscopic model was solved in a finer grid of 51 x 51 grid cells to
account for numerical diffusion. In the optimization procedure, K(x) was bounded
between K,,,;, = 0 and K, = 1.

Figure 1 shows snapshots of the active robots in a swarm at various times ¢ dur-
ing a sample deployment. The robots behave according to the microscopic model
and move through a domain that contains a rectangular feature. Robots that have
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Figure 1 Snapshots of the simulated swarm moving through a domain with a rectangular feature.
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Figure 2 K(x) estimated from 6 data sets for a domain that contains a rectangle. The white arrows
show the starting locations and directions of the swarm deployments.

switched to the passive state are not shown. The population of active robots de-
creases as the robots move eastward and encounter the feature in their path.

Figure 2 through Figure 9 illustrate the results of our mapping procedure for the
six scenarios that we investigated. Each figure shows the actual feature, the map of
the feature given by the estimated K(x), and the error between these two plots. In
the plots of the actual features, the white arrows indicate the starting points and di-
rections of the swarm center of mass during deployments, each of which yields one
data set. Figure 2, Figure 3, and Figure 4 show that we can obtain a fairly accurate
map of a rectangle at two different orientations and a triangle using 6 data sets for
each scenario. We consider smaller features in the next three figures. From Figure 5
and Figure 6, we see that the map of a feature increases in accuracy when more
non-redundant data sets are used in the optimization procedure. Figure 7 represents
a worst-case scenario, in which the map is estimated using data from swarms that
start at locations far from the feature, which is in one corner of the domain. The
swarms are highly diffused by the time they reach the vicinity of the square; how-
ever, 8 data sets yield a relatively accurate map. Lastly, Figure 8 shows that 6 data
sets yield a fairly poor estimate of a non-convex L-shaped feature; we will work fur-
ther on extending our technique to mapping non-convex shapes. Figure 9 shows that
for each scenario considered, the optimal control approach effectively minimizes
the objective function by driving it close to zero from its initial value.
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Figure 3 K(x) estimated from 6 data sets for a domain that contains an inclined rectangle

1 1 1
08 o8 08
0.6 os 0.6
0.4 0.4 0.4
02 02 02
0.5 1 0 0 00 0.5
(a) Actual K(x) (b) Estlmated K(x (c) Absolute error of estimation

Figure 4 K(x) estimated from 6 data sets for a domain that contains a triangle
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Figure 5 K(x) estimated from 4 data sets for a domain that contains a square at the center

6 Conclusion

We have presented a method for mapping an environmental feature using a robotic
swarm that exhibits diffusive motion and lacks localization and inter-robot commu-
nication. Our approach employs optimal control techniques to reconstruct a spatially
varying function that represents the feature of interest. This function is estimated us-
ing temporal data on the proportion of active robots, which have not encountered the
feature, at each instant of time. Our simulation results indicate that this methodol-
ogy can accurately reconstruct the feature when the data is obtained from multiple
swarm deployments that originate at different locations throughout the domain.
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Figure 6 K(x) estimated from 8 data sets for a domain that contains a square at the center
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Figure 7 K(x) estimated from 8 data sets for a domain that contains a square in the corner
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Figure 8 K(x) estimated from 6 data sets for a domain that contains a non-convex L shaped object

In future work, we would like to extend this approach to more accurately recon-
struct non-convex shapes, as well as multiple features in a domain. Our mathemati-
cal framework can in principle be used to reconstruct an arbitrary feature geometry,
provided that we can design swarm trajectories that yield robot interactions with all
facets of the feature. In general, however, it is impossible to identify trajectories a
priori that can produce sufficient data for accurate reconstruction. This limitation
makes it difficult to map complex feature geometries, as illustrated by Figure 8.
Another factor that contributes to mapping inaccuracies is the decrease in number
of active robots during a swarm deployment, which can reduce the correspondence
between the density fields of active robots from the macroscopic and microscopic
models. This issue could be resolved if the robots perform an obstacle avoidance
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Figure 9 Objective function value vs. number of iterations for the different scenarios examined

maneuver upon encountering a feature, staying in the active state rather than enter-
ing the passive state. The corresponding macroscopic PDE would need to model this
avoidance behavior, which would increase the complexity of computing the gradient
of the objective functional. In addition, we plan to implement our mapping approach
as the initial step in other swarm strategies, such as collective transport tasks [24]
that first require estimating the location and geometry of the payload.
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Appendix 1: Mathematical Preliminaries

We study the solution to PDEs in the weak sense, which can be found in the
Sobolev space H' () = {y cl*(Q): 5%1 € L*(Q), 5% c LZ(Q)}. Here, the spa-
tial derivative is to be understood as a weak derivative defined in the distributional
sense. The space is equipped with the common Sobolev space norm, ||y||y1 (o) =

2
\/(||y||L2(Q) +Y ‘ L@

joint operator V* = H'(Q)*.
We consider the general system for Equation (3)-Equation (5):

dy

axi

). We also define V = H' (), which has the ad-

p] 2
8—?:Au+;vi3iu—l((x)u+f in L,
n-(DVu—vu)=g on I,
u(x,0) = uo, )

where A is a formal operator and B; is an operator defined as B; : L*(0,T;V) —
L*(0,T;L2(Q)), K(x) € L*(Q), f € F = L*(0,T;L*(Q)) is the forcing function in
the system, g € G = L*(0,T;L*(dR)), and ug € L*(). The variational form of the
operator A, called Ag, is defined as Ay : L?(0,T;V) — L*(0,T;V*). The solution
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of the system in the weak sense is given by u € U = L*(0,T;V) with u, € U* =
L?(0,T;V*) if it satisfies the equation:

p] 2
<u7¢> :<Aga¢>U* +Z VIBM ¢ (X)u7¢>F+<f7¢>F (10)
ot U U izl

for all ¢ € L*(0,T;V). The boundary conditions are equipped with Ag in the varia-
tional formulation using Green’s theorem. This is essentially the variational form of
the Laplacian,

(Agu,®) .y = — DV, V) 120 +/aQ (g+n-vu) pdx. (11)

In the macroscopic model Equation (3)-Equation (5), we define A = V2, B, = %,
f=0,and g =0.

Appendix 2: Adjoint Equations
The adjoint equation V,.Z = 0 implies that [V, .Z,...,V,,.Z,...,V,,Z] = 0. From
Equation (8),

N
Vil =V, JWK)+V, Z<p,,qf(u,,1<)>
=1
:Vu,--](un )+Vu,<p17 (uh )>7 (12)

since a term in the sum is a function of u#; only when i = j. By Equation (7),
N
Vu,.J(u,-,K) = Vu,- Z Wij(uj) = VVI‘V,A,.JI‘(MZ'). (13)
j=1

From Equation (6),
1
V() = Vi (3100~ 0o ) (14)

where D := U — L*([0,T]) and (Du;)(t) = [ ui(x,t)dx. Then, by the chain rule of
differentiation [12, 4], the directional derivative of J;(u;), V., Ji(u;), is given by

(Vad), )0 = (D) (1) — gi(6), D) 12017, = (D" (D) (6) — gi(0)), s} (15)
Here, D* :=L?([0,T]) — U and (D* f)(¢) = f(t) - 1a(x), where f(t) € L*([0,T]) and

14, is the indicator function of 2 C R?. We can show that (Dy, f) = (y,D*f) Vy €
U, f € L*([0,T)). Therefore,
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Vi Ji(ui) = D*((Dui) (1) — 8i(1)).- (16)

By definition,
(pi, Vi, Wi (ui, K)s) = (Vi i(ui, K)* pi,sy Vs e U, (17)

where V,, W(u;,K)* is the adjoint operator of V,,%¥i(u;,K) corresponding to the
inner product of the Hilbert space. Now, by taking the directional derivative of
¥, (u;,K) at u; in the direction of s, we obtain

Jds

V., iK)s= =
1 (M )S at

— (V- (DVs—v;(t)s) — kK(x)s). (18)

Substituting Equation (18) into Equation (17) yields

T gs
<pi>Vui'Pi(”i>K)s> :/ <ptv at>1‘2 <P17DV2 >-l-<pi7V-V,'(Z)S>-|-<p,'7kK(X)S>.

Using integration by parts on the integral term in the equation above, we get

[ 9025 20 = 0T, 5(T0) — (9i0)50)) — [ 45,22 1

As this is true for all s € U, we could choose the s with s(0) = 0 and construct p;(T)
such that fj (p;, %> 20 =I5 (-2 “i:8)12(0)- Thus, we choose the final condition
of the adjoint equation as pi(T) = 0. We now make use of the following lemma:

Lemma 1 Let L and L* be operators defined by L : L*>(0,T;V) — L*(0,T;V*) and
L* 1 L*(0,T;V) — L*(0,T;V*), respectively. The variational form of L is:

(L, §)v-v = — (DVI, V)2 o) — (v- Vi, 8) 12 + / - (vu)d

V¢ € V. Also, by Lagrange’s identity, (Lu, p)y+= v = (u,L*p)yy+ Yu,p € L*(0,T;V).
We use the zero-flux boundary condition in Equation (4) to compute the variational
form of the operator L* to be (L*p,@)y+y = — <DVp,Vq)>L2<Q) +(v- Vp,(]))Lz(Q)
Vp e L*(0,T;V) and V¢ € V.

Using the variational form of the Laplacian as in Equation (11) and applying
Lemma 1 and integration by parts, we can show that —(p;, DV2s) + (p;, V - v;(t)s)
can be transformed into — (DV?p;,s) — (V- v;(t)pi,s) with the boundary condition
n-Vp; = 0. Finally, we observe that (p;, K(x)s) = (p;K(x),s). By combining these
results with Equation (12), Equation (15), and Equation (17), we obtain

dpi
ot

(Vi Ji(ui),s) +(— —DV?p,— V.- vi(t)pi + pikK(x),s) = 0.

Thus, the set of adjoint equations for the system defined by the i*" set of constraints,
W (u;, K ), with respect to the objective functional, J, is given by
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_3Pi
ot

with the Neumann boundary conditions

=V. (DVp,- + Vi(l)pi) —pikK(X) — VuiJi(ui) in L (19)

n-Vp;=0 on ', p(T)=0, i=1,...,N. (20)

Here, Equation (19) with Equation (20) has a solution in the weak sense.

Appendix 3: Gradient Equation

Using a similar analysis to the one in Appendix 2, we find that Vg% reduces to

N
VK-i”:VKJ(U,K)+ZVK<pi7‘H(Mi7K)>- 21
=1

14

From Equation (7), we can derive the following expressions:
A
VkJ(WK) = Vi KXl ) (VeI(@,K),s) = (AK(x).5).  (22)

As in Appendix 2, we could express {p;, VkW¥i(u;,K)s) as (VgWi(u;, K)*pi,s) Vs €
L?(), where Vx¥(u;,K)* is the adjoint operator of Vx¥(u;,K) corresponding to
the inner product of the Hilbert space. Now, by taking the directional derivative of
¥ (u;,K) at K in the direction of s, we find that V¥ (u;, K)s = ku;s. Therefore, with
further simplification, we can show that

<VKlIIi(ui7K)*pi7S> = <(E(kuipi))('(2)7s>L2(Q)7 (23)
where Z :=L*(0,T;Q) — L*(2) and (££)(Q) = fOdet for all f € L*([0,T]; Q).

By combining Equation (21)-Equation (23), we formulate the objective functional
derivative as

M=

J =Y (E(kuipi))(2) + AK(x), 24)

1

Il
R

Thus, the computation of J' requires u; and p;, which can be obtained by solving
¥ (u;,K) forward and solving Equation (19), Equation (20) backward.

References

[1] Ammari H (2008) An Introduction to Mathematics of Emerging Biomedical Imaging, vol 62.
Springer-Verlag Berlin Heidelberg



16

(2]
(3]
[4]
[3]
(6]
[7]

[8]
[9]
(10]
(11]
[12]

[13]

[14]
[15]
[16]
[17]

(18]

[19]
[20]
[21]
[22]
(23]

[24]

Ragesh K. Ramachandran, Karthik Elamvazhuthi, and Spring Berman

Belmiloudi A (2008) Stabilization, Optimal and Robust Control: Theory and Applications in
Biological and Physical Sciences. Springer-Verlag London

Biswas R, Limketkai B, Sanner S, Thrun S (2002) Towards object mapping in dynamic en-
vironments with mobile robots. In: Int’l. Conf. on Intelligent Robots and Systems (IROS)
Borzi A, Schulz V (2012) Computational Optimization of Systems Governed by Partial Dif-
ferential Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia
Correll N, Hamann H (2015) Probabilistic modeling of swarming systems. In: J Kacprzyk
WP (ed) Springer Handbook of Computational Intelligence, Springer, pp 1423-1431
Dirafzoon A, Lobaton E (2013) Topological mapping of unknown environments using an
unlocalized robotic swarm. In: Int’l. Conf. on Intelligent Robots and Systems (IROS)
Dirafzoon A, Betthauser J, Schornick J, Benavides D, Lobaton E (2014) Mapping of un-
known environments using minimal sensing from a stochastic swarm. In: Int’l. Conf. on
Intelligent Robots and Systems (IROS)

Elamvazhuthi K (2014) A variational approach to planning, allocation and mapping in robot
swarms using infinite dimensional models. Master’s thesis, Arizona State University
Elamvazhuthi K, Berman S (2015) Optimal control of stochastic coverage strategies for
robotic swarms. In: Int’l. Conf. on Robotics and Automation (ICRA)

Fattorini HO (1999) Infinite Dimensional Optimization and Control Theory, vol 54. Cam-
bridge University Press

Gardiner CW (2009) Stochastic Methods: A Handbook for the Natural and Social Sciences,
4th edn. Springer, Evanston, IL, USA

Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE Constraints, vol 23.
Springer Netherlands

Horning M, Lin M, Siddarth S, Zou S, Haberland M, Yin K, Bertozzi AL (2015) Compressed
sensing environmental mapping by an autonomous robot. In: Proc. Second Int’l. Workshop
on Robotic Sensor Networks, Seattle, WA

Kirsch A (2011) An Introduction to the Mathematical Theory of Inverse Problems, vol 120,
2nd edn. Springer-Verlag New York

Kuipers B, Byun YT (1991) A robot exploration and mapping strategy based on a semantic
hierarchy of spatial representations. Int’l J of Robotics and Autonomous Sys 8(1-2):47-63
Liu S, Mohta K, Shen S, Kumar V (2014) Towards collaborative mapping and exploration
using multiple micro aerial robots. In: Int’l. Symp. on Experimental Robotics (ISER)

Robb RA (1999) Biomedical Imaging, Visualization, and Analysis. John Wiley & Sons, Inc.,
New York, NY, USA

Robertson P, Angermann M, Krach B (2009) Simultaneous localization and mapping for
pedestrians using only foot-mounted inertial sensors. In: Proc. 11th Int’]l. Conf. on Ubiquitous
Computing (Ubicomp)

Thrun S (2001) A probabilistic online mapping algorithm for teams of mobile robots. Int’l
Journal of Robotics Research 20(5):335-363

Thrun S, Biicken A (1996) Integrating grid-based and topological maps for mobile robot
navigation. In: Proc. AAAI 13th National Conf. on Artificial Intelligence

Tong S, Fine EJ, Lin Y, Cradick TJ, Bao G (2014) Nanomedicine: Tiny particles and ma-
chines give huge gains. Annals of Biomedical Engineering 42(2):243-259

Troltzsch F (2010) Optimal Control of Partial Differential Equations: Theory, Methods, and
Applications, vol 112. American Mathematical Society, Providence, RI, USA

Tuchin VV (2015) Tissue Optics, Light Scattering Methods and Instruments for Medical
Diagnosis, vol PM254, 3rd edn. Spie Press Book

Wilson S, Pavlic TP, Kumar GP, Buffin A, Pratt SC, Berman S (2014) Design of ant-inspired
stochastic control policies for collective transport by robotic swarms. Swarm Intelligence
8(4):303-327



	An Optimal Control Approach to Mapping GPS-Denied Environments using a Stochastic Robotic Swarm
	Ragesh K. Ramachandran, Karthik Elamvazhuthi, and Spring Berman
	1 Introduction
	1.1 Related work

	2 Problem Statement
	3 Models of the Mapping Scenario
	3.1 Microscopic Model
	3.2 Macroscopic Model

	4 Optimal Control Approach to Mapping Features
	5 Simulated Mapping Scenarios
	6 Conclusion
	References



