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Abstract— This paper addresses a trajectory planning and
task allocation problem for a swarm of resource-constrained
robots that cannot localize or communicate with each other
and that exhibit stochasticity in their motion and task-switching
policies. We model the population dynamics of the robotic
swarm as a set of advection-diffusion-reaction partial differ-
ential equations (PDEs), a linear parabolic PDE model that is
bilinear in the robots’ velocity and task-switching rates. These
parameters constitute a set of time-dependent control variables
that can be optimized and broadcast to the robots prior to their
deployment. The planning and allocation problem can then be
formulated as a PDE-constrained optimization problem, which
we solve using techniques from optimal control. Simulations
of a commercial pollination scenario validate the ability of our
control approach to drive a robotic swarm to achieve predefined
spatial distributions of activity over a closed domain, which may
contain obstacles.

I. INTRODUCTION

Swarm robotic systems comprised of hundreds or thou-
sands of inexpensive, relatively expendable platforms have
the potential to collectively perform tasks on large spa-
tial and temporal scales quickly, robustly, adaptively, and
autonomously. The production and deployment of robotic
swarms is approaching feasibility due to recent advances in
computing, sensing, actuation, power, control, and 3D print-
ing technologies [1]. In the last few years, the miniaturization
of these technologies has led to many novel platforms for
swarm robotic applications, including micro aerial vehicles
(MAVs) and nano air vehicles (NAVs) [2], [3] for tasks such
as exploration, mapping, environmental monitoring, chemi-
cal source localization, search-and-rescue, surveillance, and
reconnaissance. At even smaller scales, micro-nano systems
composed of nanoparticles, DNA machines, synthetic bac-
teria, and magnetic materials are currently being developed
for micro object manipulation and biomedical applications,
including molecular imaging, drug and gene delivery, thera-
peutics, and diagnostics [4], [5], [6], [7].

While the technology to create robotic swarms is progress-
ing, open problems remain in the control of such systems
for successful operation with theoretical guarantees on the
collective performance. It may be impractical or impossible
for robots to use maps, global position information, or
inter-robot communication when they move through unstruc-
tured, unpredictable, and potentially hostile environments,

This work was supported in part by National Science Foundation (NSF)
award no. CMMI-1436960.

1Karthik Elamvazhuthi and Spring Berman are with the School
for Engineering of Matter, Transport and Energy, Arizona State
University, Tempe, AZ 85287, USA karthikevaz@asu.edu,
spring.berman@asu.edu

such as during disaster response operations and intelligence-
surveillance-reconnaissance missions. However, it remains
a challenge to deploy autonomous robots that can perform
tasks in environments where prior data is unavailable and the
GPS signal and radio communications are limited or unreli-
able [8], [9]. In addition, the robot control policies may need
to be implemented on platforms with extreme constraints on
sensing, computing, and communication, including micro-
and nanoscale robots and MAVs/NAVs such as the RoboBee,
a recently developed insect-scale flapping-wing MAV [3].
Control frameworks for robotic swarms must be scalable
with the robot population size and adaptable to changes in
target collective behaviors, environmental disturbances, and
robot failures and errors. The control policies must accom-
modate non-deterministic behaviors that arise in autonomous
systems [10]. Stochasticity can arise from noise due to sensor
and actuator errors; inherent randomness in robot encounters
with each other and with environmental features; and, for
nanorobots, the effects of Brownian motion and chemical
interactions at scales below tens of micrometers [4].

Despite a wide range of research on multi-robot systems,
little work in the field has addressed the synthesis of provably
correct robot controllers for both robot motion and task
allocation simultaneously in the realistic scenarios that we
have described above. Various approaches to multi-robot
task allocation have, however, received considerable attention
in the literature. Our proposed methodology addresses the
problem of the single-task robot, multi-robot task (ST-MR)
problem [11], in which robots can execute at most one
task at a time and tasks require multiple robots. Stochastic
approaches to the ST-MR problem for robotic swarms have
been developed in which tasks are executed at random
times by unidentified robots and an allocation emerges
from the collective swarm activity. These approaches include
threshold-based algorithms [12], [13], [14], inspired by di-
vision of labor mechanisms in social insects, and works that
optimize the stochastic robot task-switching rates using non-
spatial macroscopic models that describe the time evolution
of the robot population in each state [15], [16], [17], [18].
Our proposed approach employs spatial macroscopic swarm
models similar to those used in [19], [20], which are based
on the Fokker-Planck partial differential equation; however,
unlike our approach, these works do not address the problem
of controller optimization. Optimal control of a spatial swarm
model is considered in [21] for the specific purpose of
directing the swarm to a desired location.

In [22], [23], we presented a rigorous methodology for op-
timizing the motion and task switching policies of a spatially
inhomogeneous robotic swarm to achieve target coverage



objectives. Our approach incorporates both individual-level
(microscopic) and population-level (macroscopic) models
that describe the robots’ roles, task transitions, and motion.
The macroscopic model takes the form of a set of advection-
diffusion-reaction partial differential equations (PDEs) that
govern the swarm population dynamics. The parameters
of the PDE model are optimized to produce a specified
spatial distribution of activity over a domain by a swarm
of robots executing the corresponding control policies. We
validated the control framework through simulations of an
MAV swarm in a commercial pollination scenario where the
robots must achieve a target density field of flower visits over
several rows of crops.

This paper employs the control framework and polli-
nation application that we previously described in [22],
[23]. Whereas our prior work used stochastic optimization
methods to compute the parameters of the PDE model, in this
paper we present an approach to computing these parameters
using optimal control techniques. Optimal control guarantees
local optimality and converges to the same solution each
time, if it converges. This approach computes the control
parameters much more quickly than our previously imple-
mented stochastic optimization method, making it possible
to use for real-time control.

Our model and the control parameters form a bilinear
control system, in which the control acts multiplicatively
with the state [24]. There has been a considerable amount of
work on bilinear control systems in the finite-dimensional
case, and a number of works in the infinite-dimensional
case of PDEs has also been carried out. Several studies
have been conducted on the problem of optimal control
of bilinear systems. The stabilization problem in the PDE
case has also received some attention. This includes several
controllability studies of bilinear control systems [25] like the
wave equation and reaction-diffusion models [26]. A long-
standing problem in this field has been the controllability
of quantum systems [27]. Closely related to such systems is
the concept of ensemble control, which has been exploited
to achieve global control of multi-agent systems [28]. An
optimal control approach using space- and time-dependent
velocity fields [29] has been used to address a multi-agent
trajectory planning problem. The problem that we address
is a variant of the concurrent planning and task allocation
problem addressed in [30]. In contrast to the work in [30], the
dimensionality of our robot controller state space is indepen-
dent of the number of robots, and the controls are broadcast
to the entire swarm at once rather than communicated to each
individual robot.

II. PROBLEM STATEMENT

We consider a scenario in which a swarm of robotic bees
must pollinate several rows of crops. We aim to design
robot control policies that produce a uniform density of
flower visits along crop rows, and that can achieve any ratio
between numbers of flower visits at plants in different rows.
In contrast to our previous work in [22], [23], we consider

environments that are bounded rather than unbounded and
that may contain obstacles.

A. Robot capabilities
The robots would have sufficient power to undertake brief

flights that originate from a location called the hive, and
they would return to the hive to recharge. A computer at the
hive can serve as the supervisory agent in our architecture.
The computer calculates the parameters of the robot motion
and task transitions for a specified pollination objective
and transmits these parameters to the robots when they are
docked at the hive for charging and uploading data. During a
flight, the robots are assumed to be capable of recognizing a
flower that is very close by, distinguishing between different
types of flowers, flying to a flower, and hovering briefly
while obtaining pollen from the flower using an appropriate
appendage. Each robot is equipped with a compass and thus
can fly with a specified heading. We also assume that robots
can detect obstacles within their local sensing range and
adjust their flight path to avoid collision. Notably, the robots
are not assumed to have localization capabilities, since it is
infeasible to use GPS sensors on highly power-constrained
platforms.

B. Robot controller
Each member of a swarm of N robots performs the

following actions during a flight. Upon deploying from the
hive, each robot flies with a time-dependent velocity v(t) 2
R2. Concurrently with this deterministic motion, the robot
exhibits random movement that arises from inherent noise
due to sensor and actuator errors. We assume that the flowers
are distributed densely enough such that a robot can always
detect at least one flower in its sensing range when it flies
over plants. While a robot is flying over a row with flowers
of type j, it decides with a time-dependent probability per
unit time k j(t) to pause at a flower in its sensing range
and hover for pollination. The robot resumes flying with a
fixed probability per unit time k f , which determines the time
taken to pollinate. The optimal control approach described
in section IV computes the parameters v(t) and k j(t) prior
to the robots’ flight.

III. MODELS OF THE COVERAGE SCENARIO
A. Microscopic Model

The microscopic model is used to simulate the individual
robots’ motion and probabilistic decisions that are produced
by the robot controller in section II-B. We model a robot’s
changes in state as a Chemical Reaction Network (CRN) in
which the species are F , a flying robot; Hj, a robot that is
hovering over a flower of type j; and Vj, an instance of a
robot visit to a flower of type j. The reactions are:

F
k j(t)��! Hj +Vj (1)

Hj
k f�! F (2)

A robot i has position xi(t) = [xi(t) yi(t)]T at time t. The
deterministic motion of each flying robot is governed by



the time-dependent velocity field v(t) = [vx(t) vy(t)]T . The
robot’s random movement is modeled as a Brownian motion
that drives diffusion with an associated diffusion coefficient
D, which we assume that we can characterize. We model
the displacement of the robot over each timestep Dt using
the standard-form Langevin equation [31],

xi(t +Dt)�xi(t) = v(t)Dt +(2DDt)1/2 Z(t), (3)

where Z2R2 is a vector of independent, normally distributed
random variables with zero mean and unit variance. When a
robot encounters an obstacle or a wall, it avoids a collision by
flying according to a specular reflection from the boundary.

B. Macroscopic Model

We can describe the time evolution of the expected spatial
distribution of the swarm with a macroscopic model consist-
ing of a set of advection-diffusion-reaction (ADR) partial
differential equations [32]. The states of this model are the
population density fields y1(x, t) of flying robots, y2(x, t) of
hovering robots, and y3(x, t) of flower visit events. The ve-
locity field v(t) and transition rates k j(t) are time-dependent
control parameters. The model is defined over a bounded
domain, W ⇢ R2, with Lipschitz continuous boundary ∂W.
We define Q = W ⇥ (0,T ) and S = ∂W ⇥ (0,T ) for some
fixed final time T . The vector n 2R2 is the outward normal
to ∂W. There are n f types of flowers, and the function Hi :
W ! {0,1} is a spatially-dependent coefficient that models
the presence (Hi(x) = 1) or absence (Hi(x) = 0) of flowers
of type i at point x in the domain.

Given these definitions, the macroscopic model of the
pollination scenario is defined as:

∂y1

∂ t
= — · (D—y1 �v(t)y1)�

n f

Â
i=1

kiHiy1 + k f y2 in Q,

∂y2

∂ t
=

n f

Â
i=1

kiHiy1 � k f y2 in Q,

∂y3

∂ t
=

n f

Â
i=1

kiHiy1, (4)

with the no-flux boundary conditions

D∂ny1 �v(t)y1 ·n = 0 on S. (5)

Initially, the flying robots are distributed according to a
Gaussian density centered at a point x0, and there are no
hovering robots or visits in the domain.

We numerically solve the macroscopic model with an
explicit finite-volume method in which the advection term is
solved using the Lax-Wendroff method, implemented with
a superbee flux limiter to prevent spurious oscillations [33].
We numerically integrate the model using the method of lines
and solve the resulting ordinary differential equations using
the ode45 function in MATLAB.

IV. OPTIMAL CONTROL OF ROBOT BEHAVIORS

Our algorithm for computing optimal control policies is
based on the well-known gradient descent method. Methods
of optimal control help to reduce the amount of computation
that is required to compute the gradient of the objective func-
tional with respect to the control, subject to constraints in the
form of differential equations. This is done using the adjoint
state equation. In the case of finite-dimensional systems, the
adjoint/co-state equation can be derived using the Hamil-
tonian and Pontryagin’s maximum principle. However, in
the infinite-dimensional case, a general maximum principle
does not exist and the existence of the Hamiltonian has been
proved only for a limited class of systems. We instead derive
the directional derivatives of the control-to-state mapping and
use the generalized chain rule of differentiation of composite
mappings in Banach spaces as is common in the literature
[34], [35]. For this purpose, we must define the spaces that
are relevant for our analysis. This will aid us in establishing
that our candidate for the derivative of the control-to-state
mapping is indeed the derivative. As proven in [36], an
optimal control exists for this problem.

A. Preliminaries

We define the Sobolev space H1(W) =
{z 2 L2(W) : ∂ z

∂x1
2 L2(W), ∂ z

∂x2
2 L2(W)} [37]. Here,

the spatial derivative is to be understood as a
weak derivative defined in the distributional sense.
We equip the space with the usual Sobolev norm,
kykH1(W) = (kyk2

L2(W)
+ Â2

i=1 k
∂y
∂xi

k2
L2(W)

)1/2. The space
H1(W)⇤ is the dual space of H1(W), the space of bounded
linear functionals on H1(W) through the inner product of
L2(W). Furthermore, let X = H1(W)⇥L2(W)n. Then we have
X⇤ := H1(W)⇤ ⇥ L2(W)n. X and X⇤ inherit their topology
from their factors.

We consider the system Equation (4) in the following
general form for notational convenience:

∂y
∂ t

= Ay+
m+2

Â
i=1

uiBiy+ f in Q,

~n · (—y1 �~uby1) = g in S,
y(0) = y0, (6)

where A and Bi : L2(0,T ;X)! L2(0,T ;L2(W)1+n) are oper-
ators, f 2 F = L2(0,T ;L2(W)1+n), g 2 G = L2(0,T ;L2(∂W),
and y0 2 L2(W)1+n. We define Ag : L2(0,T ;X)! L2(0,T ;X⇤)
as the variational form of the operator A. We understand a
function y 2 Y = L2(0,T ;X), with yt 2 Y ⇤ = L2(0,T ;X⇤), to
be a weak solution of the system provided that:

h∂y
∂ t

,fiY ⇤,Y = hAgy,fiY ⇤,Y +
m+2

Â
i=1

huiBiy,fiF + h f ,fiF (7)

for all f 2 L2(0,T ;X).
For n = 2, we have the following form for the operators



A and Bi:

A =

2

4
—2 k f 0
0 �k f 0
0 0 0

3

5 B1 =

2

4
� ∂

∂x1
0 0

0 0 0
0 0 0

3

5

B2 =

2

4
� ∂

∂x2
0 0

0 0 0
0 0 0

3

5

Bi =

2

4
�Hi�2 0 0
Hi�2 0 0
Hi�2 0 0

3

5 3  i  k f +2

(8)

We know that y 2 L2(0,T ;X) and yt 2 L2(0,T ;X⇤) imply
that y 2 C([0,T ];L2(W)1+n). Here, C([0,T ];Y ) is equipped
with the norm kykC([0,T ];Y ) = sup

t2[0,T ]
ky(t)kY . The boundary

conditions are equipped with Ag in the variational formula-
tion using Green’s theorem as,

Ag =

2

4
Mg k f 0
0 �k f 0
0 0 0

3

5 (9)

Here, Mg : L2(0,T ;V ) ! L2(0,T ;V ⇤) is the Laplacian in
the variational form and is defined as,
⌦
Mgy,f

↵
V ⇤,V =�hD—y,—fiL2(W)+

Z

∂W
(g+~n ·~by)fdx (10)

The solution of Equation (4) corresponds to A0 and f = 0.
The controls are~v= (u1,u2) =~ub, ui = ki�2 for 3  im+2
and m = n f .

B. The Optimal Control Problem
Our optimal control problem can be framed as follows:

min
(y,u)2Y⇥Uad

J(y,u)=
1
2
kWy(·,T )�yWk2

L2(W)1+n +
l
2
kuk2

L2(0,T )m

(11)
subject to Equation (6) for f = 0 and g = 0. Here, yW
is the target spatial distribution of robot activity, Y =
C([0,T ],L2(W)1+n), and

Uad = {u 2 L2(0,T )m+2; umin
i  ui  umax

i a.e. in (0,T )}

is the set of admissible control inputs. Note that, due to
the essential bounds on u, we have that u 2 L•(0,T )m+2.
Additionally, we take W 2 L (L2(W)m+2). W is typically a
weighting function that weights the relative significance of
minimizing the distance between different states and their
targets.

Lemma 4.1: Given f 2 L2(0,T ;L2(W))1+n, g 2
L2(0,T ;L2(∂W)), and the initial condition y0 2 L2(W)1+n,
a unique solution exists for the problem in Equation (6).
We have the following estimate for the unique solution y in
C([0,T ];L2(W)1+n):

kykC([0,T ];L2(W)1+n) +kykL2(0,T ;X)  K(ky0kL2(W)1+n

+k fkL2(0,T ;L2(W)) +kgkL2(0,T ;L2(∂W)), (12)

where K depends only on W, max
1im+2

|umax
i |, max

1im+2
|umin

i |,
and max

1im+2
|bi|.

Proof: See [36].

Now we introduce the control-to-state mapping, X: Uad !
Y , which maps a control, u, to y, the corresponding solution
defined through Equation (6) for f = 0. This will help us in
studying the differentiability of X in Uad and consequently
the differentiability of the objective functional, J.

Proposition 4.2: The mapping X is Gateaux differentiable
at every u 2Uad , and its Gateaux derivative, X0(u) : Uad !Y ,
evaluated at h 2Uad , i.e. X0(u)h, is given by the solution of
the following equation:

∂w
∂ t

= Aw+
m+2

Â
i=1

uiBiw+
m+2

Â
i=1

hiBiy

~n · (—w1 � ~ub ·w1) =~n · (~hby1)

w(0) = 0. (13)

Proof: We define ye = X(u+eh). We show that ye ! y
as e ! 0. Define g = ye � y. Then we have,

∂g
∂ t

= Ag+
m+2

Â
i=1

(ui + eh)Big+ e
m+2

Â
i=1

hiBiy

~n · (—g1 � (~ub + e~hb) ·g1) =~n · (e~hby1)

g(0) = 0. (14)

For e sufficiently small, u+ eh 2 Uad . Thus, it follows
from Lemma 4.1 that

kgkC([0,T ];L2(W)1+n) C(ke
m+2

Â
i=1

hiBiykL2(Q)1+n +key1kL2(W))

and so

kgkC([0,T ];L2(W)1+n)  eK(kykX +ky1kL2(W)),

where K is a constant.
Hence, ye ! y as e ! 0. Next, we define z = g/e �w.

Then, it is required to prove that z ! 0 as e ! 0. From the
definition of z, we get

∂ z
∂ t

= Az+
m+2

Â
i=1

uiBiz+
m+2

Â
i=1

hiBig

~n · (—z1 � ~ub · z1) =~n · (~hbg1)

z(0) = 0. (15)

Invoking Lemma 4.1, since g ! 0, we infer that z ! 0 as
e ! 0 and hence, g/e ! w.

We now consider the reduced problem,

min
u2Uad

Ĵ(u) := J(X(u),u) (16)

Let A# and B#
i be the formal adjoints of operators A and

Bi respectively.



Theorem 4.3: The reduced objective functional Ĵ is dif-
ferentiable in the Gateaux sense, and the derivative has the
form

hĴ0(u),hiL2(0,T )m+2 =
Z T

0
h~n · (~hb p1),y1iL2(∂W)

+
Z T

0
h

m+2

Â
i=1

hiBiy, piL2(W)1+n

+l hu,hiL2(0,T )m+2 , (17)

where p is the solution of the backward-in-time adjoint
equation,

�∂ p
∂ t

= A# p+
m+2

Â
i=1

uiB#
i p

~n ·—p1 = 0
p(T ) =W ⇤(Wy(·,T )� yW). (18)

Proof: We use the generalized chain rule of differentia-
tion of operators in Banach spaces to prove the above result.

Consider G : C([0,T ];L2(W)1+n)! L2(W)1+n, which maps
the state to its final value. This linear continuous mapping is
well-defined for functions in the domain C([0,T ];L2(W)1+n)
due to continuity in time over a compact set.

Using the chain rule of differentiation [34], [38] (since Ĵ
is Frechet differentiable and X is Gaeteaux differentiable),
the Gateaux derivative of Ĵ is given by

hĴ0(u),hi= hJy(y,u),X
0
(u)hi+ hJu(y,u),ui, (19)

which is equal to

hĴ0(u),hi= hG⇤W ⇤(WGy� yW),wi+l hu,hi. (20)

Thus we have,

hĴ0(u),hi= hW ⇤(WGy� yW),Gwi+l hu,hi. (21)

Then,
hĴ0(u),hi= hp(·,T ),w(·,T )i+l hu,hi.

Consider the term hp(·,T ),w(.,T )i. Using integration by
parts in time, we find that this term is:

Z T

0
h∂ p

∂ t
,wi+

Z T

0
hp,

∂w
∂ t

i+ hp(0),w(0)i

and hence is equal to:
Z T

0
h∂ p

∂ t
,wi+

Z T

0
hp,A0w+

m+2

Â
i=1

uiBiw+
m+2

Â
i=1

hiBiyi.

Let us now define the formal adjoints of these operators,

A#
0 =

2

4
M#

0 0 0
k f �k f 0
0 0 0

3

5 , (22)

such that M#
0 : L2(0,T ;V )! L2(0,T ;V ⇤) is given by
⌦
M#

0 y,f
↵

V ⇤,V =�hD—y,—fiL2(W) . (23)

Equation (18) has a solution in the weak sense, and

�h∂ p
∂ t

,fi= hA#
0 p,fi+

m+2

Â
i=1

huiB#
i p,fi (24)

for all f 2 L2(0,T ;X) The previous step can be written as,

Z T

0
h∂ p

∂ t
,wi+

Z T

0
hA#

0 p+
m

Â
i=1

uiB#
i p,wi+

Z T

0
~n · (~hb py)

+
Z T

0
hp,

m+2

Â
i=1

hiBiyi.

It follows that

hp(·,T ),w(.,T )i=
Z T

0

Z

∂W
~n · (~hb p1y1)+

Z T

0
hp,

m

Â
i=1

hiBiyi,

and hence we have our result.

The adjoint state equation for the system defined in
Equation (4) with respect to the objective functional, J, is
therefore given by:

�∂ p1

∂ t
= — · (D—p1 +v(t)p1)+

n f

Â
i=1

kiHi(�p1 + p2 + p3) in Q,

�∂ p2

∂ t
= k f p1 � k f p2 in Q,

�∂ p3

∂ t
= 0 in Q, (25)

with the Neumann boundary conditions

~n ·—p1 = 0 on S (26)

and final time condition

p(T ) =W ⇤(Wy(·,T )� yW). (27)

V. SIMULATED POLLINATION SCENARIO

A. Simulation Setup

We developed microscopic and macroscopic models of
scenarios in which a swarm of robots is tasked to achieve a
specified spatial distribution of flower visits over five crop
rows. We considered four different scenarios. We computed
optimal control parameters of the macroscopic model to
achieve two types of target spatial distributions of visits over
the field: one in which visits were required along all five crop
rows (Objective 1), and another in which they were required
only along two of the crop rows (Objective 2). For both
objectives, we simulated an environment with and without
obstacles to investigate the effect of the boundary conditions
on the optimized robot control policies.

For each scenario, we simulated 1000 robots in a nor-
malized domain of size 1 m ⇥ 1 m. We set k f = 0.2 to
define an expected pollination time of k�1

f = 5 s, a realistic
value for certain bee species [22]. In the optimization, the
robot speed was bounded between �10 and 10 m/s, and the
transition rates k j were bounded between 0 and 1.25 s�1. The
microscopic model was simulated over a grid of 21⇥21 cells.
To account for numerical diffusion, the partial differential
equation was simulated over a finer grid of 51⇥51 cells.
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Fig. 1. Objective function over time for all four scenarios

B. Results

Figure 1 shows that in all four scenarios, our optimal con-
trol approach successfully minimizes the objective function,
driving it nearly to zero in the time span allotted for the
simulation. The resulting optimized parameters over time are
plotted in Figure 2.

The top plot of Figure 2 corresponds to the Objective 1
case, in which crops rows 2 and 4 were assigned twice as
high a target density of flower visits as rows 1, 3, and 5.
The robots start at the bottom of the field in this case and
have 480 s to achieve the target density. The robot speed
is kept almost at zero throughout the optimization run; the
robots’ motion is dominated by diffusion, and after the robots
diffuse over the entire domain (at 150 s), the transition rates
are increased to approximately constant levels. The transition
rate k2, implemented when a robot is over row 2 or 4, is
driven to about the twice the value of k1, implemented for
rows 1, 3, and 5, which results in twice as many flower visits
in rows 2 and 4.

The bottom plot of Figure 2 corresponds to the Objective
2 case, in which the target visit density is set to zero in
rows 1, 2, and 3 and to a nonzero value in rows 4 and 5
(the rightmost two rows). The time allotted for the task is
100 s, a shorter time than for Objective 1. In this case, the
robots start at the left end of the field, and their optimized
speed in the positive x direction is kept high to drive them
quickly to the right side of the field. The transition rate k1
increases as the robots slow down in the x direction, causing
them to focus the bulk of their flower visits on the rightmost
two rows. The robots aggregate against the right boundary as
they encounter it and start moving with a leftward velocity
component around 37 s, which directs them again over the
rows to be pollinated.

Figure 3 through Figure 6 compare snapshots of the mi-
croscopic simulations (left columns) and macroscopic model
numerical solutions (right columns) for each scenario. The
corresponding snapshots of the two models are similar in
each scenario, which validates the ability of our macroscopic
model to predict the behavior of an ensemble of individual
robots. Although the obstacles block robots and force them
to fly along altered paths, the resulting distributions of flower
visits still approximately conform to the target distributions.
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Fig. 2. Optimized robot parameters for Objective 1 (top) and Objective 2
(bottom). Gray plots show parameters for environments with obstacles, and
black plots show parameters for environments without obstacles.

VI. CONCLUSIONS

In this work, we have presented an optimal control ap-
proach to achieving target spatial distributions of robot activ-
ity over a domain when the robots have minimal capabilities:
local sensing, heading information, and no global position
information or communication. In our simulated scenarios,
we have assumed that the environment is known beforehand
and that there are no environmental disturbances or robot
failures. In future work, we will consider scenarios in which
the robots must identify the distributions of features of
interest from their sensor data before executing their tasks
(for instance, mapping regions where flowers are blooming
in order to have information on where they should pollinate).
The robot control strategies should also be able to incorporate
feedback from the robots in order to fulfill the coverage task
in the presence of unknown environmental disturbances, such
as wind in the pollination scenario. For such scenarios, we
must identify types of observers with minimal measurement
costs that will provide sufficiently rich state reconstruction
to enable real-time control in a broadcast control framework.
As is often the case for infinite-dimensional systems, exact
observability will not be possible unless all agents com-
municate back their state estimates. Some related work on
industrial processes with similar controls has been done in
[39]. Finally, we can expand the types of control schemes
that we consider to include ones with inter-agent interactions,
which is a common feature in PDE models of natural
coordinated behaviors such as flocking, schooling, and taxis
[40], [41].
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Fig. 3. Distribution of flower visits at three times in the microscopic (left)
and macroscopic (right) models with parameters optimized for Objective 1,
no obstacles
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[34] F. Tröltzsch, Optimal Control of Partial Differential Equations: The-
ory, Methods, and Applications. American Mathematical Society,
2010, vol. 112, Graduate Studies in Mathematics.

[35] A. Belmiloudi, Stabilization, Optimal and Robust Control: Theory and
Applications in Biological and Physical Sciences. London: Springer-
Verlag, 2008.

[36] K. Elamvazhuthi, “A variational approach to planning, allocation and
mapping in robot swarms using infinite dimensional models,” Master’s
thesis, Arizona State University, 2014.

[37] L. C. Evans, Partial Differential Equations, 2nd ed. American
Mathematical Society, 2010, vol. 19, Graduate Studies in Mathematics.

[38] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with
PDE Constraints. New York: Springer, 2009.

[39] D. Vries, K. J. Keesman, and H. Zwart, “A Luenberger observer for
an infinite dimensional bilinear system: a UV disinfection example,”
in Proc. of the 3rd Int’l. Federation of Automatic Control (IFAC)
Symposium on System, Structure and Control, 2007.

[40] M. R. D’Orsogna, Y.-L. Chuang, A. L. Bertozzi, and L. S. Chayes,
“Self-propelled particles with soft-core interactions: patterns, stability,
and collapse,” Physical Review Letters, vol. 96, no. 10, p. 104302,
2006.

[41] J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed.
Springer, 2007, vol. 17, Interdisciplinary Applied Mathematics.


