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This technical brief summarizes and extends our recently
introduced control framework for stochastically allocating a
swarm of robots among boundaries of circular regions. As in
the previous work, a macroscopic model of the swarm popu-
lation dynamics is used to synthesize robot control policies
that establish and maintain stable predictable team sizes
around region boundaries. However, this extension shows that
the control strategy can be implemented with no robot-to-
robot communication. Moreover, target team sizes can vary
across different types of regions, where a region’s type is a
subjective characteristic that only needs to be detectable by
each individual robot. Thus, regions of one type may have a
higher equilibrium team size than regions of another type. In
other work that predicts and controls stochastic swarm behav-
iors using macroscopic models, the equilibrium allocations of
the swarm are sensitive to changes in the mean robot en-
counter rates with objects in the environment. Thus, in those
works, as the swarm density or number of objects changes,
the control policies on each robot must be retuned to achieve
the desired allocations. However, our approach is insensitive
to changes in encounter rate and therefore requires no
retuning as the environment changes. In this extension, we
validate these claims and show how the convergence rate to
the target equilibrium allocations can be controlled in swarms
with a sufficiently large free-robot population. Furthermore,
we demonstrate how our framework can be used to experi-
mentally measure the rates of robot encounters with occupied
and unoccupied sections of region boundaries. Thus, our

method can be viewed both as an encounter-rate-independent
allocation strategy as well as a tool for accurately measuring
encounter rates when using other swarm control strategies
that depend on them. [DOI: 10.1115/1.4028353]

Keywords: modeling of dynamic systems, robotics, uncertain
systems and robust control

1 Introduction

In this technical brief, we extend our prior work [1] on develop-
ing a scalable, robust control framework for the problem of
allocating a robotic swarm in target group sizes around the bounda-
ries of disjoint, stationary circular regions. We use a stochastic
approach where agents behave randomly, and the designer chooses
probabilistic parameters that shape the distribution of possible
behaviors by each agent. Although deterministic strategies usually
exist that perform better than stochastic strategies for the same
problem, the deterministic approaches often require sophisticated
communication and navigation capabilities and are accordingly
more sensitive to communication and navigation errors [2].
Consequently, there are already a variety of existing stochastic
strategies for achieving task allocation, assembly and self-
assembly, and formation control in swarm robotic systems, e.g.,
Refs. [3–11]. In most cases, the stochastic control policies are either
inspired by or can be translated into an abstract chemical reaction
network (CRN). That is, each robot reacts probabilistically to
events generated by its environment much like two entities of a gas
probabilistically reacting after coming into close proximity. These
artificial reactions are engineered to be reversible—state transitions
triggered by external events will eventually be undone by an artifi-
cial decay process implemented by stochastic timer within each
robot. After a transient period, the total flux of event-triggered tran-
sitions will be precisely balanced by the flux of decay events, and
the system reaches an equilibrium state allocation. Unfortunately,
the parameters of the internal decay events must be tuned to match
empirical measurements of the environment. Consequently, the
equilibrium allocations are impractically sensitive to minor changes
in the environment. For example, increasing the number of robots
in a swarm within a fixed volume leads to an increased encounter
rate between robots, and so new control policies must be broadcast
to all robots to update their delay parameters so that the flux-
balancing equilibrium is not changed. To address this issue, our
prior stochastic task-allocation work [1] replaced delay-driven
reverse reactions with novel event-driven catalytic reverse reac-
tions. This modification allows the system to compensate for
changes in encounter rate, and thus the equilibrium allocations
are robust to changes in swarm density, robot speed, and envi-
ronmental properties such as number and size of allocation
regions.

Here, we further validate our claims that catalytic reverse reac-
tions provide significant increases in robustness and modularity.
Our previously proposed robotic implementation required each
robot to communicate one bit of information to other robots ran-
domly encountered while moving around the arena. Since then,
we have modified our implementation to be communication free.
We have also generated additional data that demonstrates that our
approach is effective at decomposing a relatively complicated
task allocation problem over multiple task types into several sim-
ple and independent single-type problems. Furthermore, we have
found that our approach is a generalized case of a classic problem
in probability theory, the sequential parking problem [12,13],
which explains why the so-called parking constant [14] emerges
from our results for special cases.

The stochastic control approach that we develop for multirobot
boundary coverage is related to other recent work of ours on
developing models and control strategies for multirobot collective
transport of payloads that are too heavy to be transported by a sin-
gle robot. In one case [15], we fit a stochastic hybrid system
model to experimental data on group retrieval of a standardized
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circular load by self-organized teams of ants. We modeled the
ants as spontaneously detaching from the load at a constant rate.
Here, the analogous detachment process is driven by encounters
between bound and unbound robots. In our more recent work
[16], we show how antlike spontaneous detachment can be emu-
lated by this catalytic detachment process, allowing us to define
robot control policies that reproduce the robust transport behav-
iors exhibited by ants in a way that is independent of the robots’
environment.

The remaining sections of this technical brief are organized as
follows: In Sec. 2, we present an overview of the boundary cover-
age problem and the salient features of the catalytic stochastic
strategy that we use to solve it. We also discuss how this approach
improves upon others from the literature. In Sec. 3, we summarize
the key theoretical results from our prior work on this problem.
Then, in Sec. 4, we present new data that demonstrates that this
approach can decompose a coverage problem with multiple region
types into several independent single-type problems. Furthermore,
in Sec. 5, we show how a reduced-order linear model closely
approximates the dynamics of robotic swarms that are either suffi-
ciently large or sufficiently close to their equilibrium. Using this
reduced-order model, we incorporate optimization results from
other literature on stochastic task allocation. Finally, we give
some concluding remarks in Sec. 6.

2 Overview and Contribution

We consider the problem of allocating a swarm of identical
robots around the boundaries of a set of circular regions. Regions
are classified by type, which reflects their physical or subjective
properties. For instance, in the case where the regions are payloads
to be transported, type can signify the effort required to move the
corresponding payload, based on its size or weight. Thus, different
payload types will require different robot team sizes. In surveil-
lance applications, regions may require different levels of coverage
based on a subjective measure. For example, although all regions
may be the same size, some regions may be known to have a higher
occurrence rate of interesting events. We discuss other possible
applications in our prior work [1]. In general, we view the
boundary-allocation problem as a prototypical example of
encounter-based task allocation in robot collectives. Our approach
can be used as a template for introducing minor changes to existing
stochastic task allocation strategies in order to significantly reduce
their sensitivity to changes in environmental parameters.

An example of the focal scenario is depicted in Fig. 1, where
the objective is for three robots to be allocated to each type-1 disk
and one robot to each type-2 disk on average. As in our prior
work [1], we consider only circular regions here for simplicity;
we refer to these regions as disks. We assume that each robot has
a small sensing radius and is capable of detecting other robots and
disk boundaries. If there are multiple disk types, robots must have
the ability to differentiate between them (e.g., by color or surface
texture or some other physical variable). In our prior work [1], we

assumed that robots could also send a single bit of information to
other encountered robots. However, we have now reformulated
the control strategy so that no communication is necessary. The
controller for each robot is shown in the flow chart in Fig. 2.

In order to disperse throughout an area, robots move according
to a correlated random walk (CRW). That is, each robot’s CRW
motion iterates through two phases—it moves straight ahead for a
short distance and then turns to a random angle before repeating
this iteration. The turning angle of a CRW is a measure of the
spread in the angular distribution of each turn. Thus, having a low
turning angle means that robots will primarily drift in one direc-
tion because turns will be very subtle. Furthermore, having a high
turning angle means that no one robot will travel in a straight line
for very long, and groups of robots will slowly diffuse in all direc-
tions. Although we use a CRW in our simulations to validate our
model, other motion programs are applicable.

2.1 Stochastic Allocation Strategy. In a deterministic alloca-
tion strategy, a robot might survey an encountered disk boundary
before determining whether to bind to the disk. In that determinis-
tic case, it would be counterintuitive, counterproductive, and inef-
ficient for bound robots to unbind and become free after
deliberately choosing to bind. However, this reverse transition
occurs regularly in stochastic allocation strategies in lieu of a
complicated deterministic site survey before binding. In the sto-
chastic strategy described here, after a robot encounters a disk
boundary, it gathers no additional information about other robots
on the boundary and instead chooses to bind to the boundary with
a probability pb that depends on disk type but was fixed a priori.
When a free robot encounters any other robot, bound or unbound,
it executes maneuvers to avoid collisions. However, if a bound
robot detects that it was encountered by a free robot, then the
bound robot chooses to unbind from the disk with probability pu

that depends on the disk type. As will be described in detail in
Sec. 3, the equilibrium concentration of robots on each disk type
is set by the ratio of the type’s binding and unbinding rates. Thus,
reverse reactions in stochastic allocation strategies are used as a
substitute for complicated detection and estimation strategies used
in deterministic allocation strategies.

2.2 Comparison to Other Stochastic Strategies. A critical
difference between our work and similar stochastic task-allocation

Fig. 1 Example scenario with two types of disk-shaped
regions, labeled 1 and 2. The unlabeled circles are robots that
are allocating themselves to the region boundaries.

Fig. 2 Control flow chart. Unbound robots move randomly
until encountering other robots, which are avoided, or unbound
zones of disk boundary. On encountering an unbound zone,
a robot compares a generated pseudo–random number
Rb ! unifð0;1Þ to pb to determine whether to bind to that zone.
Once bound, the robot waits to detect the close proximity of
another free robot. On that event, the robot generates a second
pseudo–random number Ru ! unifð0; 1Þ to compare to pu to
determine whether to unbind from the disk and begin the ran-
dom walk again.
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approaches (e.g., Refs. [4], [6–11], [17], and [18]) is that the only
way a bound robot can become free is by being encountered by
another free robot. Using those other approaches, the bound robot
would spontaneously become unbound according to a delay-
triggered event. Consequently, the programmed mean delays have
to be closely tuned to match environmental parameters that non-
trivially determine the rate of encounters between robots and
disks. In our case, because forward and reverse reactions are both
triggered exclusively by encounter events, they self-compensate
for environmental changes in those rates. For example, if the num-
ber of robots in a swarm is increased, the rate of robot–disk
encounters will increase in the system. In other approaches, the
equilibrium population of robots on disks would also increase
unless each robot was reprogrammed to reduce the time it waits to
unbind. Thus, the traditional approaches behave like classical
Langmuir chemical adsorption processes [19]—the equilibrium
concentration of adsorbed particles on a surface increases with the
density of particles in the solution. However, in our case, the
increase in robots in the swarm will similarly increase both the
robot–disk encounter rate, which determines the rate of binding,
and the encounter rate of free robots with bound robots, which
determines the rate of unbinding. Thus, the ratio of the binding
and unbinding rates will be unchanged, and the equilibrium con-
centration will not vary with the number of robots in the swarm or
their density. We are able to avoid the Langmuir phenomenon
because our forward and reverse reactions are implemented as
two separate irreversible reactions. Consequently, rather than sim-
ply simulating gaslike behavior on physical robots, we capitalize
on the agency of each robot to implement a thermodynamic equi-
librium that differs from those traditionally studied in statistical
mechanics.

There is an alternative approach in the stochastic-robotics liter-
ature that might be used in this scenario to achieve task allocations
that are independent of swarm size [7]. In that case, the forward
and reverse reaction rates themselves are treated as control laws
which can vary in time based on the current population of robots
allocated to the focal and adjacent tasks. Like many deterministic
strategies, that stochastic approach requires robots to be able to
estimate and communicate the populations of robots around them.
In contrast, our approach achieves desired target allocations with-
out requiring these robot capabilities.

3 Analysis and Control

For each disk type, the design problem is to find a correspond-
ing ðpb; puÞ pair that results in the desired equilibrium concentra-
tion of robots around disks of that type. As we will show, the
equilibrium concentration for any one disk type is independent of
the equilibrium concentration of any other disk type. Conse-
quently, the design problem for each type is identical to the design
problem for that type in isolation. So, without loss of generality,
we initially consider the scenario of a single disk type, and then
we conclude this section with a discussion of how to extend these
results to the multiple-type case.

The robot–disk system described in Sec. 1 is a generalization of
the classic linear sequential parking problem [12,13]. There, given
an arbitrarily long but finite length of street and cars that arrive
and park at random locations, the problem is to find the mean
occupancy when the street becomes saturated. The result is the so-
called parking constant [14], which is approximately 75%. In our
case, robots are parking along a finite line segment wrapped
around the circumference of each region. However, parked robots
may also vacate. Thus, our goal is to design egress and ingress
policies to allow for any allocation from 0% to the parking
constant.

In order to model this generalization of the classic parking
problem, we begin in Sec. 3.1 by modeling the robot–disk system
as a gas composed of three species: free robots, bound disk zones,
and unbound disk zones. This description is motivated by the fact
that the sum of bound and unbound space is invariant of the

allocation dynamics. For theoretical convenience, we will begin
by assuming that this gas is well mixed. This assumption is equiv-
alent to assuming that the availability of bound and unbound
space is proportional to their relative proportions. However,
because two robots can bind to the same disk without allowing
sufficient room for a third robot to bind between them, the
assumption of a well-mixed system is not valid. In fact, this phe-
nomenon is the reason why the solution to the parking problem is
less than unity. Below, in Sec. 3.2, we will show how to convert
the equilibrium of this well-mixed model into the equilibrium of a
system that accurately models these spatial crowding effects.
Then, in Sec. 3.3, we will describe how to use these results to syn-
thesize a (pb, pu) control strategy for each disk type in a multi-
disk allocation scenario.

3.1 Ordinary Differential Equation (ODE) Dynamics of a
Well-Mixed CRN Model. The well-mixed CRN that corresponds
to the single-type case consists of the two irreversible bimolecular
reactions

r þ U %!pbeu
B (1a)

r þ B %!pueb
U þ 2r (1b)

where r represents the free-robot species, B represents bound
zones, and U represents unbound zones. The mass-action rates
pbeu and pueb will be explained below. The r þ U ! B reaction
represents the possibility of a free robot r encountering an
unbound zone U and binding to it, thus converting the combina-
tion of the two into a single bound zone B. Similarly, the
r þ B! U þ 2r reaction represents the possibility of a free robot
r encountering a bound zone B and triggering the bound robot to
unbind. In the unbinding event, not only does the bound zone con-
vert to an unbound zone U but also both free robots 2r emerge.
Thus, Eq. (1b) may be viewed as the reversal of Eq. (1a); how-
ever, it depends on the presence of an additional “catalytic” robot
that is not consumed by the reaction.

The mass-action rates pbeu and pueb represent the probability
per unit of time that the corresponding reaction will occur when
the two reactants are available. That is, if there exists a free robot
r and an unbound zone U, then the two will encounter each other
at rate eu. In other words, on average, the two entities will wait
1=eu time before meeting each other. On an encounter between r
and U, the binding reaction will occur with probability pb. Thus,
each rþU combination in the system will wait an average
1=ðpbeuÞ time before being converted into a bound zone B. More-
over, if we let [r] and [U] be the number of free robots and
unbound zones at any time, then the probability per unit time of
any r þ U ! B transition is ½r'½U'pbeu. Similarly, the so-called
transition intensity [20] of the r þ B! U þ 2r reaction is
½r'½B'pueb. As we discuss in our prior work [1], these transition
intensities can be used to define an ODE model of the mean-field
dynamics of the CRN. The asymptotically stable equilibrium
ðB(;U(; r(Þ of the resulting ODE is such that

B(

U(
¼ pbeu

pueb
(2a)

or; equivalently,

B(

B( þ U(
¼ pbeu

pbeu þ pueb
¼

pb

pu
pb

pu
þ eb

eu

(2b)

so long as the initial number of free robots r0 and the initial num-
ber of bound robots B0 are such that r0 þ B0 > B(. That is, at
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thermodynamic equilibrium, the average flux r(U(pbeu of free
robots into bound zones is precisely balanced by the average flux
r(B(pueb of bound zones into free robots. So although the actual
number of bound zones, unbound zones, and free robots fluctuates
randomly for all time, the mean demographics stabilize to levels
parameterized by the ratios pb=pu and eu=eb.

As shown in Eq. (2), so long as the parameter ratio eb=eu is a
known constant or relatively fixed, the equilibrium concentration
of bound and unbound zones will be determined entirely by the
probabilities pb and pu which are under designer control. Because
both encounter rates, eb and eu, are driven by robot motion, then
environmental parameters that affect robot motion will similarly
reduce or enhance both encounter rates. Consequently, the ratio
eb=eu is expected to be robust to most environmental variations
and significantly simpler to estimate than either encounter rate
alone. Alternatively, the catalytic reverse reaction in Eq. (1b)
could be removed and the reaction in Eq. (1a) could be made to
be reversible with a reverse mass-action rate q that represents that
a bound robot waits 1=q time, on average, to spontaneously
unbind and become free again. In this implementation, the delay
1=q would have to be adjusted every time a change in the environ-
ment caused a change in the either encounter rate (e.g., if the den-
sity or speed of the robots change). However, because both
reactions in Eq. (1) are encounter driven, then these environmen-
tal changes only affect the convergence rate of the system; its
equilibrium allocation is unchanged. Thus, using pairs of irrevers-
ible reactions allows for greater robustness in stochastic robot
swarms. Other stochastic task-allocation strategies may similarly
benefit from using catalytic encounter-driven reverse reactions as
opposed to delay-based strategies.

3.2 Corrections for Spatial Effects on Boundaries. As dis-
cussed above, the robot–disk system is not well approximated by
a well-mixed gas. In practice, it is likely that two robots interact-
ing stochastically with a disk will bind with nonzero inter-robot
space between them that is nevertheless too small for another
robot to encounter. This intermediate-sized space will be wasted.
It is as if a reactant in a gas becomes spatially isolated from
other reactants, and this spatial isolation prevents corresponding
reactions from occurring. There is a similar effect in the classical
sequential parking problem [12,13], and consequently the average
allocation on a street at saturation is roughly 75% [14]; the other
25% of the street is wasted as space between cars that is too small
to be used. However, our robots also have the ability to unbind.
Thus, we must model this non-well-mixed effect at allocation lev-
els well under saturation. Here, we describe how insights from
the parking problem can be used to modify the equilibrium from
Eq. (2) to accommodate non-well-mixed effects at allocation lev-
els from 0% to saturation.

In our prior work [1], we show that at equilibrium, the non-
well-mixed spatial effects lead to a magnification of each bound
zone by a factor ð1þ dÞ where d is a measure of the mean dis-
tance between robots. First, we define the avoidance distance
a * 0 be the minimum distance that each robot allows between
itself and another robot. Then, we take d : ½0; 1'! ½a; 1þ 2a' to
be a function that maps the equilibrium allocation B(=ðU( þ B(Þ
to the corresponding magnification of each bound zone. For con-
venience, we abbreviate dðB(=ðU( þ B(ÞÞ as simply d. Thus,
using the substitution B( 7!B( þ dB( and the complementary
U( 7!U( % dB(, the well-mixed equilibrium of Eq. (2) can be
transformed into the spatially corrected equilibrium

ð1þ dÞ
1% d B(

U(|fflfflfflffl{zfflfflfflffl}
Correction factor

B(

U(
¼ eupb

ebpu
(3a)

where the underbraced expression is a correction factor for the
spatial effects in a physical robot scenario. For comparison, the
corrected and idealized allocations are related by

B(

U( þ B(
¼ B(

ðU( % dB(Þ þ ð1þ dÞB(

¼

B(

ð1þ dÞB(
U( % dB(

ð1þ dÞB(
þ 1

¼ 1

1þ d

pb

pu
pb

pu
þ eb

eu|fflfflffl{zfflfflffl}
Idealized allocation

(3b)

where the underbraced expression matches the idealized alloca-
tion ratio in Eq. (2b). So the ideal and actual allocations are pre-
dicted to be related by a 1=ð1þ dÞ gain. For low allocations, d
takes its maximum value of approximately 1þ 2a, and the gain is
predicted to approximately 1=ð2þ 2aÞ. For high allocations near
saturation, d will approach its minimum value of avoidance dis-
tance a, but it will be significantly larger than a due to non-well-
mixed effects. For example, in the special case where a ¼ 0, d
will saturate such that the gain 1=ð1þ dÞ will be equal to the lin-
ear parking constant [14] of approximately 75%; that is, d satu-
rates at approximately one-third when a¼ 0.

An important future direction is to develop theory to predict the
precise shape of the d function from first principles. This problem
is tantamount to solving the generalized linear parking problem
for parked cars that can also leave. Consequently, it is a significant
theoretical challenge. However, as we showed in our prior work
[1], we have strong experimental evidence that

dðrÞ ¼ A cos 2p
r

T
þ c

" #

subject to the constraints that A * ð1þ aÞ=2;T * 2=ð1þ aÞ;
c * 0; dð1=1þ aÞ ¼ a, and dð0Þ ¼ L= ðL=ð1þ 2aÞÞd e where L is
the linear distance of the disk circumference in units of robot
width. In the special case when a¼ 0, the additional constraint
that dðcÞ ¼ ð1% cÞ=c can be used for the parking constant
c + 0:7476. Thus, rather than solving the generalized parking
problem directly, it may be simpler to explain how this inter-robot
d spacing relationship emerges.

3.3 Control Synthesis for Multiple Disk Types. For initial
number of free robots r0 (i.e., roughly the size of the swarm), if
r0 > B(, then the swarm allocation system for one disk type will
converge to the equilibrium described by Eq. (3a). Thus, a (pb, pu)
control policy for the single/type case can be synthesized using
the rule

pb

pu
¼ eb

eu

B(

U(
ð1þ dÞ

1% d
B(

U(

(4)

where B(=U( is the desired bound–unbound ratio of zones at
equilibrium. For example, if robots at equilibrium are to occupy
60% of a disk boundary on average, then the desired ratio
B(=U( ¼ 0:6=ð1% 0:6Þ ¼ 1:5, and Eq. (4) can be applied to gen-
erate the required pb=pu ratio for any given eb=eu ratio. For any
given desired allocation, there is a continuum of corresponding
(pb, pu) pairs. Consequently, as we demonstrate in Sec. 5.2, the
absolute values of pb and pu can be chosen to optimize some other
criteria so long as the pb=pu ratio satisfies Eq. (4).

Under the assumption that a robot can detect the difference
between disk types, the robotic swarm can be configured to
achieve a different equilibrium allocation for each disk type. If
one additional disk type is added to the system, the CRN from
Eq. (1) can simply be augmented with the two additional reactions

r þ U0 %!
p0be0u

B0 (5a)

r þ B0 %!
p0ue0b

U0 þ 2r (5b)
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where U0 and B0 represent the unbound and bound zones on the
new disk type, and p0be0u and p0ue0b represent the mass-action rates
of the new reactions. So long as r0 > B( þ B0(, then both pairs of
reactions in Eqs. (1) and (5) will meet the sufficient conditions for
convergence to equilibria described by Eq. (3a). Thus, the (pb, pu)
pair for the first type will be independent of the introduction of the
second type, and the ðp0b; p0uÞ pair for the second type can be
designed independently of the control pair for the first type. More-
over, so long as the robotic swarm has a sufficiently large size r0,
any number of disk types can be considered, and the design for
each type will be independent of the design for every other type.

The catalytic reverse reactions in Eqs. (1b) and (5b) allow
for the multitype decomposition described above. In general,
regardless of the number of disk types, adding more disks to a
finite volume reduces the free space available for movement. Con-
sequently, the introduction of new disks increases the encounter
rates between robots and disks. If, instead of a catalytic reverse
reaction, a traditional timer-based reverse reaction was imple-
mented, the mean binding time would have to be reduced on every
robot to compensate for the increased robot density. That is, the
increased density would lead to a higher binding event rate, and
so the unbinding event rate would have to be similarly increased
to maintain the desired equilibrium allocations. As discussed in
Sec. 3.1, the catalytic reverse reactions allow for the control pol-
icy in Eq. (4) to be independent of density. Therefore, so long as
the robotic swarm is sufficiently large, additional disk types can
be added with no impact on existing control designs.

4 Model Predictions and Validation

The predicted equilibrium allocations for several eb=eu ratios
and several values of avoidance distance a are shown in Fig. 3. In
each graph, the horizontal axis is the so-called control factor
pb=ðpb þ puÞ, which varies from 0 to 1. Following a convention
discussed later in Sec. 5.2, pu , 1 for all control factors less than
0.5, and pb , 1 for all control factors greater than 0.5. Under this
convention, there is a one-to-one mapping between control factors
and (pb, pu) control policies. For many robot motion behaviors,
the encounter-rate ratio eb=eu may be approximated by dividing
the sum of the areas of a robot and an unbound zone sector by the
area of an unbound zone sector alone. However, it can be esti-
mated in general from fitting the predicted mean allocation curves
in Fig. 3 to measured allocation data. Inferring this encounter-rate
ratio is empirically much simpler than inferring actual encounter
rates [21,22].

In our prior work [1], we used simulated experimental trials to
show that this control strategy leads to equilibrium allocations for
the single-type case that match the predictions in Fig. 3 across a
wide range of environmental conditions. In particular, despite
varying robot swarm size, robot radius, number of disks, and disk
radius, the resulting control-factor-allocation plots fell on a single
curve from Fig. 3 corresponding to a particular eb=eu ratio that
varied only with individual robot parameters and not externally
generated environmental parameters. Furthermore, we showed
how robot motion primitives could be changed to skew the eb=eu

Fig. 3 Effect of encounter ratio and avoidance. For each eb=eu ratio and avoidance distance
a, the plot shows the predicted relationship between the control factor pb=ðpb þ puÞ and the
predicted equilibrium mean allocation. The predictions of the mean come from Eq. (3b). The
star in each plot represents the levels corresponding to the ðpb;puÞ5 ð1;0Þ case if robots
could re-assort on boundaries to optimally pack and eliminate wasted space. Consistent with
expectations from the classical linear sequential parking problem, the curves in (a) all predict
the parking constant of approximately 75% in the saturated case.
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ratio in predictable ways. In this extension, we validate our claims
from Sec. 3.3 that control policies for different boundary types
can be designed in isolation and independently composed with no
additional modifications necessary.

Following our earlier experimental protocol [1], simulations
were conducted using NetLogo2 [23], which allowed for simulat-
ing hundreds of mobile robots randomly interacting with each
other and with disks of different types. Example simulated trajec-
tories are shown in Fig. 4, which are effectively macroscopic step
responses of a system of initially free robots allocating in order to
achieve a desired bound–unbound ratio.

Simulations of 500 robots were conducted in arenas with vary-
ing mixtures of two different types of disk—“big” and “small”—
at random locations throughout an arena. Each experimental arena
has up to five of each of the two types of disk, and all ð62 % 1Þ
combinations of disk-type mixtures are explored. For each mix-
ture and each disk type, experimental trials were generated for

eleven different target allocation ratios. All eleven small-disk allo-
cation ratios were paired with all eleven big-disk allocation ratios,
and each pairing received ten simulation runs. Consequently, there
are 110 experimental trials for each small-disk control policy and
110 experimental trials for each big-disk control policy. The
resulting data are summarized in Fig. 5, which shows the control-
factor-allocation curves for the big type (Fig. 5(a)) and the small
type (Fig. 5(b)). Six disk mixtures are highlighted in the legend,
but all mixtures are plotted together along with standard-error
bars over the 110 trials for each control policy. Thus, because
there are always sufficiently many free robots available to popu-
late the desired occupancy levels, there is no effect of the number
of disks or presence of additional types of disks. Moreover, as
shown by the broken line, the data fall along the predicted curve
for a unity eb=eu ratio.

In this experiment, the disk types are physically different—one
type has a circumference of 28.27 robot arc lengths, and the other
type has a circumference of 14.14 robot arc lengths. In practice,
disk types need not be physically different; a disk’s type is gener-
ally a detectable feature that allows for a robot to choose a

Fig. 4 Example simulated trajectories. In (a), a single execution of a simulation of 300 robots
allocating to three disks is shown. In (b), the average trajectory is shown across ten simula-
tions. The (pb, pu) policy chosen was picked to achieve a mean ½B'=ð½B' þ ½U 'Þ allocation of
37.5%, shown as a dashed horizontal line.

Fig. 5 Effect of varying disk mixture. Ten trials were generated for each experimental treat-
ment (i.e., number of big disks, number of small disks, big allocation ratio, and small alloca-
tion ratio); the big-disk type is twice as large as the small-disk type. The averages shown for
each big-disk allocation in (a) are taken across the pool of 110 trials that include all eleven
small-disk allocation ratios for the corresponding big-disk allocation ratio and big–small mix-
ture (and similar for the statistics in (b)). Error bars show 61 standard error of the mean
(SEM). The broken line in the plot shows the expected allocation curve from theory.

2To obtain the code, contact Dr. Theodore Pavlic (tpavlic@asu.edu).
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different control policy when encountering the disk. However,
because these disks differ by size, it is possible to see the effect of
total number of zones on allocation variance. In particular, the
standard-error bars in Fig. 5 are proportional to the sample var-
iance across the 110 trials. The error bars in Fig. 5(b) are larger
than the error bars in Fig. 5(a) because there are half as
many zones on a small disk as there are on a large disk. As we
will discuss in Sec. 5, although the CRN we use to describe this
system is bimolecular, the relationship between number of zones
and variance matches what is expected in a unimolecular CRN
[6]. Moreover, catalytic reverse reactions provide a mechanism
for implementing unimolecular CRN designs with increased
robustness to environmental variations.

5 Reduced-Order Model and Its Applications

Let r0 be the initial number of free robots. Assuming that no
robots are initially bound, then r0 is the total size of the swarm.
For a large robotic swarm with r0 - B(, the concentration [r] will
essentially be constant. That is, while the concentrations [B] and
[U] will move opposite to each other in relatively large swings,
the fractional change in [r] will be negligible [1]. Consequently,
the bimolecular reactions in Eq. (1) can be viewed as the reversi-
ble unimolecular reaction

U Ð
pbeur0

puebr0

B (6)

which introduces the swarm size r0 as a scalar on both reaction
rate constants. This unimolecular approximation will also hold
close to the equilibrium of Eq. (1). Thus, it also represents how
the system returns to equilibrium after small perturbations, and its
equilibrium matches the one predicted for the full bimolecular
model. Moreover, the mean-field dynamics of this unimolecular
CRN is a second-order linear time-invariant ODE, which allows
for exponential characterizations of its convergence rate.

5.1 Convergence Rate and Variance. Unimolecular reversi-
ble reactions have been used in much of the stochastic task-
allocation literature. For these systems (cf. Sec. 3.2 of Ref. [6]),
the convergence rate is independent of the equilibrium distribu-
tion. For this system in particular, the time constant

s ¼D 1

ðpbeu þ puebÞr0
(7)

So increasing the swarm size r0 has no effect on the equilibrium
distribution; however, it increases the speed of the system. More-
over, by similar reasoning for unimolecular reversible reactions
(cf. Sec. 3.2 of Ref. [6]), the allocation variance is independent of
the convergence rate. So maximizing the convergence rate of the
system has no cost in terms of variance. Consequently, arbitrarily
large swarms can be used to quickly achieve and maintain the
equilibrium allocation with very little performance cost. The
larger the swarm, the faster and more linear the system behaves.
As shown in Fig. 5, variance decreases with the number of zones,
which is consistent with unimolecular arguments about control of
variance [6]. So the variance of the system will be improved by
using robots which are relatively small with respect to the bounda-
ries they allocate to. By using small robots, the number of zones
necessarily increases, and the variance in allocation decreases
accordingly.

5.2 Optimal Choice of Control Policy. We have discussed
how increasing swarm size and number of zones has an effect on
convergence rate and allocation variance without affecting the
equilibrium mean allocation ratio. Furthermore, the control policy
in Eq. (4) includes one degree of freedom over which (pb, pu) pairs
can be chosen to optimize some feature of the system with no
effect on mean allocation ratio. By Eq. (7), the convergence rate
of the system can be maximized by making the sum pb þ pu as
large as possible. Thus, for the fastest convergence to a desired
B(=ðU( þ B(Þ equilibrium occupancy, the controls pb and pu

should be chosen so that

ðpb;puÞ ¼

eb

eu

B(

U(
ð1þ dÞ

1% dB(=U(
;1

$ %
if ebB( < euU(

1% dB(=U(

1þ d
;

1;
eu

eb

U(

B(
1% dB(=U(

ð1þ dÞ

$ %
otherwise

8
>>><

>>>:

(8)

However, in an implementation of these strategies on real
robots subject to mechanical fatigue or appreciable task-
switching times, there may be some constraint which limits the
pb þ pu sum.

5.2.1 Other Optimization Approaches. In the optimization
approaches discussed above, we have shown how certain parame-
ter choices of the system affect convergence rate and allocation
variance without having an effect on mean occupancy itself.

Fig. 6 Effect of encounter ratio on time constant. The time constant s described in Eq. (7)
cannot be predicted without knowledge of encounter rates eu and eb. However, the shape of s
is set by the ratio only eb=eu. In (a), eu is arbitrarily assumed to be 1=r0 and the ratio eb=eu is var-
ied. In (b), time-constant data are shown that were generated from simulations of 300 robots
across a range of control factors. For each factor, ten trials were combined into an average
step response, as in Fig. 4(b), which was then used to estimate a corresponding time constant.
Using an eb=eu ratio estimated from allocation data, a corresponding eu was fit to the time-
constant data.
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Nevertheless, some mean occupancies will have higher variances
than others [6]. For example, the target allocations that correspond
to extreme control policies ðpb; puÞ 2 fð1; 0Þ; ð0; 1Þg will have rel-
atively little variance at equilibrium and a relatively low conver-
gence rate. However, the spatial avoidance parameter a has a
predictable effect on the mean occupancy for each (pb, pu) pair
(Fig. 3), and thus it can be used to alter the convergence rate
and variance characteristics of each target allocation ratio. For
example, for ðpb; puÞ ¼ ð1; 0Þ, the parameter a can be chosen to
compress the saturation occupancy well below the parking con-
stant. Thus, with the appropriate choice of a, the variance of target
allocations can be reduced at the possible cost of decreasing the
convergence rate of the system. In our prior work, we described
how the eb=eu ratio can be manipulated by changing sensor char-
acteristics or motion primitives of each robot. Thus, this ratio also
expands the optimization parameter space to achieve different tar-
get allocation ratios with improved variance or convergence rate.

5.3 Absolute Encounter-Rate Estimation. Although we believe
catalytic reverse reactions can greatly improve the design flow of
a variety of stochastic task-allocation control strategies, there may
still be problems for which control policies require an accurate
estimation of encounter rates. In these cases, robots can be tempo-
rarily configured to implement a toy task-allocation problem like
the one described in this paper. The resulting experimentally
determined control-factor–allocation curve can be used to esti-
mate encounter rates. This method is significantly simpler than
estimating rates from sampling encounter times [21,22].

The encounter-rate ratio eb=eu can be estimated geometrically
or numerically using the curves in Fig. 3. Although s described in
Eq. (7) varies with eb and eu, its shape is set by the ratio eb=eu.
These shapes are shown in Fig. 6(a). Once the time-constant
shape is fixed, there is one additional degree of freedom to fit the
actual time-constant curve to data. Thus, as shown in Fig. 6(b),
the expected time-constant shape can be fit to measured
convergence-rate data to estimate the actual values of eb (or,
equivalently, eu).

6 Conclusions and Future Work

We have extended our prior work to the synthesis of
communication-free stochastic control policies for robotic swarms
that establish and maintain desired task allocations which are ro-
bust to changes in the environment. Moreover, our simulation
results validate that design for multiple task types can be decom-
posed into isolated simpler single-type problems whose solutions
are independent of each other. Finally, we have explored how the
system provides several degrees of freedom for optimization of
convergence rate and task-allocation variance. More generally, we
have used a simple boundary-allocation problem to demonstrate
how specially designed irreversible processes can be used to
implement higher level reversible processes that are less sensitive
to environmental variations than the reversible processes typically
studied in traditional statistical mechanics.

In our stochastic control approach, robots continue to bind and
unbind randomly even after the equilibrium allocation has been
reached, which apparently wastes a significant amount of power.
This task switching at equilibrium, and its attendant power con-
sumption, is a property of most stochastic strategies that already
exist in the literature, e.g., Refs. [3–11]. In principle, a determin-
istic strategy could achieve the same distributions of robots to
boundaries (possibly at allocations above the 75% parking con-
stant) and then trigger robots to switch out of the costly allocation
mode. However, as has been discussed elsewhere for a particular
deterministic–stochastic comparison [2], the deterministic
approach would likely require significantly more communication
between robots and additional sensing and navigation capabil-
ities. Our stochastic approach allows for simpler robots that
actually require less power and hardware for communication and
sensing. In fact, the weight and physical space that is not required

for communication and sensing may be used for additional bat-
tery capabilities. Additionally, our stochastic approach is insensi-
tive to the communication and navigational errors that would be
a significant concern for a deterministic approach. Furthermore,
the continued operation of the stochastic allocation process
allows the system to detect newly added boundaries and allocate
to them automatically. Consequently, although the stochastic
strategy we employ may have some performance weaknesses, it
compensates for them by being less costly to implement, less sen-
sitive to sensing and actuation errors, and adaptive to disturban-
ces and dynamic changes in the environment.

In addition, our stochastic strategy may have certain advantages
over deterministic strategies in reducing steady-state power con-
sumption. A deterministic approach will not necessarily come to a
static equilibrium, either due to operational constraints or due to
the design of the algorithm. For example, many autonomous air
vehicles must stay in constant motion to remain in flight. Thus,
surveillance drones flying through different regions will naturally
“bind” and “unbind” to their assignments as part of an operational
constraint. In fact, the frequent movement of vehicles from one
region to another may help to reduce their likelihood of being
detected. Additionally, there are many deterministic algorithms
that do not lead to static equilibria. For example, primal-space
parallel distributed optimization algorithms [24] are both deter-
ministic and widely used, but they usually lead to a cyclic steady-
state behavior that oscillates around an optimal solution. Like
the continued task switching at equilibrium in the stochastic
approaches, these steady-state oscillations entail power consump-
tion that is not directly applied to task execution. Moreover, not
all such deterministic strategies have convergence rates that are as
well characterized as those in our stochastic strategy. Because our
system can be shown to converge to equilibrium at an exponential
rate, robots can be safely switched out of their energetically costly
allocation mode after a time when it is very likely that their allo-
cations have reached a specified distance from the target equilib-
rium (e.g., after three time constants). This timed event could be
internally generated or externally generated by a signal broadcast
to all robots from a central supervisor.

In future work, we will better characterize the mean inter-robot
distance and thereby move closer to solving the generalized se-
quential parking problem. Additionally, we will show how irre-
versible catalytic implementations of reversible processes can
improve the robustness of other applications of stochastic
robotics, such as stochastic self-assembly. Finally, we intend to
validate the results of this work on a physical multirobot testbed
in the near future.
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