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Abstract— We present a novel analytical approach to comput-
ing the population and geometric parameters of a multi-robot
system that will provably produce specified boundary coverage
statistics. We consider scenarios in which robots with no global
position information, communication, or prior environmental
data have arrived at uniformly random locations along a simple
closed or open boundary. This type of scenario can arise in a
variety of multi-robot tasks, including surveillance, collective
transport, disaster response, and therapeutic and imaging
applications in nanomedicine. We derive the probability that
a given point robot configuration is saturated, meaning that all
pairs of adjacent robots are no farther apart than a specified
distance. This derivation relies on a geometric interpretation of
the saturation probability and an application of the Inclusion-
Exclusion Principle, and it is easily extended to finite-sized
robots. In the process, we obtain formulas for (a) an integral
that is in general computationally expensive to compute directly,
and (b) the volume of the intersection of a regular simplex with
a hypercube. In addition, we use results from order statistics
to compute the probability distributions of the robot positions
along the boundary and the distances between adjacent robots.
We validate our derivations of these probability distributions
and the saturation probability using Monte Carlo simulations
of scenarios with both point robots and finite-sized robots.

I. INTRODUCTION

Multi-robot systems comprised of large numbers of inex-
pensive, relatively expendable platforms have the potential to
perform tasks on large spatial and temporal scales quickly,
robustly, and with little to no human supervision. The pro-
duction and deployment of such collectives is approaching
feasibility due to recent advances in computing, sensing,
actuation, power, control, and 3D printing. In the last few
years, the miniaturization of these technologies has led to
many novel platforms for multi-robot applications, including
micro aerial vehicles and nano air vehicles [1], [2] for tasks
such as exploration, mapping, environmental monitoring,
surveillance, and reconnaissance. At even smaller scales,
micro-nano systems are currently being developed for micro
object manipulation and biomedical applications, including
molecular imaging, drug and gene delivery, therapeutics, and
diagnostics [3], [4]. It is now possible to design nanoparti-
cles, DNA machines, synthetic bacteria, and magnetic ma-
terials that can move, sense, and interact in a controlled
fashion, similar to robotic platforms [5]. These nanorobots
will need to be deployed in massive numbers; for instance,
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trillions of nanoparticles would be required to deliver drugs
to a tumor or yield a visible signal for sensing [6].

Many multi-robot applications will involve a boundary
coverage task, in which robots must arrange themselves
along the boundary of a region or object according to a
specified density. Possible applications include cooperative
manipulation and transport of payloads, surveillance tasks
such as perimeter patrolling, and disaster response tasks such
as cordoning off a hazardous area or extinguishing a fire.
In nanomedicine, therapeutic and imaging applications will
require the use of ligand-coated nanoparticles that can bind
selectively to cell surfaces with high receptor densities [7].

This paper addresses boundary coverage tasks in which
the robots have extremely limited capabilities, as in micro-
nanorobotic applications, or in which it is impractical or
impossible to use GPS, communication, or prior environ-
mental data, for instance in disaster response operations
and intelligence-surveillance-reconnaissance missions. In ad-
dition, the boundary coverage task must be accomplished
through stochastic robot behaviors, which arise from noise
due to sensor and actuator errors; randomness in robot en-
counters with the boundary; and, for nanorobots, the effects
of Brownian motion and chemical interactions [3]. There is
a sizable body of work on designing stochastic robot control
policies that produce different types of desired collective
behaviors in multi-robot systems, including assembly and
self-assembly [8], [9], [10], [11] and task allocation based on
spontaneous robot decisions [12], [13], [14], [15]. Encounter-
dependent task allocation strategies are most closely related
to our stochastic coverage problem, but existing work either
deals with scenarios where encountered objects are small
(on the scale of the robot) [16], [17] or where large objects
are covered dynamically by the robots [18]. In contrast
to previous work, we address a static stochastic coverage
scenario in which the encountered object or region is large
compared to the robots.

This paper presents an analytical framework for computing
the robot physical and sensing parameters and the robot
population that will provably achieve boundary coverage
statistics that may be of interest in multi-robot applications.
As stated previously, we assume that the robots have no
global position information, no inter-robot communication,
and no prior information about the boundary location or
geometry. First, we derive the probability that a robot con-
figuration around a boundary is saturated, meaning that
each adjacent pair of robots lies within a certain distance.
The quantity that this distance signifies depends on the
application. For instance, when saturation corresponds to full
sensor coverage of the boundary, the distance represents the



Fig. 1. Snapshot of a simulation in which a swarm of randomly-moving
robots (green circles) with only local information must allocate themselves
in groups of target sizes (red circles) around the perimeters of two types
of circular regions (yellow and blue). We have developed an approach to
designing stochastic robot control policies that produce the target allocations
with probabilistic guarantees on performance [19].

diameter of a robot’s sensing range. Using order statistics,
we also derive the probability distributions of robot positions
along the boundary and distances between adjacent robots.

In this paper, we consider scenarios in which robots are
positioned at uniformly random positions along the boundary.
The analytical results that we develop for this case would
apply to scenarios in which robots are confined to the
boundary at unknown locations or arrive simultaneously at
the boundary at random positions. We study this case as a
foundation for future work on analyzing the more general
case in which robots claim positions along the boundary one
at a time, as in the scenario in Figure 1.

II. PROBLEM STATEMENT

Let I = [0,1] be the unit interval. We are given a simple
open or closed curve γ : I → R2 that has unit length. In
addition, if closed, γ is parameterized such that γ(0) = γ(1).
A sequence of n identical circular robots, each of radius
δ ≥ 0, is placed at random positions along γ , with no
overlapping robot pairs. By the position of a robot, we mean
that of its center. The robot positions γ(t ′1) through γ(t ′n),
not necessarily arranged in order, are provided to us; we are
further given that, if γ is closed, we have γ(0) = γ(t ′1) . For
our convenience, we call robots of zero radius point robots,
and those with δ > 0 finite-sized robots.

Define the distance between two robots to be the closest
distance between their circles. This implies that the distance
between two robots located at positions γ(t ′1) and γ(t ′2) is
the absolute value of ||γ(t ′2)− γ(t ′1)||−2δ . Given a positive
distance d ∈I , we define the notion of saturation separately
for open and closed curves. The closed curve γ is defined to
be saturated iff every pair of adjacent robots on it is separated
by a distance of at most d. The open curve γ is defined to be
saturated iff, in addition to having adjacent robots separated
by at most d, the centers of the first and and last robots on γ

leave a distance of at most d from the endpoint of γ closest
to them.

For finite-sized robots of radius δ , we generally choose a
value of d that ensures that no robot will fit in between two
adjacent robots whose distance is at most d. Evidently, the
choice d = 2δ ensures this, and will be used hereafter. No
such d naturally suggests itself for point robots, for whom d
can be selected arbitrarily. With this in mind, we formulate
our problem.

Problem Statement Given a configuration in which each
of n robots uniformly randomly attach to γ , compute:

1) the probability psat that they saturate the curve,
2) the probability density functions (pdf’s) of each robot

on the curve, and
3) the pdf of the inter-robot distance between adjacent

robots.
Note that this statement deals with four cases, for the

robots can be either point or finite-sized, and the curve can
be either closed or open. Our next step will be to save labor
by cutting down these four cases to two.

III. REDUCTION FROM OPEN TO CLOSED CURVE

In this section, we reduce any problem for a robot config-
uration on an open curve to an equivalent one on a closed
curve, thereby simplifying our computations. Suppose first
that γ is closed. Cut γ open at γ(0) = γ(1), and unwrap
it on the positive real axis, placing γ(0) at zero. Since γ

has unit length, it unwraps completely onto the unit interval
I . Note that unwrapping γ leaves distances between robots
unchanged. The robot positions γ(t ′i) now fall on positions
t ′i on I . Observe that t ′1 is identified with both endpoints
of I , as γ was a closed curve. We will use this important
property repeatedly in the coming discussion.

Now start at t ′1 and move rightwards along I , labeling
robot positions in order until the right endpoint of I is
reached, taking us back to t ′1. This results in the sequence
(t1 = t ′1, t2, . . . , tn), which is a permutation of the unordered
points t ′i . Since t1 = t ′1 is identified with both ends of I , it is
considered to fall to the left of t2, as well as to the right of tn,
at the same time. Thus, the distance between t1 and t2 uses
t1 = 0, and equals t2; on the other hand, the distance between
tn and t1 makes use of t1 = 1, and evaluates to 1−tn. To make
results simple, we define tn+1 = t1, pretending that the index
wraps around. Also, use the value tn+1 = 1 when computing
the distance tn+1 − tn. Saturation requires each inter-robot
distance of the form ti+1− ti to be bounded above by d.

Next, suppose that γ is an open curve, to which n robots
attach precisely as before. Unwrap the curve as before
onto I . Because γ is open, we have t ′1 6= 0 in general.
Consequently, labeling robot positions in order leads to t1 6= 0
in general. Like in the case of closed curves, saturation
implies that ti+1− ti ≤ d, for 1≤ i≤ n−1. However, since γ

is open, saturation forces two additional constraints: t1 ≤ d
and 1− tn ≤ d.

Introduce an artificial point robot t0, and identify it with
both ends of I . This robot behaves exactly like t1 in the case
of closed γ . Define tn+1 = t0, analogous to closed curves,
except that the index wraps back to 0 instead of 1. As
before, always take tn+1 = 1 for computing tn+1− tn. Now



saturation needs t1− t0 ≤ d, and tn+1− tn = 1− tn ≤ d, which
are equivalent to the two extra constraints. This scenario is
identical to having n+1 robots on a closed curve. Also, note
that the position of ti on the open curve matches that of ti+1
on the closed curve.

An additional observation helps us with the reduction for
finite-sized robots. Suppose that the closed curve γ having n
finite-sized robots is unwrapped on I as before. The first
robot centered at t ′1 = t1 = 0 splits in half when γ unwrapped.
It spans the endpoints of I to occupy the disconnected
interval F1 = [0,δ ] ∪ [1− δ ,1], splitting into half-circles.
Every other robot is centered at some ti ∈I , and physically
occupies the interval Fi = [ti−δ , ti +δ ] now. Define tn+1 = t1
as before, pretending that the index wraps around. Note that
the n robots take up a length of 2δn altogether on I . For
saturation, we require that no robot can fit in the space
between two consecutive ones. This leads n constraints of
the form ti+1− ti < 2δ .

When γ is open, however, t1 6= 0 in general, leading to
two extra constraints , t1 < 2δ and 1− tn < 2δ . As before,
we introduce the artificial robot t0; however, it must be placed
in a way that resembles that of t1 for closed curves, yet does
not take away any space from I for other robots to occupy.
To meet both these requirements, we place t0 outside I ,
splitting it into half-circles so that F0 = [−δ ,0]∪ [1,1 + δ ].
Also, we have tn+1 = 1, coinciding with the right endpoint
of I . For saturation, t1 can be at most δ away from t0, and
likewise tn can be at most δ away from tn+1, taking care of
the two extra constraints automatically. This is equivalent to
having n+1 robots on a closed curve of length 1+2δ .

In short, for point robots, a problem with parameters (n,d)
on the open curve is equivalent to one with parameters (n+
1,d) on the closed curve. For finite-sized robots, a problem
with parameters (n,δ ) on the open curve of unit length is
equivalent to one with parameters (n+1,δ ) on a closed curve
of length 1+2δ . Due to these reductions, the future sections
will compute results mainly for closed curves, commenting
on the open curve case only when needed.

IV. A BRUTE FORCE APPROACH TO COMPUTING psat

We now turn back to n point robots on a closed curve.
We first characterize psat as the ratio of the measure
of E , the space of saturated robot configurations, to the
measure of Ω, the sample space of all possible robot
configurations. Since t1 = 0, the sample space Ω consists
of all points (t2, t3, . . . , tn) with coordinates obeying 0 ≤
ti ≤ ti+1 ≤ 1. This space Ω forms a simplex in Rn−1

with vertices v1 = (0,0, . . . ,0,0),v2 = (0,0, . . . ,0,1),v3 =
(0,0, . . . ,0,1,1), . . . ,vn = (1,1, . . . ,1,1). We call Ω the event
simplex. The measure of Ω is its (n−1)-dimensional volume,

|Ω|=
∫ 1

0

∫ 1

t2
. . .
∫ 1

tn−1

dtn . . .dt3dt2 =
1

(n−1)!
(1)

We now characterize the space E of saturated robot con-
figurations. To do this, we need to identify the set of robot
position ranges, or saturating intervals Ii, i = 2, ...,n, that
guarantee a saturated robot configuration. We derive the Ii

from the intersection of the left saturating interval Li and
right saturating interval Ri for each robot position ti. These
two intervals denote the range of positions that result in the
saturating conditions (ti− ti−1)∈ [0,d] and (ti+1− ti)∈ [0,d],
respectively.

To ensure the condition (ti− ti−1) ∈ [0,d], we define the
left saturating interval for each robot position ti as

Li = [ti−1,min(ti−1 +d,1)], i = 2,3, . . . ,n (2)

To ensure the condition (t1− tn) = (1− tn)∈ [0,d], we define
the right saturating interval for position tn as

Rn = [max(0,1−d),1] (3)

We obtain the right saturating intervals Ri for the remaining
positions ti using the following approach. We will refer to
a sequence of robot positions as d-separated if the distance
between any two consecutive robot positions is precisely d.
Consider a particular t2 ∈ L2, and define a sequence of d-
separated positions t3, t4, . . . , tn. If the resulting tn ∈ Rn, the
choice of t2 is sufficient to ensure saturation. The leftmost
possible positions ti that will still result in saturation are
tn = 1− d, tn−1 = 1− 2d, . . . , t2 = 1− (n− 1)d. Hence, to
ensure saturation, we define R2 = [min(1− d(n− 1),0),1].
Extending this reasoning to the remaining robot positions,
the following Ri ensure the condition (ti+1− ti) ∈ [0,d]:

Ri = [min(1− (n− i+1)d,0),1], i = 2,3, . . . ,n−1 (4)

Finally, from the intervals in Equation (2), Equation (3), and
Equation (4), we obtain the following intervals for the robot
positions that lead to saturated configurations:

Ii = Li∩Ri = [max(ti−1,1− (n− i+1)d),min(ti−1 +d,1)],
i = 2,3, . . . ,n (5)

A point in E has ti ∈ Ii for i ∈ {2,3, . . . ,n}. We can compute
the measure of E as

|E |=
∫

t2∈I2

∫
t3∈I3

. . .
∫

tn∈In
dtn . . .dt2 (6)

Note that if any of the intervals Ii is empty, E becomes the
empty set and the probability of saturation is zero.

This integral can be evaluated on a case-by-case basis,
but a naive expansion of the min and max functions in the
limits of each Ii could result in an exponential number of
subintegrals, which is computationally expensive. Thus, the
probability of saturation psat = |E |/|Ω| needs to be deter-
mined by other means, for which we explore the geometric
approach described in the next section.

V. GEOMETRIC INTERPRETATION OF psat

We use an approach to computing psat that can be de-
scribed geometrically and is based on the characterization
of the inter-robot distances, which we call the slacks. We
will initially consider configurations of point robots. Given
a sequence of robot positions ti, i = 1,2, . . . ,n, define the ith

slack to be the distance between ti and ti+1:

si = ti+1− ti, i = 1,2, . . . ,n (7)
(8)



Recall from section III that since tn+1 = 1, we have sn =
1−tn. Define the slack set Sn⊂Rn to be the set of all possible
slack points s = (s1,s2, . . . ,sn), each of whose components
is a valid slack. To characterize this set, we note that valid
slacks are always nonnegative and that the sum of the slacks,
called the total slack s, is always equal to the curve length
l. Thus, the slack set is defined as

Sn = {s ∈ Rn | si ≥ 0, i = 1,2, . . . ,n,
n

∑
i=1

si = s} (9)

The slack set Sn forms an (n−1)-dimensional simplex that
we call the slack simplex. The n vertices of Sn are located
at (s,0,0, . . . ,0),(0,s,0, . . . ,0), . . . ,(0,0,0, . . . ,s). Hence, Sn
is a regular simplex with side length s

√
2. The volume of an

n-dimensional regular simplex of side a is

Vn(a) =
(

a√
2

)n √n+1
n!

(10)

This gives the following volume for Sn:

|Sn|= Vn−1(s
√

2) =
sn−1√n
(n−1)!

(11)

Now we describe the set of points s ∈Rn that corresponds to
configurations that are saturated, but that do not necessarily
conserve the total slack (and thus form a valid robot configu-
ration). For such configurations, si ∈ [0,d] for all i. Thus, the
set of all points leading to saturation forms an n-dimensional
hypercube Hn:

Hn = {s ∈ Rn | 0≤ si ≤ d, i = 1,2, . . . ,n} (12)

The set of valid robot configurations that are saturated is
therefore the (n− 1)-dimensional set En ≡ Sn ∩ Hn. The
probability of saturation psat is the volume of this set divided
by the volume of the slack simplex, the set of all valid
robot configurations. Determining the volume of En is not
straightforward, but it can be computed using the following
approach. Suppose that Ak ⊆ {1,2, . . . ,n} is a k-element
subset of the slack indices. Define for any Ak the set E ′n(Ak)
consisting of all slack points whose components si, i ∈ Ak,
are at least d:

E ′n(Ak) = {s ∈ Sn | si ≥ d ∀i ∈ Ak} (13)

Note that there is no constraint on the remaining slack
coordinates, which may exceed or fall below d as long as
s ∈ Sn. For each slack si, i ∈ Ak, define a reduced slack
s′i = si− d. We can equivalently define E ′n(Ak) in terms of
the reduced slacks as:

E ′n(Ak) = {s ∈ Sn | ∑
i∈Ak

s′i + ∑
i/∈Ak

si = s− kd} (14)

This definition makes it evident that E ′n(Ak) is a regular
simplex that conserves the total reduced slack s− kd. By
Equation (10), its (n−1)-dimensional volume is given by

|E ′n(Ak)|= Vn−1((s− kd)
√

2) =

(
s− kd

)n−1√n
(n−1)!

(15)

Equation (15) makes sense only if (s−kd)≥ 0; equivalently,
we need 1 ≤ k ≤ K where K = bs/dc. If k > K, then
|E ′n(Ak)| = 0, as there is no subset of Sn in which si > d,
i∈Ak. We will next use Equation (15) to compute the volume
of E ′n = Sn\En. This set is defined as

E ′n = {s ∈ Sn | ∃si ≥ d, i ∈ {1,2, . . . ,n}}=
⋃
Ak

E ′n(Ak) (16)

Note that the union runs over all possible choices of Ak.
To compute the volume of the union, we use the Inclusion-
Exclusion Principle [20] which states that

|
⋃
Ak

E ′n(Ak)|=
n

∑
k=1

(−1)k−1
n

∑
k=1
|E ′n(Ak)| (17)

To evaluate the second sum on the righthand side of
Equation (17), note that there are precisely

(n
k

)
subsets

of {1,2, . . . ,n} of cardinality k, and the volume of each
corresponding E ′n(Ak) is given by Equation (15). Also, we
need to take this sum only on the range 1 ≤ k ≤ K, for
otherwise |E ′n(Ak)|= 0. From these observations, we obtain

|E ′n|= |
⋃
Ak

E ′n(Ak)|=
K

∑
k=1

(−1)k−1
(

n
k

)(
s− kd

)n−1√n
(n−1)!

(18)

Since En = Sn\E ′n, |En| = |Sn| − |E ′n|. Using Equation (11)
and Equation (18), we obtain the probability of saturation:

psat =
|En|
|Sn|

= 1−
K

∑
k=1

(−1)k−1
(

n
k

)(
1− kd

s

)n−1

(19)

Finally, from section III, this result trivially extends to
open curves by mapping n 7→ n+1.

A. Evaluating the Intractable Integral in Equation (6)

An immediate consequence of Equation (19) is that we
can now evaluate the integral in Equation (6) as |E | =
psat |Ω| = psat/(n− 1)! Let Σ denote the sum on the right
side of Equation (19). Given n, d, and s = 1, this sum Σ

Equation (19) takes K steps in all to evaluate in a loop.
For efficiency, the k-th step computes

(n
k

)
recursively from( n

k−1

)
in O(1) time and the power term (1− kd/s)n−1 by

binary exponentiation in O(logn) time. Note that both
(n

k

)
and the power term have a size that is bounded above by a
polynomial function of the number of input bits. As such,
psat can be computed in polynomial time, with O(K logn)
multiplications in all.

B. Extension to Finite-Sized Robots

We avoided addressing finite-sized robots in section IV,
since this case is even more complicated than that of point
robots. However, the geometric approach has an easy exten-
sion to finite-sized robots. Following section II, define the
slack si by

si = ti+1− ti−2δ , i = 1,2, . . . ,n (20)

where as usual tn+1 = 1. Given ti and si, the next robot is
located at ti+1 = ti + si +2δ and occupies the interval Fi+1 =
[ti + si +δ , ti + si +3δ ].



No matter how the robots are positioned, the total length
of the curve not occupied by robots is 1−2δn. In addition,
in saturated robot configurations, all slacks si are too small
to fit another robot between the robots at ti and ti+1; that is,
si ∈ [0,2δ ]. Hence, we have the following values for the total
slack s and the saturating distance d:

s = 1−2δn (21)
d = 2δ (22)

Using the same reasoning as in the point robot case, the set
of possible slack points for finite-sized robot configurations
consists of the slack simplex Equation (9) with s defined
in Equation (21), and the set of all points corresponding to
saturated configurations forms the hypercube Equation (12)
with d defined in Equation (22). Repeating the analysis
developed for point robots, we find that the formula for psat
is given by Equation (19) with the newly defined values of
s and d.

Finally, we comment briefly about the analogous results
for open curves. The reduction in section III from open to
closed curves, causes γ to lengthen by 2δ , and the new slack
becomes

s = 1−2δ (n−1) (23)

Also, the number of robots gets incremented during the
reduction, giving us

psat = 1−
K

∑
k=1

(−1)k−1
(

n+1
k

)(
1− kd

s

)n

(24)

where K := b s
d c uses the slack of Equation (23).

VI. STATISTICS OF ROBOT POSITIONS AND SLACKS

The problem of computing the statistics of the robot
positions ti and the slacks si can be approached using results
from order statistics [21]. The unordered points t ′i , which
were picked uniformly randomly on the unit interval I , are
called the parent variables; the ith ordered point ti is called
the ith order statistic of the parent. An approach based on
order statistics not only confirms Equation (19) [21, pp.133-
135] but also yields the pdf’s of ti and si. To simplify
notation, we define the indicator function 1X : X→{0,1} of
an arbitrary set X to be 1X (x) := 1 iff x ∈ X , and 1X (x) := 0
otherwise. We also use f to denote a pdf, which may be
either joint or marginal.

A. Statistics of Point Robots

We begin with the case of n point robots. From the
problem statement, we have that the joint pdf of the parents
f (t ′1, t

′
2, . . . , t

′
n) is uniform over its domain, which is the event

simplex Ω. Since from Equation (1), |Ω| = 1/(n− 1)!, we
need

f (t ′1, t
′
2, . . . , t

′
n) = (n−1)!1Ω (25)

to ensure that f (t ′1, t
′
2, . . . , t

′
n) has unit measure over Ω and

thus is a pdf.

Since the order statistics ti are just a permutation of their
parents, their joint pdf f (t1, t2, . . . , tn) is identical to that of
their parents. Note that t1 is fixed and thus has a degenerate
marginal pdf, and we omit it from further consideration. We
can obtain the pdf of other order statistic ti : i = 2,3, . . . ,n, by
repeatedly marginalizing over the remaining n−2 statistics.
We do so in two steps. In the first step, notice that the order
statitics t j : j = i +1, i +2, . . . ,n to the right of ti each need
to be integrated over the interval R j = [t j−1,1]. This leads
us to a marginal density of the form f (t2, . . . , ti), consisting
only of ti and the statistics to its left. Next, we marginalize
away the statistics tk : k = 2, . . . , i−1 to the left of the desired
one by integrating each of them over the intervals Lk = [0, ti].
This gives the result

f (ti) =
∫

Lk

∫
R j

f dtn . . .dti+1dti−1 . . .dt2 =
(

n
i

)
(1− ti)n−it i−1

i

(26)

where we wrote∫
Lk

for
∫

t1∈L1

∫
t2∈L2

. . .
∫

ti−1∈Li−1

,∫
R j

for
∫

ti+1∈Ri+1

∫
ti+2∈Ri+2

. . .
∫

tn∈Rn

,

and f for the joint density of the order statistics.
Define the Beta density [22, pp.42-43] Beta(t|a,b) by

Beta(t|a,b) :=
1

B(a,b)
ta−1(1− t)b−11I (27)

This density has mean and variance given by

E[Beta(t|a,b)] =
a

a+b

Var[Beta(t|a,b)] =
ab

(a+b+1)(a+b)2

Then it is easy to see that each order statistic is a Beta variate
of the form

f (ti) = Beta(ti|i,n− i+1) (28)

with mean and variance given by

E[ti] =
i−1

n
(29)

Var[ti] =
(i−1)(n− i+1)

n2(n+1)
(30)

Intuitively, Equation (28) indicates that ti is the (i− 1)st

variable from among the n− 1 picked on I . The n− 1
order statistics t2 through tn divide I into n subintervals.
On average, these subintervals have equal length, placing
the expected location of ti at i−1

n .
We next compute the pdf’s of the slacks. Note that any

particular slack, say the last slack sn, can be determined as a
function of the remaining ones, as sn = 1−∑

n−1
i=1 si. To define

the joint pdf of the slacks, keep this slack apart, and define
the domain

D := {(s1,s2, . . . ,sn−1)} : 0≤ si ≤ 1,0≤
n−1

∑
i=1

si ≤ 1 (31)



This domain is the interior of an (n−1) dimensional simplex
embedded in Rn−1 and is easily seen to have the (n− 1)-
dimensional volume |D| = 1

(n−1)! by a nested integral iden-
tical to Equation (1), leading to the joint pdf

f (s1,s2, . . . ,sn−1) = (n−1)!1D (32)

Unlike the order statistics which need ti ≤ ti+1, the slacks
have no such restriction. Since any reordering of slacks
makes no difference to Equation (32), every slack has the
same marginal pdf by symmetry. This includes the slack sn
that was omitted from the joint pdf, for we could have set up
Equation (25) by setting apart another slack, say sn−1 instead.
Thus we need to determine only one marginal pdf, say f (s1).
To do so, we follow a marginalization process similar to that
for the order statistics. Note that every slack s j : j = 2, . . . ,n−
1 to the right of s1 lies on the interval R j = [0,1−∑

j−1
i=1 s j].

Integrating the joint slack pdf in Equation (32) over these
intervals leads us to

f (si) = Beta(si|1,n−1), i = 1,2, . . . ,n (33)

We add a note of caution here that will become relevant
to the case of finite-sized robots. Observe that since ti =
∑

i−1
j=1 s j, it may be tempting to compute the marginal density

f (ti) by performing i− 1 nested convolutions of the slack
pdf’s. However, it can be seen while computing the marginal
pdf’s that slacks are mutually dependent, so that for example
f (s1,s2) 6= f (s1) f (s2). Deriving f (si) by repeated integration
sidesteps this issue of dependency.

Finally, all results from Equation (25) through Equa-
tion (33) extend trivially to open curves as follows. Since
the reduction process from open to closed curves increments
the number of robots, the joint pdf for n robots on an open
curve is

f (t1, t2, . . . , tn) = n!1Ω (34)

where Ω is now an n-dimensional simplex embedded in Rn.
The statistic ti for a closed curve resembles that of ti+1 for
closed curves, giving us

f (ti) = Beta(ti|i,n− i+1), i = 1,2, . . . ,n (35)
f (si) = Beta(ti|1,n), i = 1,2,3, . . . ,n+1 (36)

B. Extension to Finite-Sized Robots

In the case of finite-sized robots, the slacks si are the order
statistics of points uniformly randomly chosen on the interval
[0,s = 1−2δn]. Had s been unity, the pdf of each si would
have been given by the Beta pdf in Equation (33). If we
divide each si by s, the scaled random variables si/s will be
distributed over I according to this Beta pdf. From this, we
derive the following expressions for the pdf of si:

f (si) = s ·Beta(t|1,n−1) (37)

However, determining the pdf of ti does not readily admit
an analytic form. Having set t1 = 0, from Equation (20) we

know that

t2−2δ = s1 (38)

Consequently, t2−2δ will have the same pdf as s1, or

f (t2) = s ·Beta(t|1,n−1)+2δ (39)

The case of t3 is different. From Equation (20),

t3−4δ = s1 + s2 (40)

Determining f (t3) by convoution fails due to the fact that
slacks are dependent, as the note of caution makes clear in
section VI-A. Unlike with point robots, we do not have a
general expression for the joint pdf of finite-sized ones. Thus,
the marginalization procedure of section VI-A fails, and we
have no analytic expressions for the pdf of t3 through tn.

VII. SIMULATIONS

We implemented Monte Carlo simulations in which vari-
ous numbers n of either point robots or finite-sized robots are
stochastically allocated to the boundary of a unit circle. In
the point robot simulations, n points were chosen uniformly
randomly from I and sorted in order. The slacks were com-
puted, and those robot configurations that met the saturation
criterion were counted as favorable events. The finite-sized
robots implemented the following algorithm:

Algorithm SLACK-ATTACH(n,δ )
1) Set t1← 0.
2) Pick an array arr[1..n− 1] of uniformly randomly

distributed points on the interval [0,s].
3) Sort arr in increasing order.
4) Compute the individual slacks as s1 ← arr[1], si ←

arr[i + 1]− arr[i] for 2 ≤ i ≤ n− 1, and sn ← s−
∑1≤i≤n−1 si.

5) Compute ti+1 = ti + si +2δ for 1≤ i≤ n−1.

Robot configurations that satisfied si = d ≤ 2δ were counted
as favorable events.

Figure 2 compares three-dimensional plots of theoretical
and Monte Carlo-averaged (over 20000 trials) psat varying
with n and d for point and finite-sized robots. For both robot
types, the close match between the theoretical and Monte
Carlo-averaged plots validate our formula for psat . Table I
and Table II show a quantitative comparison of psat computed
from Equation (19) and psat averaged over 20000 Monte
Carlo trials for different combinations of n and d. Table III
and Table IV display the corresponding results for finite-
sized robots. For both robot types, the theoretical predictions
of psat closely match the Monte Carlo simulation averages.

We also plotted the frequency of 5000 samples of a
particular robot position and a particular slack from Monte
Carlo trials with n = 5 point robots. As Figure 3 shows, both
frequency plots can be fit to the Beta densities predicted by
Equation (28) and Equation (37).



0
5

10
15

20

0
0.2

0.4
0.6

0.8
0

0.5

1

nd

T
h
eo

re
ti
ca

l
p
sa

t (a)	
  

0
5

10
15

20

0
0.2

0.4
0.6

0.8
0

0.5

1

nd

M
on

te
C
ar
lo

p
sa

t

3 4 5 6 7 8 9 10

0
0.1

0.2
0.3

0.4
0

0.2

0.4

0.6

0.8

1

nd

T
h
eo

re
ti
ca

l
p
sa

t (c)	
  

(b)	
  

3 4 5 6 7 8 9 10

0
0.1

0.2
0.3

0.4
0

0.2

0.4

0.6

0.8

1

nd

M
on

te
C
ar
lo

p
sa

t (d)	
  

Fig. 2. Plots of theoretical (left column) and Monte Carlo-generated (right
column) psat(n,d) values for point (upper row) and finite-sized (lower row)
robots.

TABLE I
THEORETICAL psat VS. psat MONTE CARLO-AVERAGED WITH n = 16

POINT ROBOTS

d Theoretical psat Monte Carlo psat
0.05 0.0000 0.0000
0.10 0.0001 0.0001
0.20 0.4929 0.4925
0.25 0.7898 0.7913
0.33 0.9635 0.9651
0.5 0.9995 0.9997

TABLE II
THEORETICAL psat VS. MONTE-CARLO AVERAGED psat TRIALS WITH

POINT ROBOTS, WITH d = 0.5

n Theoretical psat Monte Carlo psat
3 0.2500 0.2467
4 0.5000 0.5029
5 0.6875 0.6885
6 0.8125 0.8124
7 0.8906 0.8899
8 0.9375 0.9383

TABLE III
THEORETICAL psat VS. MONTE CARLO-AVERAGED psat WITH n = 4

FINITE-SIZED ROBOTS

δ Theoretical psat Monte Carlo psat
0.05 0.0000 0.0000
0.06 0.0029 0.0025
0.08 0.5000 0.5060
0.09 0.8519 0.8532
0.1 1.0000 1.0000

TABLE IV
THEORETICAL psat VS. MONTE CARLO-AVERAGED psat TRIALS WITH

FINITE-SIZED ROBOTS, WITH δ = d/2 = 0.05

n Theoretical psat Monte Carlo psat
5 0.000 0.000
6 0.0254 0.0259
7 0.4142 0.4221
8 0.9375 0.9401

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated approaches to the statistical analy-
sis of quantities that are associated with stochastic coverage
of a simple boundary by a set of uniformly randomly
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(b) Frequency plot of s2

Fig. 3. Frequency plots of 5000 samples of t2 and s2 = t3 − t2 from
Monte Carlo trials for point robots Both plots are fit to a Beta(t|1,4) density
function.

distributed robots. We developed a geometric interpretation
of the probability that a given robot configuration is saturated
and derived this probability using the Inclusion-Exclusion
Principle. We also used results from order statistics to deter-
mine the probability distributions of the robot positions along
the boundary and the distances between adjacent robots.
We validated our derived formulas for these probability
distributions and the saturation probability using Monte
Carlo simulations of a large number of scenarios. The work
presented here can be extended in several directions:

a) Stochastic coverage by asynchronously attaching
robots: Many experimental scenarios will involve asyn-
chronous attachment of robots to a boundary. In these cases,
each attaching robot searches for an available attachment
location on the boundary and picks one at random. One
possible algorithm for simulating this process with finite-
sized robots is as follows:

Algorithm ASYNC-ATTACH(n,δ )
1) Set t ′i ← 0
2) For each i : 2≤ i≤ n do

a) Find the list of intervals in which the center t ′i of
the next robot can be placed.

b) Choose one such interval at random and one point
p at random from this interval.



c) Set t ′i ← p.
3) Sort t ′i in increasing order to get ti.

The parent variables t ′i assigned by ASYNC-ATTACH are
not i.i.d, since each t ′i is a function of t ′1, t

′
2, . . . , t

′
i−1. This

makes the determination of their order statistics a much more
challenging task [21, Ch.5] for which a complete analytical
solution may be impossible. Hence, an important future
step would be to extract useful qualitative information about
the distributions generated by ASYNC-ATTACH and other
asynchronous attachment algorithms. Also pertinent would
be to devise asynchronous attachment algorithms that lend
themselves to tractable analysis.

b) Probability distributions induced by saturation: As
an extension of the material in Section VI, we plan to derive
the pdf’s of ti and si given that the robot configuration is
saturated.

c) Comparison with deterministic algorithms: Multi-
robot planar boundary coverage is an NP-Hard problem [23].
Deterministic algorithms for this problem generally employ
heuristics to reduce running time. Our approach is essentially
a randomized algorithm to address the same intractability.
Deterministic algorithms provide more guarantees on run-
time and correctness than randomized algorithms, while the
latter may be simpler to implement [24]. Our future work
will investigate scenarios that favor one approach over the
other; for example, we would wish to determine the better
coverage approach when collisions with obstacles or between
robots need to be avoided.

d) Applications to multi-robot transport problems:
We are currently investigating the problem of developing
strategies for multi-robot collective transport that are robust
to payload type, environment layout, and transport team size,
much like group retrieval strategies employed by certain
species of ants [25]. We will consider scenarios in which
robots stochastically allocate themselves around a payload
and then proceed to transport the payload as a team. We will
apply our statistical analysis results to characterize dynamical
properties of the robot-load system during transport given an
initial stochastic allocation. For instance, we can investigate
the probability that robots arranged in a random configuration
around a certain payload will be able to successfully lift it
off the ground.
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