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ABSTRACT
Collective food transport in ant colonies is a striking, albeit
poorly understood, example of coordinated group behavior
in nature that can serve as a template for robust, decentral-
ized multi-robot cooperative manipulation strategies. We
investigate this behavior in Aphaenogaster cockerelli ants
in order to derive a model of the ants’ roles and behavioral
transitions and the resulting dynamics of a transported load.
In experimental trials, A. cockerelli are induced to transport
a rigid artificial load to their nest. From video recordings
of the trials, we obtain time series data on the load position
and the population counts of ants in three roles. From our
observations, we develop a stochastic hybrid system model
that describes the time evolution of these variables and that
can be used to derive the dynamics of their statistical mo-
ments. In our model, ants switch stochastically between
roles at constant, unknown probability rates, and ants in
one role pull on the load with a force that acts as a pro-
portional controller on the load velocity with unknown gain
and set point. We compute these unknown parameters by
using standard numerical optimization techniques to fit the
time evolution of the means of the load position and popu-
lation counts to the averaged experimental time series. The
close fit of our model to the averaged data and to data for
individual trials demonstrates the accuracy of our proposed
model in predicting the ant behavior.
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1. INTRODUCTION
Recent advances in technologies for swarm robotic sys-

tems, consisting of hundreds to thousands of autonomous,
relatively expendable robots with limited capabilities, are
facilitating the development of robotic teams to collectively
manipulate and transport a variety of objects in their en-
vironment. These multi-robot transport teams can be used
to amplify productivity in construction, manufacturing, and
automated warehouse applications, as well as to aid in disas-
ter scenarios and search-and-rescue missions. The problem
of controlling swarm robotic transport teams in such ap-
plications presents certain challenges. The control approach
should be scalable to arbitrary team sizes and should accom-
modate limitations on the robot platform’s sensing, commu-
nication, and computation abilities. In addition, the control
strategy should be robust to robot failures and not rely on
detailed a priori information about the payload or environ-
ment so that it is generalizable to a wide range of scenarios.

As a step toward synthesizing a control approach for an
adaptable, resource-constrained robotic transport team, we
develop a model of collective transport by a group of agents
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with minimal capabilities. Toward this end, we look to an
analogous system in nature: the food retrieval teams formed
in colonies of the desert ant Aphaenogaster cockerelli. Al-
though most ant species are relatively unskilled at group
transport, A. cockerelli has evolved the impressive coordi-
nation skills necessary for this task. This behavior is an
example of a fully decentralized cooperative manipulation
strategy that is scalable in the number of transporters and
successful for a wide range of payloads in environments with
uneven terrain and obstacles.

Berman et al. [1] and Czaczkes and Ratnieks [2] present
overviews of the incidence, advantages, and organization of
group retrieval teams in ants. Group transport requires in-
dividual ants to coordinate their movement to carry a bulky
food item to the nest. How this is achieved remains very
poorly understood [2, 3, 11]. Many have argued that coor-
dination proceeds entirely by indirect interactions through
the item itself, known as stigmergy [7], but more direct inter-
actions and signaling among carriers may also play a role.
A new approach to this problem is to describe the range
of behavioral states occupied by transporters, the rates at
which ants change states, and the contextual influences on
these changes. Models of this type can link individual behav-
ior to the dynamics of group transport, ultimately allowing
the identification of behavioral rules crucial to successful co-
ordination. Furthermore, these models can be adapted to
describe other species and to explain why some species are
better at collective transport than others. Thus, modeling
group transport in ants not only provides a template for
the engineering of multi-robot transport systems, but such
models can also assist biologists in the analysis of natural
transport behavior.

In previous work of S.M.B. and S.C.P. [1], qualitative ob-
servations of A. cockerelli transporting elastic vision-based
force sensors were used to develop a model of ants collec-
tively dragging a load with compliant attachment points.
The model consisted of a behavioral component, comprised
of a hybrid system with probabilistic transitions between
two modes, and a dynamic component, described by a quasi-
static planar manipulation model that incorporated friction
on the load surface. In the current work, we quantita-
tively derive a model of collective retrieval that combines
the stochastic ant behavioral transitions and the continuous
load dynamics in a single framework, a polynomial stochas-
tic hybrid system (pSHS) [4, 6], that is amenable to analysis
and control. Using this framework, we can derive the time
evolution of the model variables’ statistical moments, which
can be fit to experimental data. The pSHS framework has
been recently applied to problems of stochastic task alloca-
tion in multi-robot teams [8] and the control of self-assembly
of stochastically interacting robots [10].

We conduct experiments on group transport in A. cocke-
relli using a rigid load, similar to one that would be encoun-
tered in nature, which the ants can lift as well as pull. This
type of load allows us to develop a simpler dynamical model
than our original one, and we expand the previous behav-
ioral model of Berman et al. [1] with an additional mode to
explicitly capture the directionality of the ants’ efforts. We
propose that the ants switch stochastically between roles at
constant probability rates and that their pulling force on the
load acts as a proportional controller on the load velocity.
The unknown parameters of our model, consisting of a set of
behavioral transition rates, the load velocity set point, and

the gain on the load velocity regulator, are estimated from
the experimental data using a weighted-least-squares proce-
dure that fits theoretical to sampled means. The resulting
model generates trajectories that not only closely match in
the mean, but also accurately predict the load dynamics as
a function of measured counts of ants in different roles in
several individual trials.

2. EXPERIMENTAL TRIALS
We filmed colonies of A. cockerelli collectively retrieving

a standardized artificial load. A total of 17 colonies were lo-
cated in South Mountain Park in Phoenix, AZ. Experiments
were carried out during the activity period of the colony in
the early morning (0600–0830 hours) and in the late after-
noon (1700–1900 hours) in May 2012.

A new colony was located each day. A PlexiglasR© sheet
with dimensions 61 cm× 46 cm× 0.5 cm was positioned such
that one edge, Edge A, was 50 cm south of the main nest
entrance, and the opposite edge, Edge B, was 111 cm south
of the nest. The sheet was covered with white paper and lev-
eled to avoid inclination in any direction. An artificial load
was constructed by gluing a dime with mass mL = 2.30 g
and radius 0.90 cm to an ethylene vinyl acetate (EVA) foam
disk (0.2mm thickness, 1.0 cm radius), which was rubbed
with fig paste to attract ants. We filmed the transport with
a Canon G12 camera positioned above the sheet. The cam-
era’s field of view was 1280 pixels × 720 pixels, centered on
the sheet. Foragers were recruited to a whole fig placed at
Edge B. Once 10 workers were feeding on the fig, we re-
placed the fruit with the artificial load. Ants were able to
manipulate the load by gripping the excess 0.1 cm of foam
around the perimeter of the dime. Ants carrying the load
were filmed until they reached Edge A.

From the video recording of each experimental trial, we
selected a segment of duration 145 s during which the ants
were smoothly transporting the load; i.e., the load moved a
nonzero distance during each consecutive 5-second interval
of the segment. From this segment, we extracted the po-
sitions of the ants around the load and the position of the
center of the load using ImageJ [12] and the Mtrack plug-
in [9]. This information was obtained from single frames at
5-second intervals.

We observed that during these segments, the ants moved
the load along an approximately straight path (left column
of Fig. 1), allowing us to model the load movement as one-
dimensional. In addition, we found that the transport teams
move the load at approximately the same speed across tri-
als (right column of Fig. 1). Figure 2(a) shows an overhead
snapshot of the ants and load during one trial. We ob-
served that ants switched at random times between three
behavioral states. The Detached state describes ants that
are not attached to the load; two ants in Fig. 2(a) are in this
state at the instant of the snapshot. To classify ants that
were attached to the load, we divided the load in half by a
line perpendicular to the direction of the load motion. Ants
that gripped the half of the load in the direction of travel
were labeled as being in state Front, and ants that gripped
the other half were assigned state Back. In Fig. 2(a), three
ants are in state Front and three are in state Back. From
side-view videos of transport (Fig. 2(b)), we observed that
ants on both sides lift the load off the ground in addition
to exerting forces parallel to the surface that drive the load
across the substrate.
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Figure 1: The x–y trajectory of the artificial load
center (left column) and the distance traveled by the
load over time (right column) for three experimental
trials. The dashed lines in the left column show the
ideal straight-line path. The dotted reference lines
in the right column all have the same slope.

(a) Top view (b) Side view

Figure 2: Aphaenogaster cockerelli ants transport-
ing an artificial load: (a) top view, with the ar-
row indicating the direction of the load motion and
the red line dividing the load into front (right) and
back (left) halves; (b) side view. The views are from
different trials.
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Figure 3: The solid line shows the sample mean of
the product NF vL from the data; the dashed line
shows the product of the sample mean of NF with
the sample mean of vL from the data.

The average pulling force of a single ant on an elastic load
was previously measured by Berman et al. [1] to be 10.5 ±
5.0mN, with 99.1% of the 10906 samples less than 30.0mN.
To further characterize the dynamics of the artificial load,
we estimated the coefficient of kinetic friction µ of the load
on the surface by measuring the angle θs at which the load
started to slide down an inclined plane covered with the
same paper used in the transport experiments. We measured
θs = 30◦, yielding the value µ = tan(θs) = 0.58. Finally,
the force Fl with which an individual ant lifts the load was
estimated as Fl = 2.653 mN by averaging the peak lifting
forces that several ants applied individually to a rigid plastic
disk (0.5mm thickness, 5mm radius) glued to the pin of a 10
gram capacity load cell (Transducer Techniques GSO series).

3. COLLECTIVE TRANSPORT MODEL
In this section, we model collective transport as a stochas-

tic hybrid system (SHS) [6]. This SHS is a cascade connec-
tion of a chemical reaction network representing stochastic
ant behavioral transitions followed by the deterministic dy-
namics of a load transported along a surface with friction.
In Section 4, we derive moment dynamics of the model that
are used in Section 5 to fit model parameters to statistics
from the experimental ant data.

Discrete Behavioral Modes.
We represent the stochastic switching of ants between be-

havioral states in the form of a set of chemical reactions. The
species Xi denotes an ant in behavioral state i ∈ {F,B,D},
where i signifies the states Front, Back, and Detached, re-
spectively. Each ant is assumed to switch from state i to
state j $= i at a constant probability per unit time rij , which
we call the transition rate. The six reactions representing
these transitions take the form

Xi
rij−−→ Xj , i, j ∈ {F,B,D}, i $= j. (1)

We define Ni(t) as the number of ants in state i at time t.
The instantaneous probability rate of the reaction in Eq. (1)
occurring within the group of ants is called the transition
intensity, λij [5]. Because all reactions are unimolecular,
this quantity is given by λij = rijNi. Hence, although
each transition rate is constant, the transition intensities
vary with the number of ants in each state. Consequently,
when the number of ants in a given state drops to zero,
so does the probability per unit time of further reactions
out of that state. We note that the total ant population,
NF (t) +NB(t) +ND(t), is conserved at all times.

Load Dynamics.
As stated in Section 2, we model the load movement as

one-dimensional. We specify that the load is initially located
at the origin and then travels only in the positive direction
along the x axis toward the nest. The load position and ve-
locity at time t are denoted by xL(t) and vL(t), respectively.
We assume that each ant in state Front walks backward in
the positive x direction toward the nest and pulls on the load
with force Fp. Because the ant teams in our experiments
moved the load at an approximately constant velocity (see
Fig. 1), we assume a proportional velocity regulation policy
for Fp of the form

Fp = K(vdL − vL(t)), (2)

121



where the positive gain K and velocity set point vdL are pa-
rameters fit from the experimental data. Ants in state Back
are assumed to only lift the load, and so the force applied by
the ants to the load in the x direction at time t is NF (t)Fp.
We assume that ants in both states Front and Back lift the
load with the upward force Fl = 2.653mN from the mea-
surements described in Section 2. The load is subject to a
kinetic frictional force µFn, where the normal force Fn on
the load is determined by assuming that the load is in static
equilibrium in the vertical direction. That is,

Fn = mLg − (NF (t) +NB(t))Fl,

where g is the acceleration due to gravity. The net force F
on the load in the x direction is then given by

F = NF (t)Fp − µFn.

Stochastic Hybrid System.
Our models of the ant behavioral dynamics and the load

dynamics together constitute a polynomial stochastic hybrid
system (pSHS) [4, 5]. The pSHS is characterized by the state
vector x = [NF NB ND xL vL]

# with the continuous flow

ẋ =
[
0 0 0 vL F/mL

]#
(3)

and a set of discrete reset maps φij(x), each representing the
stochastic transition (Ni, Nj) '→ (Ni−1, Nj+1) correspond-
ing to the reaction in Eq. (1) that occurs with intensity λij .
The fact that the λij , φij(x), and components of ẋ are all
finite polynomial functions of the continuous state variables
establishes our SHS model as a pSHS [5]. The stochastic
variation in NF (t), NB(t), and ND(t) over time causes xL(t)
and vL(t) to vary randomly over time as well.

4. MOMENT DYNAMICS OF THE MODEL
The extended generator L of an SHS can be used to predict

the time evolution of the statistical moments of the SHS
continuous state [4, 5]. For any function ψ(x) : Rn → R that
is continuously differentiable, the dynamics of the expected
value of ψ are given by dE(ψ)/dt = E(Lψ). In our case, L
is defined as

Lψ(x) ! ∂ψ
∂xL

ẋL +
∂ψ
∂vL

v̇L +
∑

i,j∈{F,B,D}
i %=j

(ψ(φij(x))− ψ(x)) rijNi.

Hence, by setting ψ = Ni, we can derive the dynamics of
the mean number of ants in state i, E(Ni), as

d
dt

E(Ni) =
∑

j∈{F,B,D}
j %=i

(rji E(Nj)− rij E(Ni)) . (4a)

Likewise, using ψ = xL, the mean load position is such that

d
dt

E(xL) = E(vL), (4b)

and, using ψ = vL and the approximation that the instan-
taneous NF and vL are uncorrelated (see Fig. 3), the mean
load velocity is such that

d
dt

E(vL) = cg + cF E(NF ) + cB E(NB) + cFv E(NF ) E(vL)

(4c)
where cg ! −µg, cF ! (KvdL+µFl)/mL, cB ! µFl/mL, and
cFv ! K/mL.

5. PARAMETER ESTIMATION RESULTS
In this section, we discuss the fitting procedure used to

estimate the pSHS model parameters: the transition rates
rij of the reactions in Eq. (1) and the gain K and velocity
set point vdL in Eq. (2). We compute parameters that best
fit the sample means of the experimental data to the first-
order moment dynamics derived in Section 4.

As described in Section 2, the experimental data consist
of the load position and velocity and the counts of ants in
each behavioral state sampled at 5 s intervals during 17 tri-
als. The number of Detached ants at each sampling time
was generated by subtracting the number of attached ants
during that sampling period from the maximum number of
attached ants across all periods. Thus, the total number of
ants is constant within each trial. The load velocity was esti-
mated numerically from the position data. For the purpose
of fitting model parameters to the data, we computed the
across-trial means of load position and velocity as well as
the across-trial mean numbers of Front, Back, and Detached
ants at each sampling time. Weighted-least-squares (WLS)
optimization was then used to fit the theoretical moment
dynamics Eq. (4) at these times to the corresponding em-
pirical mean values. In particular, the numerical optimizer
minimized the sum of weighted squared errors between each
theoretical and empirical mean, where each weight was the
sample variance of the corresponding data set. The numer-
ical operation was performed in Matlab using the fmincon
tool for active-set optimization; the theoretical mean-field
trajectories were integrated using ode15s with initial condi-
tions chosen to match the initial means from the data.

The best-WLS-fit parameters were the transition rates

rDB = 0.0197 s−1, rBD = 0.0205 s−1,

rDF = 0, rFD = 0,

rBF = 0.0301 s−1, rFB = 0.0184 s−1,

and the gain and velocity set point parameters

K = 0.0035N/(cm/s), vdL = 0.3185 cm/s.

Based on the rates that best fit the model to the data, each
ant in the transport team appears much more likely to at-
tach to the back of the moving load than the front (i.e.,
rDB > rDF = 0). This hypothesis can be tested in future
experiments and in a more detailed analysis of the video
data. If it is supported, we can speculate as to reasons for
the trend. For example, during movement, the front of the
load may have near-maximal occupancy, hindering new at-
tachment to the front even by detached ants downstream
of the load motion. Alternatively, it may be easier to at-
tach to the back of the moving object because that end is
vertically stationary and moving horizontally in the same
direction as a forward-walking ant approaching it. When
an A. cockerelli transports a small object individually, she
lifts the seed off the ground and carries it forward toward
her nest. Hence, it is possible that backward carrying in
teams results from the inability to carry the load forward in
the normal posture. Moreover, the model infers a relatively
high Back-to-Front transition rate rBF , which is supported
by the observation that backward walking is a contingency
when loads are difficult to move. Even if these speculations
are not biologically accurate, they may assist in the design
of grasping mechanisms and approach postures for robots
performing collective transport.
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Figures 4 and 5 compare the experimental data with the
model predictions. Figure 4 shows this comparison for three
selected experimental trials: the first two columns show the
measured numbers of Front and Back ants, and the third and
fourth columns show the measured load position and velocity
and their predictions based on the measured ant counts and
the deterministic feedback policy from Eq. (2) instantiated
with the WLS-fit K and vdL parameters in the load dynamics
Eq. (4b), Eq. (4c). In Fig. 5, the first row displays the
mean numbers of ants in each state measured across trials
against the predicted mean-field trajectories from Eq. (4a)
with the WLS-fit transition rates rij , and the second row
shows the analogous plots for load position and velocity. The
parameter vdL may be viewed as a desired traveling speed
of the ant transport teams that can only be achieved in
the absence of friction. That is, some amount of steady-
state velocity error is required to balance the frictional force.
Additional experiments can further validate the model for
a higher load mass and coefficient of friction. The model
should then predict a shift in the steady-state load velocity.

6. CONCLUSION
In this work, we conducted an experimental investigation

of collective transport of a rigid artificial load by Aphae-
nogaster cockerelli ants. A stochastic hybrid system (SHS)
model was developed to describe the dynamics of the load
and the behavioral transitions of the ants during transport.
The model was fit to the data to minimize the difference
in mean behavior, and the resulting best-fit parameters are
presented as reduced-order metrics of collective transport.

In future work, we plan to further validate our model by
fitting both first-order and second-order moments to statis-
tics from experimental data. We will also investigate how
the best-fit parameters vary from optimized parameters that
minimize criteria including path variance, load transport
time, and transport team size.

We also plan to expand the model to incorporate other
features of collective transport by ants. Additional behav-
ioral states as well as heterogeneity and stochasticity within
states will be included. The modeled behaviors will include
teams of individuals pulling and lifting with different time-
varying forces. An important future direction is to adjust
the transition rates so that they depend on factors such as
the load position, load velocity, ant force applied to the load,
and the number of ants attached. Especially in the uncoor-
dinated phase before smooth transport, it is likely that the
probability of an ant attaching to the front or back of the
load is strongly determined by the load’s nascent motion as
well as the number of ants gathered around it. State-depen-
dent transition rates can capture this initial behavior and
still allow for the smooth motion that is the focus of this pa-
per. As the uncoordinated phase has less directionality than
the smooth phase discussed here, it will require augmenting
the model for two-dimensional load motion.

In general, we hope to catalyze bio-inspired research on
multi-robot transport teams. SHS frameworks are utilized
in robotics, and so they have potential to be substrates for
trans-disciplinary knowledge transfer.
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