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Abstract— We present a decentralized, scalable approach
to assembling a group of heterogeneous parts into different
products using a swarm of robots. While the assembly plans
are predetermined, the exact sequence of assembly of parts
and the allocation of subassembly tasks to robots are deter-
mined by the interactions between robots in a decentralized
fashion in real time. Our approach is based on developing a
continuous abstraction of the system derived from models of
chemical reactions and formulating the strategy as a problem
of selecting rates of assembly and disassembly. These rates are
mapped onto probabilities that determine stochastic control
policies for individual robots, which then produce the desired
aggregate behavior. This top-down approach to determining
robot controllers also allows us to optimize the rates at the
abstract level to achieve fast convergence to the specified
target numbers of products. Because the method incorporates
programs for assembly and disassembly, changes in demand
can lead to reconfiguration in a seamless fashion. We illustrate
the methodology using a physics-based simulator with examples
involving 15 robots and two types of final products.

I. INTRODUCTION

We develop an approach to designing a reconfigurable
manufacturing system in which a swarm of homogeneous
robots assembles static, heterogeneous parts into different
types of products. The system must respond quickly to
produce desired amounts of products from any initial set of
parts. We employ a decentralized strategy in which robots
operate autonomously and both robots and parts use local
communication. The strategy can be readily implemented on
resource-constrained robots, and it is scalable in the number
of robots and parts and robust to changes in robot population.

We specify that robots move randomly inside a closed
arena and pick up randomly scattered parts. The system can
be modeled as being spatially homogeneous, and the robot-
part and robot-robot interactions are analogous to chemical
reactions between molecules. This allows us to model the
system using the extensively studied Chemical Reaction
Network (CRN) framework [1].

In the taxonomy [2] of macroscopic self-assembly sys-
tems, our objective and approach are most similar to those
of [3], which considers a set of modules that bind through
random collisions and detach into different parts according to
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programmed probabilities. The system in [3] is also modeled
as a CRN, as is the one in [4], which predicts the yield of
complete assemblies from passive, vertically stirred modules.
In [3], an optimization problem is formulated to compute
the detachment probabilities that maximize the yield of a
particular assembly at equilibrium. The optimization is based
on a Markov process model of the system and requires the
enumeration of all reachable states, which does not scale well
with the number of parts. Our use of robots to transport and
join passive parts according to decentralized rules is similar
to the setup in [5], which derives rules for building a single
desired structure out of blocks.

In this paper, we use a “top-down” design methodology
similar to [6], [7] to synthesize stochastic control policies
for robots that cause them to produce target amounts of
products as quickly as possible. Fig. 1 illustrates our method-
ology. As in recent work on modeling robot swarms [8]–
[10], we develop an accurate macroscopic model of the
physical system. We generate the continuous dynamics of
individual robots using a realistic 3D physics simulation,
the micro-continuous model. Since the system is spatially
homogeneous, it can be represented by the Chemical Master
Equation [11]. We call this the complete macro-discrete
model because it describes a continuous-time Markov pro-
cess whose states are the discrete populations of parts and
robots. When these populations are large, the system can be
abstracted to an ordinary differential equation (ODE) model,
the complete macro-continuous model, whose state variables
are continuous amounts of parts and robots. We compute rate
constants in this model from geometrical properties of the
robots and environment and check that the model predicts
the behavior of the micro-continuous model. We simplify
this abstraction to a more easily analyzable reduced macro-
continuous model with the same rates.

Our novel contribution to prior work on swarm modeling
is our control synthesis methodology, which provides theo-
retical guarantees on system performance. Using an approach
similar to [7], we optimize the rates in the reduced macro-
continuous model to minimize system convergence time
while enforcing target quantities of all parts at equilibrium.
The optimization problem is independent of the number of
parts, scaling only with the number of rates. We then map the
rates onto probabilities of assembly and disassembly which
are used as robot control policies in the micro-continuous
model. The trends in the evolution of part populations in
this simulation are predicted by the designed behavior of
the continuous model, including the faster convergence that
results from using optimized versus non-optimal rates.



Fig. 1. Levels of abstraction of the assembly system with analysis and
synthesis methodologies. The high-dimensional micro-continuous model
is mapped to lower-dimensional representations, the macro-discrete and
macro-continuous models, through the abstractions Fd and Fc using the
theoretical justification in [12]. Under certain assumptions (see Section
III-C), the complete macro-continuous model can be mapped to a lower-
dimensional model via the abstraction Fr .

Fig. 2. Assembly plans for final assemblies F1 and F2.

II. PROBLEM STATEMENT

A. Assembly task

There are four types of parts, numbered 1 through 4, which
are combined to form larger parts according to the assembly
plans in Fig. 2, culminating in final assemblies F1 and F2.
Parts bond through bi-directional connections at sites along
their perimeters. The assembly task is executed by a group
of robots in an arena that is sufficiently large to prevent
robot crowding. Initially, robots and many copies of parts 1
through 4 are randomly scattered throughout the arena. There
are exactly as many parts as are needed to create a specified
number of final assemblies, and the number of robots is at
least the total number of scattered parts. The assembly plans
and control policies can be preprogrammed onto the robots
and updated via a broadcast if product demand changes. Each
robot has the ability to recognize part types, pick up a part,
combine it with one that is being carried by another robot,
and disassemble a part it is carrying.

Fig. 3. Snapshot of the arena in the realistic physical simulation. Robots
carry parts at the end of a protruding bar.

B. Micro-continuous model

We implement the assembly task in the robot simulator
Webots [13], which uses the Open Dynamics Engine to
accurately simulate physics. We use the robot platform Khep-
era III, which has infra-red distance sensors for collision
avoidance. Each robot is outfitted with a protruding bar with
a rotational servo at the tip. A magnet on the servo bonds
to a magnet on the top face of a part, and the servo is
used to rotate the bonded part into the correct orientation for
assembly. Parts bond to each other via magnets on their side
faces. Magnets can be turned off to deactivate a bond. Robots
and parts are equipped with an infra-red emitter/receiver
for local communication and for computing relative bearing,
which is used to align robot and part magnets and to rotate
a part for assembly. The task takes place inside a walled
hexagonal arena. Fig. 3 shows a snapshot of the simulation.

To achieve the spatial homogeneity that we assume in
our models, robots move according to a random walk, and
we verify that the space is uniformly covered. Robots and
parts switch between action states based on information they
receive via local sensing and communication. When a robot
encounters a part on the ground, it approaches and bonds to it
and starts searching for a robot that is carrying a compatible
part, according to the assembly plans. When one is found,
the two robots align their parts and approach each other to
join the parts. One robot carries off the newly assembled part
while the other resumes searching for a part on the ground. A
robot can disassemble a part it is carrying by dropping one of
the component parts on the ground. To control the outcome
of part populations, we can directly modify the probabilities
of robots starting an assembly and performing a disassembly.

III. MACRO-CONTINUOUS MODELS

A. Definitions

Interactions between parts and robots are modeled as a
CRN. A set of reactions can be represented as a directed
graph, G = (V, E). The set of vertices, V , signifies the com-
plexes, the combinations of parts and/or robots that appear
before and after reaction arrows. The set of directed edges,
E , represents the reaction pathways between the complexes.
Each pathway is denoted by an ordered pair (i, j) ∈ V × V ,
which means that complex i transforms into complex j, and
is associated with a positive reaction rate constant.



Each part of type i in Fig. 2 is symbolized by Xi, and a
robot is symbolized by XR. Xi may be further classified as
Xu
i , an unclaimed part on the ground, or as Xc

i , a claimed
part i and the robot that is carrying it. Let M be the number
of these variables, or species, in a model of the system. Then
x(t) ∈ RM is the vector of the species populations, which
are represented as continuous functions of time t.

B. Complete macro-continuous model

We define a CRN that represents each possible action in
the micro-continuous model of the assembly system:
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In this CRN, ei is the rate at which a robot encounters a
part of type i, k+

i is the rate of assembly process i, and k−i is
the rate of disassembly process i. We theoretically estimate
these rates as functions of the following probabilities:

ei = pe , k+
i = pe · pai · p+

i , k−i = p−i . (2)

pe is the probability that a robot encounters a part or
another robot. Since our arena size yields a low robot density,
this probability is modeled as being independent of the robot
population. The property that robots and parts are distributed
uniformly throughout the arena allows us to calculate pe

from the geometrical approach that is used to compute
probabilities of molecular collisions [9], [11]: pe ≈ vTw/A,
where v is the average robot speed, T is a timestep, A is the
area of the arena, and w is twice a robot’s communication
radius, since this is the range within which a robot detects a
part or robot and initiates an assembly process.
pai is the probability of two robots successfully completing

assembly process i; it depends on the part geometries.
p+
i is the probability of two robots starting assembly

process i, and p−i is the probability per unit time of a robot
performing disassembly process i. These are the tunable
parameters of the system.

We compute pai and the parameters for pe using mea-
surements from the micro-continuous model (Webots simu-
lations): A = 23.4 m2 (hexagon of radius 3 m), w = 1.2 m,
v = 0.128 m/s from an average over 50 runs, and pa =
[0.9777 0.9074 0.9636 0.9737 0.8330 1.0] (entries follow the
numbering of the associated reactions) from averages over
100 runs. We set T = 1 s.

In the thermodynamic limit, which includes the condition
that populations approach infinity, the physical system repre-
sented by (1) can be abstracted to an ODE model [12]. This
is illustrated in the next section. We numerically integrate
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Fig. 4. Evolution of part populations for 3 final assemblies and 15 robots.
Error bars show standard deviations. (a) All part populations in the micro-
continuous model, averaged over 100 runs. (b) Final assembly populations
in the complete macro-continuous, macro-discrete, and micro-continuous
models. The latter two models are each averaged over 100 runs.

this macro-continuous model with the rates we calculated
and also use the StochKit toolbox [14] to efficiently perform
a stochastic simulation of the macro-discrete model. We
compare the results to those for the micro-continuous model
in Fig. 4, using p+

i = 1, p−i = 0 ∀i. Discrepancies
among the models arise from several factors. The system
modeled has relatively low numbers of robots and parts
(15 each), while the ODE approximation is most accurate
for large populations. In the simulation, an assembly is
occasionally prevented by robot collisions with walls, the
interference of another robot, or erroneous part collisions.
We do not model these failures, which are most detrimental
to systems with few final products, or the small local effect
of a higher availability of parts where they are dropped,
which often leads to the recreation of broken assemblies.
The discrepancies caused by these factors can be reduced
by increasing the robot and part populations; however, it
becomes more computationally expensive to simulate the
system as the populations increase. Nevertheless, the macro-
continuous model appears to predict the evolution of part
populations fairly accurately, and hence we can use it to
design the rates to direct the system’s behavior.

C. Reduced macro-continuous model

We simplify the complete model by abstracting away
robots and retaining only interactions between parts, assum-
ing that the time for a robot to find a part is small and that



there are at least as many robot as parts:
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The rates are also defined by equation (2).
We define a vector y(x) ∈ R12 in which entry yi is the

part or product of parts in complex i:

y(x) = [x1x2 x5 x3x4 x6 x2x7 xF1

x5x6 x7 x2x5 x8 x6x8 xF2]T . (4)

We also define a matrix M ∈ R10×12 in which each entry
Mji, j = 1, ..., 10, of column mi is the coefficient of
part type j in complex i (0 if absent). We relabel the rate
associated with reaction (i, j) ∈ E as kij and define a matrix
K ∈ R12×12 with entries

Kij =


kji if i 6= j , (j, i) ∈ E ,
0 if i 6= j , (j, i) /∈ E ,
−
∑

(i,l)∈E kil if i = j .
(5)

Then our ODE abstraction of the system can be written in
the following form [15]:

ẋ = MKy(x) . (6)

One set of linearly independent conservation constraints
on the part quantities is:

x3 − x4 = N1

x1 + x5 + x7 + x8 + xF1 + xF2 = N2

x2 + x5 + x7 + 2(x8 + xF1 + xF2) = N3

x3 + x6 + x7 + xF1 + xF2 = N4

(7)

where Ni, i = 1, ..., 4, are computed from the initial part
quantities.

Theorem 1: System (6) subject to (7) has a unique, stable
equilibrium x̄ > 0.

Proof: Each equilibrium of the system,
{x̄ | MKy(x̄) = 0}, can be classified as either a
positive equilibrium x̄ > 0 or a boundary equilibrium
in which x̄i = 0 for some i, which can be found by
solving y(x̄) = 0 [15]. From definition (4) of y(x), it
can be concluded that in each boundary equilibrium, all
xi = 0 except for one of the four combinations of variables
(x1, x3), (x1, x4), (x2, x3), (x2, x4). Since we only consider
systems that can produce xF1 and xF2, it is not possible
for the system to reach any of these equilibria; each one
lacks two part types needed for the final assemblies.

The deficiency δ of a reaction network is the number of
complexes minus the number of linkage classes, each of
which is a set of complexes connected by reactions, minus
the network rank, which is the rank of the matrix with rows
mi −mj , (i, j) ∈ E [1]. Network (3) has 12 complexes, 6
linkage classes, and rank 6; hence, δ = 0. Also, the network
is weakly reversible because whenever there is a directed
arrow pathway from complex i to complex j, there is one
from j to i. Because the network has deficiency 0, is weakly

reversible, and does not admit any boundary equilibria, it has
a unique, globally asymptotically stable positive equilibrium
according to Theorem 4.1 of [16].

IV. RATE OPTIMIZATION

We consider the problem of designing the system de-
scribed by model (6) subject to (7) to produce desired
quantities of parts as quickly as possible. The objective will
be posed as the design of optimal probabilities p+

i , p
−
i , i =

1, ..., 6, that minimize the convergence time of the system
to a vector of target part quantities, xd. We formulate an
optimization problem in which these probabilities are written
in terms of the rates k+

i , k
−
i , i = 1, ..., 6, using equation (2).

Although only the amounts of the final assemblies F1 and
F2 may need to be specified in practice, our optimization
problem requires that target quantities of all parts be defined.

We first specify xd1, x
d
2, x

d
3, x

d
5, x

d
8 and a parameter

α ≡ xdF1/(x
d
F1 + xdF2) . (8)

Then we compute the dependent variables xd4, x
d
6, x

d
7, and

xdF1+xdF2 from the conservation equations (7) and definition
(8) and check that they are positive to ensure a valid xd. In
this way, we can keep xdF1+xdF2 and the target non-final part
quantities constant while adjusting the ratio between xF1 and
xF2 using α. Theorem 1 shows that we can achieve xd from
any initial distribution x0 by specifying that x̄ = xd through
the following constraint on K,

MKy(xd) = 0 . (9)

We quantify the time to converge to xd in terms of
the system relaxation times τi, i = 1, ..., 6, the times in
which different modes (dynamically independent variables)
of the system converge to a stable equilibrium after pertur-
bation [17], [18]. Various measures of the average relaxation
time of a CRN have been defined, but they are applicable
only under certain conditions, such as a linear reaction
sequence [19] [20]. To estimate the τi, we reformulate the
system in terms of new variables. Define vi, i = 1, ..., 6,
as the difference between the forward and reverse fluxes
associated with reaction i in system (3). For example, v1 =
k1x1x2 − k2x5. Let v(x) = [v1 ... v6]T and let S ∈ R6×10

denote the stoichiometric matrix of the system, which is
defined such that model (6) can be written as [17]:

ẋ = Sv(x) . (10)

The dynamical properties of a CRN are often analyzed
by linearizing the ODE model of the system about an
equilibrium and studying the properties of the associated
Jacobian matrix J = SG, where the entries of G are
Gij = dvi/dxj [18]. Denoting the eigenvalues of J by λi,
a common measure of relaxation time is τi = 1/|Re(λi)|.
Since the λi are negative at a stable equilibrium, one way
to yield fast convergence is to choose rates that minimize
the largest λi. However, in our system it is very difficult to
find analytical expressions for the λi. We use an alternative



estimate of relaxation time that is also derived by linearizing
the system around its equilibrium xd [17],

τj =

(
10∑
i=1

(−Sij)
dvj
dxi

)−1

x=xd

. (11)

Each reaction j in system (3) is of the form Xk +

Xl 

k+

j

k−j
Xm. Thus, vj = k+

j xkxl−k
−
j xm, and the entries

of column j in S are all 0 except for Skj = Slj = −1 and
Smj = 1. Then according to equation (11), the relaxation
time for each reaction is

τj = (k+
j (xdk + xdl ) + k−j )−1 . (12)

Define k ∈ R12 as the vector of all k+
i , k

−
i and p ∈ R12 as

the vector of all p+
i , p

−
i . Note that according to equation (2),

k = k(p). We define the objective function as the average
τ−1
j , which should be maximized to produce fast convergence

to xd. The optimization problem can now be posed as:

[P] maximize 1
6

∑6
j=1 τ

−1
j

subject to MK(p)y(xd) = 0, 0 ≤ p ≤ 1 .

Problem P is a linear program, which can be solved
efficiently. For comparison, we also implemented a Monte
Carlo method to find the k(p) that directly minimizes the
convergence time. We measure the degree of convergence
to xd by ∆(x) = ||x − xd||2 and say that one system
converges faster than another if it takes less time tβ for
∆(x) to decrease to some small fraction β, here defined as
0.1, of its initial value. At each iteration, k(p) is perturbed
by a random vector and projected onto the null space of
linearly independent rows of a matrix N defined such that
Nk = MKy(xd) = 0. Once k(p) also satisfies 0 ≤ p ≤ 1,
it is used to simulate model (6), and a Newton scheme is used
to compute the exact time t0.1 when ∆(x) = 0.1∆(x0).

V. RESULTS

A. Optimization of rates k(p)
To investigate the effect of rate optimization on the

convergence time of model (6), we generated non-optimal
rates, which satisfy constraint (9) and 0 ≤ p ≤ 1 but
are not optimized for some objective, and computed rates
using Problem P and the Monte Carlo method. The non-
optimal and Problem P rates were calculated for α ∈
{0.01, 0.02, . . . , 0.99}, and the Monte Carlo rates for α ∈
{0.1, 0.2, . . . , 0.9}. We set x0 = [60 120 60 60 0]T and
xd = [0.5 2.5 1 1 0.5 1 1 1 57α 57(1 − α)]T . Problem P
produced the same rates for each α (for instance, p+

i = 1
∀i) except for the rates of disassembly processes 4 and 6,
which vary with α. This shows that the system is flexible
enough to yield any α when only the rates of breaking apart
the final assemblies are modified.

Fig. 5 compares the system convergence time t0.1 for these
different sets of rates. The Monte Carlo rates consistently
yield the fastest convergence but are time-consuming to
compute: on a standard 2 GHz laptop, it takes about 10
hours for t0.1 to decrease slowly enough with each program
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and non-optimal k. “Non-opt Ave” is the average of 100 t0.1 corresponding
to different random feasible k for each α.
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Fig. 6. Evolution of final assembly ratios in model (6) for α = 0.1, 0.5, 0.9
using non-optimal rates (light solid lines) and rates optimized by the Monte
Carlo method (dark solid lines) and Problem P (dashed lines).

iteration for k to be considered close enough to optimal. The
rates from Program P, which for each α are computed in less
than a second, yield t0.1 that dip close to the Monte Carlo
times for α = 0.2 − 0.5 but increase up to two orders of
magnitude outside this range. However, these t0.1 are still
much lower than the average t0.1 (over 100 values) of the
system using non-optimal rates.

We numerically integrated model (6) for α = 0.1, 0.5, 0.9
using both optimized and non-optimal rates. The evolution
of the model for each set of rates is shown in Fig. 6. For
each α, the optimized models converge faster to the target
assembly ratios than the non-optimal model.

B. Mapping rates onto the micro-continuous model

For α = 0.1, 0.5, 0.9, we mapped the optimized and
non-optimal rates onto the micro-continuous model to see



Fig. 7. Evolution of final assembly ratios in the micro-continuous model
for α = 0.1, 0.5, 0.9 using rates optimized by the Monte Carlo method
(top row) and Problem P (center row) and non-optimal rates (bottom row).
xd

F1 + xd
F2 was computed as the equilibrium xF1 + xF2 of model (6)

with x0 = [3 6 3 3 0]T .

whether the physical system would behave similarly to the
reduced continuous model. We did this in the following way.
Let R be a uniformly distributed random number between
0 and 1 and let ∆t be the simulation timestep (32 ms). A
robot carrying a part that can be disassembled according to
process i computes R at each timestep and disassembles the
part if R < p−i ∆t. A robot about to begin assembly process
i computes R and executes the assembly if R < p+

i ∆t.
Fig. 7 shows the time evolution of the micro-continuous
model averaged over 30 runs for all sets of rates, using 15
robots and 15 parts (3 final assemblies).

Since the simulations are time-consuming to run, they
were stopped well before the ODE models’ end times in Fig.
6. This is why they do not attain full convergence. However,
their qualitative behavior follows the same trends as Fig. 6.
The runs using the Monte Carlo rates make the most progress
toward the target ratios, the runs using the non-optimal rates
make very little progress, and the runs using the Problem P
rates display intermediate performance. Thus, in this realistic
system model, the rates that are optimized in a much simpler
model do indeed produce faster convergence than the non-
optimal rates. Interestingly, Fig. 6 also predicts the crossing
between final assembly amounts that occurs in the Problem
P, α = 0.9 run. Discrepancies between the simulations and
model (6) are due to the factors described in Section III-B.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a method to systematically derive
decentralized, stochastic control policies for a swarm of
robots to quickly manufacture different products in response
to varying demand. The collective behavior of the system
is abstracted to an ODE model whose parameters, the rate
constants of assembly and disassembly, govern the control
policies running on individual robots for executing the as-
sembly task. By tuning these rates, we tune the performance
of the system. This optimization relies on global stability
properties of a specific class of CRN to which the ODE

model belongs, and it is independent of the number of parts
and robots. We map the rates onto probabilities of assembly
and disassembly followed by the robots and find that the
behavior of the resulting system is qualitatively predicted
by the ODE model; it is expected that performance closer
to the model would be observed for larger robot and part
populations. One avenue of future work is to investigate the
synthesis of the discrete assembly plans and incorporate feed-
back into the process. This direction draws inspiration from
bio-molecular pathways in which intermediate subassemblies
or molecules can promote or inhibit chemical reactions. We
would like to be able to optimize the discrete assembly plan
by constructing feedback loops to improve the yield rate.
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