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M. Ani Hsieh · Ádám Halász · Spring
Berman · Vijay Kumar

Received: date / Accepted: date

Abstract We present a biologically inspired approach to the dynamic assignment and
reassignment of a homogeneous swarm of robots to multiple locations, which is relevant
to applications like search and rescue, environmental monitoring, and task allocation.
Our work is inspired by experimental studies of ant house hunting and empirical models
that predict the behavior of the colony that is faced with a choice between multiple
candidate nests. We design quorum based stochastic control policies that enable the
team of agents to distribute themselves among multiple candidate sites in a specified
ratio, and compare our results to the linear stochastic policies described in (Halasz
et al., 2007). We show how our quorum model consistently performs better than the
linear models while minimizing computational requirements and can be implemented
without the use of inter-agent wireless communication.

Keywords robot swarms · task allocation · decentralized control · bio-inspired control

1 Introduction

Consider a collection of tasks each to be executed at different locales. We address
the problem of allocating a homogeneous swarm of robots among the locations to
accomplish these tasks. This problem is relevant to numerous applications such as the
surveillance of multiple buildings, large scale environmental monitoring or providing
aerial coverage for ground units. In these applications, robots must have the ability to
distribute themselves among various locations/sites and they must also have the ability
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to autonomously redistribute to ensure task completion at each site, which may be
affected by robot failures or changes in the environment. Additionally, in applications
such as mining and search and rescue, inter-agent wireless communication may be
unreliable or non-existent. As such, it makes sense to consider the development of a
(re)distribution strategy that requires little to no inter-agent wireless communication.

This is similar to the task/resource allocation problem where the objective is to de-
termine the optimal assignment of robots to tasks. In the multi-robot domain, existing
methods for the solution of these combinatorial optimization problems often reduce to
market-based approaches (Lin and Zheng, 2005; Guerrero and Oliver, 2003; Jones et al.,
2006) where robots must execute complex bidding schemes to determine the appropri-
ate allocation based on the various perceived costs and utilities. While market-based
approaches have gained much success in various multi-robot applications (Dias et al.,
2006; Vail and Veloso, 2003; Gerkey and Mataric, 2002; Jones et al., 2007) and can
be further improved when learning is incorporated (Dahl et al., 2006), these methods
often scale poorly in terms of team size and number of tasks (Dias, 2004; Golfarelli
et al., 1997).

In nature, we often see complex group behaviors arise from biological systems com-
posed of large numbers of organisms that individually lack the communication and com-
putational capabilities required for centralized control. Such decentralized consensus-
building behaviors are observed in a variety of social organisms, including ants (Pratt
et al., 2002), honeybees (Britton et al., 2002), and cockroaches (Ame et al., 2006),
and have inspired much research on the development of self-organized task allocation
strategies for multi-robot systems. A study on the effects of group size on task alloca-
tion in social animal groups, using both deterministic and stochastic swarm models,
concluded that larger groups tend to be more efficient because of higher rates of in-
formation transfer (Pacala et al., 1996). A similar analysis on robotic swarm systems
is described by Krieger et al. (2000), where experimental results showed the effects of
group size and recruitment on collective foraging efficiency. Another study on forag-
ing by Labella et al. (2006) shows how division of labor and greater efficiency can be
achieved in a robot swarm via simple adaptation of a transition probability based on
local information (Labella et al., 2006). A common technique in these types of allo-
cation approaches is to employ threshold-based response, in which a robot engages in
a task when a stimulus or demand exceeds its response threshold. A comparison of
market-based and threshold-based allocation methods has shown that threshold meth-
ods outperform traditional market-based approaches when information is inaccurate
(Kalra and Martinoli, 2006). Agassounon and Martinoli (2002) take a step further to
analyze and compare the efficiency and robustness of three threshold-based allocation
algorithms for multi-agent systems.

Other recent task allocation strategies specific to multi-robot applications include
the work by Shen and Salemi (2002) where the allocation problem is formulated as a
Distributed Constraint Satisfaction Problem. This approach requires the explicit mod-
eling of tasks, their requirements, and robot capabilities which makes implementation
for large populations difficult. Milutinovic and Lima (2006) maximize robot occupa-
tion at a desired position using a centralized optimal control policy where the swarm
is modeled via a partial differential equation. Similar works that focus on deriving a
continuous model to describe the swarm include (Martinoli et al., 2004) and (Lerman
et al., 2006). In these works, a continuous model with a high degree of predictive power
is obtained by defining individual robot controllers and averaging their performance.
Martinoli et al. (2004) models collaborative stick-pulling while Lerman et al. (2006)
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considers an adaptive multi-foraging task. In (Lerman et al., 2006), the task is modeled
as a stochastic process that does not involve explicit communication or global knowl-
edge; however, the only way to control robot task reallocation is to modify the task
distribution in the environment.

In this paper, we present a bio-inspired approach to the deployment of a robot
swarm to multiple sites that is decentralized, robust to changes in team size, and
requires no explicit inter-agent wireless communication. Our work draws inspiration
from the process through which an ant colony selects a new home from several sites
using simple stochastic behaviors that arise from local sensing and physical contact
(Franks et al., 2002; Pratt, 2005). Similar to (Martinoli et al., 2004; Lerman et al.,
2006), our proposed strategy employs a multi-level representation of swarm activity.
In contrast to these previous works, we apply a “top-down” design approach where
decentralized agent level controllers are obtained by modeling and designing the desired
outcome for the group. We build on (Berman et al., 2006, 2007; Halasz et al., 2007)
and propose a wireless communication-free quorum sensing mechanism to speed up the
allocation process. Furthermore, we address the problem of performance specification
and compare the performance of our quorum approach to the linear stochastic models
proposed in (Halasz et al., 2007).

This paper is organized as follows: We begin with some background in Section 2. In
Section 3 we formulate the problem and discuss the stability and convergence properties
of our controllers in Section 4. We describe our methodology in Section 5 and present
our simulation results in Section 6. Section 7 provides a discussion of our results and
some considerations for physical implementation of our approach. We conclude with a
discussion of directions for future work in Section 8.

2 Background

In biology, decentralized consensus building behaviors can be seen in the group dy-
namics of ants (Pratt et al., 2002), honeybees (Britton et al., 2002), and cockroaches
(Ame et al., 2006) to name a few. Temnothorax albipennis ants engage in a process
of collective decision-making when they are faced with the task of choosing between
two new nest sites upon the destruction of their old nest (Franks et al., 2002). This
selection process involves two phases. Initially, undecided ants choose one of the sites
quasi-independently, often after visiting both. A “recruiter” ant, that is, one who has
chosen one of the two candidate sites, returns to the old nest site and recruits another
ant to its chosen site through a tandem run. The path to the new site is then learned
by the “naive” ant by following the recruiter ant. Once the path is learned, the naive
ant becomes a recruiter for the particular candidate site; in essence, showing preference
for the particular site. In such fashion, ants with preferences for different sites recruit
naive ants from the old site to their preferred site. Once a critical population level, or
quorum, at a candidate site has been attained, the convergence rate to a single choice
is then boosted by recruiters, who instead of recruiting naive ants via tandem runs,
simply transport naive ants from the old nest to the new one. In this second phase, the
“recruitment” rate is significantly faster, and, while completely decentralized, results
in the formation of a consensus on which of the two candidate sites to select.

In this natural system, the ants exhibit a small number of distinct, simple behaviors
that derive from their allegiance to one of the nests. During the selection process ants
transition spontaneously, but at well defined and experimentally measurable rates, be-
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Fig. 1 Switching pattern between the different behaviors exhibited by house hunting ants
when choosing between two new nest sites. Solid lines represent choices, such as deciding on
a site versus searching further; dashed lines represent externally influenced outcomes, such as
finding a new site; dotted lines represent cooperation, such as tandem runs.

tween different allegiances. The pattern of transition rates, which ultimately determine
the average propensity of individual ants to switch behaviors, ensures that the higher
quality nest is generally chosen and that no ants are stranded in the worse nest. Figure
1 shows a schematic of the switching pattern between the different behaviors exhib-
ited by the Temnothorax albipennis or “house hunting ant”. Unlike other ant species,
these ants do not employ pheromones as a means of inter-agent communication in the
house hunting process1, rather the group relies heavily on physical interactions between
neighbors. While it has been shown that quorum activated recruitment significantly
speeds up convergence to the desired new site (Pratt, 2005; Berman et al., 2006, 2007),
the exact motivation for the quorum mechanism by the ants is not well understood.

A model for this ant “house hunting” process was initially presented and analyzed
in (Berman et al., 2006). In a step away from the ant behavior, Berman et al. (2007)
showed how the model in (Berman et al., 2006) can be modified to converge to a state
at which both new sites are occupied at a pre-specified ratio. This was then further
extended to consider the problem of distributing N agents across M distinct locations
in (Halasz et al., 2007). The result is a decentralized algorithm for the allocation
problem based on the general notion of a quorum.

While Halasz et al. (2007) has been successful in the modeling, analysis, and exten-
sion of the ant house hunting model to the problem of allocating a robot swarm to mul-
tiple sites, it does not address the problem of performance specification. In this work,
we build on (Halasz et al., 2007) and define metrics for the optimal (re)deployment
strategy. Additionally, we consider a quorum strategy to improve the performance of
the models proposed in (Halasz et al., 2007) based on our defined metrics. Unlike (Ha-
lasz et al., 2007), our quorum model results in a decentralized algorithm that can be
implemented purely based on local sensing without requiring explicit wireless com-
munication among agents and across sites. A brief summary of the models presented

1 A possible explanation is that this would be impractical due to the small size of their
colonies (Franks et al., 2002).
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in (Halasz et al., 2007) and the formulation and analysis of our quorum model are
described in the following sections.

3 Problem Statement

3.1 Definitions

Consider N agents to be distributed among M sites. We denote the number of agents
at site i ∈ {1, . . . , M} at time t by ni(t) and the desired number of agents at site i
by n̄i. We define the population fraction at each site at time t as xi(t) where xi(t) =
ni(t)/

∑
j n̄j for all j = 1, . . . , M . Then the system state vector is given by x =

[x1, . . . , xM ]T . For some initial distribution of the agents given by {ni}0, i = 1, ..., M ,
we denote the target configuration as a set of population fractions to occupy each site
given by

x̄i =
n̄i∑M

j=1 n̄j

∀ j = 1, . . . , M . (1)

We note that a specification in terms of fractions rather than absolute agent numbers
is practical for scaling as well as for applications where losses of agents to attrition and
breakdown are common. Furthermore, such a specification enables us to address the
controller synthesis problem by defining the desired group outcome at the population
level rather than at the individual level. The task, then, is to redeploy the swarm of
N robots to the desired configuration, given by x̄, starting from the initial distribu-
tion, x(0) which will be denote as x0, as fast as possible while minimizing inter-agent
communication.

We model the interconnection topology of the M sites via a directed graph, G =
(V, E), where the set of vertices, V, represents sites {1, . . . , M} and the set of edges, E ,
represents physical “one-way” roads between sites. We say two nodes i, j ∈ {1, . . . , M}
are adjacent, i ∼ j, if a one-way road exists for agents to travel from i to j, and we
represent this relation by the ordered pair, (i, j), such that (i, j) ∈ V × V, with the
set E = {(i, j) ∈ V × V|i ∼ j}. We assume the graph G is a strongly connected graph,
that is, a directed path exists for any (u, v) ∈ V. Here, a path from site i to site j is
defined as a sequence of vertices {v0, v1, . . . , vp} ∈ V such that v0 = i, vp = j and
(vk−1, vk) ∈ E where k = 1, . . . , p. An example of such a graph is shown in Figure 3.
Similarly, when considering the more general task allocation problem, G should encode
the precedence constraints between a collection of tasks represented by V. In such a
scenario, E would then represent the sequential relationships between the individual
tasks.

We assign every edge in E a constant transition rate, kij > 0, where kij defines the
transition probability per unit time for one agent to go from site i to site j. Here kij is
essentially a stochastic transition rule and in general kij %= kji. In addition, we assume
there is a kmax

ij associated with every edge (i, j) ∈ E which represents the maximum
capacity for the given edge. While it is possible to assign nonlinear transition rates,
our choice of constant kijs will allow us to model the transition of agents between sites
as Poisson processes to enable our top-down design methodology. Lastly, we define the
flux from site i to site j, denoted by φij , as the fraction of all agents per unit time
going from i to j and denote by τij the time required to travel from site i to site j.
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Central to our method is the use of stochastic switching between simple behaviors at
the agent level to generate complex group behaviors. Thus, we assume agents have the
ability to localize themselves within the given environment and are capable of executing
individual tasks such as: navigation from one site to another and estimation of the
population at a given site. Finally, we assume every agent has complete knowledge of
G as well as all the transition rates kij and their corresponding kmax

ij . This is equivalent
to providing a map of the environment as well as a collection of “lower-level” controllers
to every agent.

3.2 The Baseline Model

Our baseline strategy, first introduced in (Halasz et al., 2007), endows each agent with
a small set of instructions based on the transition rates kij and achieves (re)deployment
of the swarm of N robots to M sites using no explicit wireless communication. In the
limit of large N , (re)distribution is achieved by modeling the swarm as a continuum
rather than a collection of individual agents and expressing the time evolution of the
population fraction at site i by the linear ordinary differential equation (ODE):

dxi(t)
dt

=
∑

∀j|(j,i)∈E
kjixj(t)−

∑

∀j|(i,j)∈E
kijxi(t). (2)

This results in a system of equations for the M sites given by

dx
dt

= Kx (3)

with Kij = kji for i %= j and Kii = −
∑M

j=1,(j,i)∈E kij . We note that the columns of
K sum to 0 and since the number of agents is conserved, the system is subject to the
following conservation constraint

M∑

i=1

xi(t) = 1 . (4)

This model results in agents transitioning between sites even at equilibrium, that is,
when the net flux for each site is zero. This is because such a model forces a trade-off
between maximizing the transition rates for fast equilibration and achieving long-term
efficiency during equilibrium.

Remark 1 In this work, we could model the system as a traditional linear model of the
form ẋ = Ax + Bu and determine a suitable feedback of the form u = −Fx to ensure
a stable closed-loop system, ẋ = (A − BF )x, whose equilibrium matches the desired
distribution x0. Instead, we consider the design of the transition rates such that K
determines the closed-loop dynamics of the system and gives the desired equilibrium
point, in other words, K = A−BF .

The above model assumes agents switch instantaneously from one site to another.
In practice, it takes a finite time τij to travel between sites i and j (or to switch between
two tasks). We note that the loss of agents at a site due to transfers to other sites is
immediate, while the gain due to incoming agents from other sites is delayed. As such,
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the above model can be extended to take into consideration the time needed to travel
between sites by converting (2) into a delay differential equation given by

dxi(t)
dt

=
∑

∀j|(j,i)∈E
kjixj(t− τji)−

∑

∀j|(i,j)∈E
kijxi(t). (5)

Similar to (2), agents in this model will also move between sites at equilibrium. How-
ever, because of the time delays, at equilibrium the system will always result in a finite
number of agents en route between sites. Furthermore, the fraction of agents en route
versus the fraction at sites increases as the time delays increase. Thus, the conservation
equation for this system is given by

M∑

i=1

ni(t) +
M∑

i=1

∑

∀j|(j,i)∈E
kijτijni(t) = N, (6)

where the first term gives the number of agents at sites and the second term gives the
number of agents on all the one-way roads.

We note that while we specify the transition rates at the swarm level, these transi-
tion rates, in fact, result in a set of stochastic switching rules that dictate how individual
agents should switch from one controller to another given their current state. In other
words, at the agent level, the transition rates give the transition probabilities per unit
time for an agent to switch away from its current behavior. In the above models, this
is equivalent to switching occupancy from site i to site j and vice versa.

It was shown in (Halasz et al., 2007) that while these models accomplish the multi-
site deployment task, the solutions are relatively inefficient since the rate of convergence
of the system to the desired configuration depends on the magnitude of the transition
rates. While large transition rates ensure fast convergence, they result in many idle
trips once the design configuration is achieved. In actual robotic systems, the extra-
neous traffic resulting from the movement between sites at equilibrium comes at a
significant cost. As such, an optimal deployment strategy is defined as the choice of
K that simultaneously maximizes convergence towards the desired distribution while
minimizing the number of idle trips at equilibrium. In other words, an optimal transi-
tion matrix, denoted by K∗, is one that can balance short term gains, in this case fast
convergence, against long term losses or idle trips at equilibrium.

Lastly, equation (2) and (5) can be equivalently written as

dxi(t)
dt

=
∑

∀j|(j,i)∈E
φji(t)−

∑

∀j|(i,j)∈E
φij(t)

and

dxi(t)
dt

=
∑

∀j|(j,i)∈E
φji(t− τji)−

∑

∀j|(i,j)∈E
φij(t)

respectively.
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3.3 The Quorum Model

In this model, we employ the general concept of quorum and define the quorum as a
threshold occupancy such that a site that is above the quorum will always transfer
agents to adjacent sites at an increased rate. In addition to the assumptions discussed
in Section 3.1, we will also assume the quorum at each site can be estimated by each
agent based on the rate of encounter with other agents at the site (Pratt, 2005).

Each site i is then characterized by a quorum, qi, a threshold number of agents
which we specify as a fraction of the design occupancy x̄i. If site i is above the quorum,
the transition rate from i to an adjacent site j can be automatically set to either a
multiple of the existing transition rate, αkij , with α > 0 chosen to satisfy max αkij <
min kmax

ij , or simply the maximum transition rate, kmax
ij . We refer to such an edge

as activated. This is maintained until xi drops below qi. Lastly, we will require the
following balancing condition for our quorum model:

x̄ikij = x̄jkji ∀(i, j) ∈ E . (7)

Then the differential equation model with quorum is

dxi(t)
dt

=
∑

∀j|(j,i)∈E
kjixj(t)−

∑

∀i|(i,j)∈E
φij(t), (8)

where the rates φij are given by:

φij(t) = kijxi(t) + σi(xi, qi)(α− 1)kijxi(t) (9)

or
φij(t) = kijxi(t) + σi(xi, qi)

(
kmax

ij − kij
)
xi(t) (10)

depending on the choice of edge activation and where σi ∈ [0, 1] is the analytic switching
function given by

σi(xi, qi) =

(
1 + e

γ
(
qi− xi

x̄i

))−1

. (11)

We note as (qi − xi/x̄i)→ −∞, σi → 1 with σi → 0 otherwise. Furthermore, γ ) 1 is
a constant and chosen such that σi ≈ 1 when xi/x̄i = qi + ε where ε > 0 is small. This
is similar to threshold methods described by Bonabeau et al. (1997) and Agassounon
and Martinoli (2002).

To incorporate time delays due to non-zero quorum estimation time and non-zero
travel time between sites, we formulate (8) as a linear time-delayed differential equation
similar to (5). Thus, the quorum with time delay model is given by

dxi(t)
dt

=
∑

∀j|(j,i)∈E
kjixj(t− τji − τEj

)−
∑

∀j|(i,j)∈E
φij(t− τEi

), (12)

where τEi
denotes the time required to estimate the quorum at a given site i. Similar

to (8), the rates φij are given by:

φij(t) = kijxi(t− τEi
) + σi(xi, qi)(α− 1)kijxi(t− τEi

)

or
φij(t) = kijxi(t− τEi

) + σi(xi, qi)(k
max
ij − kij)xi(t− τEi

)

depending on the choice of edge activation.
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4 Analysis

In this section we consider the uniqueness and stability properties of the equilibrium
points, that is, the desired final configurations, for the models described in the previous
section. We begin by stating our result for the baseline model described by (3) for the
sake of completeness and refer the interested reader to (Halasz et al., 2007) for the
proof.

Theorem 1 For a strongly connected graph G, the system (3) subject to (4) has a
unique stable equilibrium point.

We now show that the quorum model described by (8) for all i has a stable equilib-
rium point that satisfies the desired specifications (1). We begin with the edge activation
scheme given by (9). For simplicity we assume qi = q for all i. Consider the following
candidate Lyapunov function given by

V =
M∑

i=1

x2
i

2x̄i
. (13)

Theorem 2 The system defined by equations (8) for i = 1, . . . , M for all (i, j) ∈ E
with condition (7) and the conservation constraint (4), converges asymptotically to
x̄ = [x̄1, . . . , x̄M ]T , defined by specification (1).

Proof We begin by showing the system is stable. First, note that V is a radially
unbounded function of ‖x‖. We define the net flux from site i to site j as Φij =
−φij + kjixj . We note that Φij = −Φji and by design Φij = −φmax + kjixj < 0 if
xi/x̄i > q and xj/x̄j < q and Φij = −kijxi + φmax > 0 if xi/x̄i < q and xj/x̄j > q. If
both sites are above quorum, then Φij simplifies to

Φij = α(−kijxi + kjixj) .

Using (7), the above equation can be rewritten as

Φij = α(−kijxi +
x̄i

x̄j
kijxj)

= αkij x̄i(−
xi

x̄i
+

xj

x̄j
).

The above relationship holds when both sites are below quorum except α = 1.

Consider the time derivative of the Lyapunov function given by (13)

dV
dt

=
M∑

i=1

xi

x̄i

dxi

dt

=
M∑

i=1

xi

x̄i




∑

∀j|(j,i)∈E
φji(t) −

∑

∀i|(i,j)∈E
φij(t)





=
∑

∀i|(i,j)∈E

1
2

(
xi

x̄i
−

xj

x̄j

)
Φij
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By design, if Φij < 0, then xi/x̄i > xj/x̄j and similarly, if Φij > 0, then xi/x̄i < xj/x̄j .
In the event sites i and j are both above quorum, Φij will be opposite in sign to
(xi/x̄i − xj/x̄j). As such,

dV
dt

=
∑

∀j|(i,j)∈E

1
2

(
xi

x̄i
−

xj

x̄j

)
Φij < 0

Thus, the time derivative of the Lyapunov function is always negative and so the
system is stable. To show that the equilibrium point is given by (1), consider the set
of equilibrium states xe satisfying (4), such that dV

dt = 0. The time derivative of the
Lyapunov function evaluates to zero when all Φij = 0 or when xi = x̄i for all i. By

design Φij %= 0 for all (i, j) ∈ E whenever xi/x̄i %= xj/x̄j , thus
(

xi
x̄i
− xj

x̄j

)
Φij < 0

for all i, j. And the only stable equilibrium is when (1) is satisfied. Thus, the system
converges asymptotically to (1).!

Similarly, one can show that the quorum model (8) with edge activation scheme (10)
is also in fact stable. However, rather than treating the system as a single continuous
system described by (8), we can treat the system as a hybrid system with one mode
described by (8) and the other described by (2). The system is in the quorum mode
if xi > qi for some i and in the linear mode if xi < qi for all i. For simplicity we
assume qi = q for all i and kmax

ij = kmax for all (i, j) ∈ E . Next, consider the following
function:

Wq =
M∑

i=1

max{xi − qx̄i, 0} (14)

where Wq denotes the fraction of the population that is operating in quorum mode.
We note that agents who transition between quorum sites have no net effect on Wq

while the flux between sites in quorum and sites not in quorum do. Using non-smooth
analysis, one can show that the time rate of change of Wq is in fact always negative by
design. This means that the number of agents operating under quorum mode is always
decreasing. Additionally, let Wl denote the occupancy of the most populated site in
the linear mode,

Wl = max
i

xi

q
. (15)

Similarly, one can show that the time rate of change of Wl is always decreasing since
maxi(xi/qi) ≥ (xj/qj) for all j. This means that even in the linear mode, the occupancy
at the most populated site always decreases. Therefore, as the system switches between
the quorum and linear modes, the system is always exiting each mode at a lower energy
state than when the system first entered it. Furthermore, once the system enters the
linear mode it will not return to the quorum mode and thus the quorum model (8)
with edge activation scheme (10) is in fact stable.

We can view the time-delayed quorum model (12) as an abstraction of a more
realistic model in which delays are random variables with a certain distribution. To
prove stability for this system, we can exploit the fact that a delay differential equation
model with gamma-distributed delays can be converted into an ODE model by repre-
senting each transition associated with a delay (for instance, each edge in the graph)
as a finite sequence of “dummy sites.” This approach is similar to the linear chain trick
(MacDonald, 1978). However, it is possible the addition of the time delays will lead to
significant chattering of the system, in other words, cyclic switching between states.
This is a topic for future work.
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5 Methodology

In this section we describe our methodology for obtaining K∗ and K∗(x0) using our
baseline model and our simulation methodology which is based on the abstraction pro-
cedure in (Gillespie, 1976, 2007). In general, determining an optimal transition matrix
K that satisfies both the short and long term restrictions is not trivial. In addition,
given the same set of short and long term requirements, one can either determine a
transition matrix that is optimal for the entire domain of initial distributions or a
transition matrix that is optimal for the given initial distribution, x0. While a general
optimal K, denoted by K∗, that is suitable for a large range of initial distributions may
seem attractive, this may be computationally expensive. On the other hand, an optimal
K specifically tailored for a given initial configuration, denoted by K∗(x0), requires a
method for obtaining the initial state of the system which is equivalent to some global
knowledge of the system state. While this may seem trivial in certain situations, it may
prove to be impossible for others, such as a swarm of robots deployed within a mine
or in the ocean.

5.1 Optimal Design of Transition Rates

Since our baseline model is linear, we determine K∗(x0) by using (3) to calculate the
convergence time to a set number of misplaced agents or agents in transitions, in closed
form. This is achieved by decomposing K into its normalized eigenvectors and eigenval-
ues and mapping (3) into the space spanned by its normalized eigenvectors. Thus, given
an initial state, x0, we can apply the appropriate transformation and compute the new
state x(t) using the matrix exponential of the matrix of eigenvalues multiplied by time.
After applying the appropriate transformations, we can then calculate the difference in
the number of misplaced agents between this new configuration and the desired one, x̄.
Since model (3) is stable (Halasz et al., 2007), the number of misplaced agents always
decreases monotonically over time. Therefore, a Newton optimization scheme is used
to calculate the exact time when the number of misplaced agents is reduced to 10% of
its initial value. Figure 2 shows the convergence times for the stochastic optimization
of the transition rates.

To find the optimal K for the given initial configuration, x0, Metropolis optimiza-
tion (Landau and Binder, 2000) is used with the entries of K as the optimization
variables. The objective function then is to minimize the convergence time subject to
upper bounds on the number of idle trips at equilibrium and the individual transition
rates, in other words, kij ≤ kmax

ij . A similar procedure can be used to obtain K∗ by
applying the optimization scheme for a large enough set of randomly selected initial
configurations.

5.2 From Individual Transitions to ODEs

Our control policies, given by K∗ and K∗(x0), were derived from the continuous base-
line model (3) which assumes an infinitely large number of agents in a swarm. In
practice, while the population size of a swarm is not infinitely large, it is often signifi-
cant to render most agent-based simulations computationally costly. As such, it makes
sense to develop an equivalent intermediate level of description, termed macro-discrete,
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Fig. 2 This plot shows the convergence time for each configuration during a random walk in K
space where all K configurations satisfy the equilibrium and size constraints in the stochastic
optimization of the transition rates. The walk is biased with the convergence time so lower
times are eventually found.

as opposed to the micro-discrete (agent level) and macro-continuous (ODE) models,
that will allow for relatively inexpensive simulations and retain some of the features of
an agent-based simulation where the agents are assumed to be homogeneous.

The correspondence between a given ODE model and a set of individual stochastic
transition rules is straightforward if we choose to implement the latter as Poisson tran-
sitions controlled by fixed transition rates. Consider two states, which can be either
behaviors or could correspond to physically separate locations/sites. Assume that ini-
tially all agents are at site i and they all follow a stochastic transition rule by which they
are to move to site j with rate k = 1.0× 10−4 per second. At every iteration (assume
one second per iteration for simplicity), each agent runs a random process with two
possible outcomes, 0 or 1, such that the probability of 1 is given by k×∆t = 1.0×10−4.
If the outcome is 1, the agent moves to site j, otherwise it stays at i. It is clear that,
given a large number of agents, the number of agents remaining at site i after time
t is well approximated by NA(t) = Ninitiale

−kt. Alternatively, instead of generating
a random number each time, an agent could generate a random number t̂ distributed
according to the Poisson distribution

f(t) =
1
k

e−kt̂ (16)

and perform its transition at time t = t̂. The two methods described above are math-
ematically equivalent in the limit of very short sampling times ∆t. If the random
number generators used by the agents are independent, then the individual transition
times will be distributed according to the Poisson law (16) and the time dependence
of the number of agents remaining at site i will approximate the continuous formula.

The idea for the macro-discrete model is as follows. Suppose that at t = 0 we have
Ni = 50 agents at site i. The transition probability per unit time for each agent is k, so
that the individual probability of transition between 0 and (an infinitesimally small)
∆t is ∆p = k∆t. The probability for any one of the Ni agents transitioning in the
same time interval is Nik∆t. Thus, the distribution of the time of the first transition
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Fig. 3 The network of the 42 sites used in our simulations. The arrows denote the direction
of travel that is allowed between adjacent sites.

is similar to that for a single agent, only with probability rate (or propensity) Nik:

f(t, Ni) =
1

Nik
e−Nikt . (17)

We can then simulate the consecutive transitions in a single program, where we only
follow the number of agents at each site, and generate transitions according to (17). Of
course, once the first transition takes place, the number Ni is decreased by one unit
N ′

i = Ni − 1, and the next transition is generated using propensity N ′
ik.

This is an illustration of the more general Gillespie algorithm (Gillespie, 2007),
where the system is described in terms of the number of agents at each site and transi-
tion times are generated consecutively using properly updated propensities. We stress
that this method is mathematically equivalent to an agent-based simulation where the
swarm is assumed to be homogeneous and individual agents follow the respective Pois-
son transition rules. This method has the advantage of much faster execution compared
to an agent-based simulation. We refer the interested reader to (Berman et al., 2006)
for further discussion of this framework.

6 Simulations

We consider the deployment of 20, 000 planar homogeneous agents to 42 sites, each
executing controllers derived from the model described by (2) with a non-optimal
choice for Ku, an optimal K∗ that is independent of the initial configuration, and an
optimal K∗(x0) that is specifically chosen for a particular initial configuration given
by x0. We then compare the performance of the same system with agents executing
controllers derived from the quorum model with the edge activation scheme given by
(10).

For our simulations, K∗ and K∗(x0) were obtained following the methodology
described in Section 5. Both K∗ and K∗(x0) were computed assuming the same upper
bounds on the number of idle trips at equilibrium and the transition rates. In all models,
we assume transitions between sites occur spontaneously based on the probability per
unit time of transition to any adjacent site, kij . The interconnection topology of the
sites is shown in Figure 3 where each edge represents a one-way road connecting two
sites.

For our simulation, agents are initially scattered at sites configured to form the
number 0, and the task is to redistribute the team to another set of sites such that
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Fig. 4 From top left to bottom right. Snapshots from a simulation of 20, 000 agents. The
initial configuration forms the number 0 with the design specification for the number 8. This
simulation is based on the model given by (3) with non-optimal choice for K.

Table 1 Performance characteristics for the different transition matrices shown in Figure 5.

Choice of Time units to 2/3 Idle trip initiation Maximum
K of initial deviation rate at equilibrium kij

Ku 21.81 1 1.35
K∗ 4.51 1 11.88

K∗(x0) 1.84 1 6.94

these sites form the number 8. Snapshots of the simulation are shown in Figure 4 where
sites are shown as circles. The circles are drawn to reflect the number of agents at each
site. A larger circle represents a higher density.

While our focus is on the global design and properties of the swarm, our method-
ology takes into account the exact number of agents assigned to each site as well as
the travel initiation and termination times for each individual traveler.

For our first set of simulations, the transition matrix K was set to Ku (a non-
optimal K), K∗(x0) and K∗. Here, agents switch between sites with controllers derived
from (3) where quorum activation is absent. In all these simulations the equilibrium
initiation rate for a transition from site i to site j at equilibrium was chosen to be 1
for Ku, K∗(x0) and K∗. This is equivalent to bounding the total number of idle trips
at equilibrium. Similarly, kmax was set to 12 in choices for Ku, K∗(x0) and K∗.

Figure 5 shows the fraction of misplaced agents for the system, that is, the sum of
the absolute values of the difference between the actual and desired fraction of agents at
each site over the total, over time for the same system with three different choices of K.
It is not surprising that both K∗ and K∗(x0) outperforms Ku in terms of convergence
speed for the same bound on idle trips at equilibrium. The properties of each K are
summarized in Table 1.
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Fig. 5 Fraction of misplaced agents over time for the system model given by (3) for three
choices of K: Ku, K∗ and K∗(x0). (a) Stochastic simulation. (b) Differential equation simu-
lation.

Figure 6 shows the number of misplaced agents for the system over time for the
baseline model (3) with Ku and Kmax(x0) and the quorum model (8) with edge
activation scheme given by (10). Here, Kmax(x0) is the optimal transition matrix given
an initial configuration x0 subject solely to constraints kij ≤ kmax with no constraints
on idle trips at equilibrium. This means that Kmax(x0) is the optimal transition matrix
with respect to convergence speed. The transition rates for the quorum model were
chosen from Ku. In these simulations we see that the quorum model allows us to
maximize transient transfer rates between sites without sacrificing the limit on the
number of idle trips at equilibrium. Table 2 summarizes the different properties of the
three systems shown in Figure 6.
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Fig. 6 Fraction of misplaced agents over time for the system model given by (2) with K∗(x0),
Kmax, and the quorum model given by (8) with kij given by Ku. (a) Stochastic simulation.
(b) Differential equation simulation.

Table 2 Performance characteristics for the quorum model with edge activation given by (10)
vs. the baseline model with different transition matrices shown in Figure 6.

Choice of Time units to 2/3 Idle trip initiation Maximum
K of initial deviation rate at equilibrium kij

Ku 179.3 1 0.396
Kmax(x0) 14.18 12.64 12

Quorum with Ku 19 1 12
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Fig. 7 From top left to bottom right. Snapshots from a simulation of 20, 000 agents. Agents
are initially located at the four corner sites and distribute themselves to form the design
specification for the letter S. This simulation is based on the quorum model given by (8).

A second deployment of 20, 000 agents to 42 sites is shown in Figure 7. For this
simulation, agents are initially scattered at the four corner sites, and the task is to
redistribute the team to another set of sites such that these sites form the letter S.
Snapshots of the simulation are shown in Figure 7 where agents are denoted by dots
arranged into circles at each site.

7 Discussion

7.1 Results

In biology, complex group behaviors often arise from numerous interactions of simple
individual behaviors. In (Berman et al., 2006, 2007), it was shown how the differential
equations of the global evolution of the swarm stem from simple, stochastic switching
rules executed by the individuals. These rules are equivalent to the transition rates kij

encoded in K.
In (Halasz et al., 2007), we applied our switching paradigm to a multi-site system,

where a large swarm of agents could switch between 42 possible “sites” and showed
how a simple set of switching rules can be used to design a decentralized strategy
for switching between complex configurations. The “sites” used in our model can be
interpreted as behaviors, physical locations, or even internal states. The formalism
scales well with the number of sites and agents, and thus can be applied to many
different situations.

In this work, we build on the deployment scheme presented in (Halasz et al., 2007)
and propose a quorum strategy for the (re)distribution of a swarm of autonomous
agents to a large number of sites without explicit inter-agent wireless communication.
Specifically, our quorum based (re)distribution is achieved by setting quorum to 5%
above the desired design occupancy for a site. The choice of the underlying baseline
model and the rules applied in the above-quorum regime are independent of each other.
The only requirement is that the baseline model, that is, the below quorum model,
must obey (7) and that the quorum transition rates must be higher than the highest
transition rate of the baseline model for the same link. In addition, we showed that the
quorum model does in fact converge to the desired state (in the absence of time delays).
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However, it is not mathematically obvious why it provides a faster convergence rate as
compared to the baseline model. Lacking a first-principles justification of our quorum
approach, we have shown numerically that indeed, this heuristic is significantly more
efficient than any comparable baseline model with fixed K and it approaches the best
available performance under the given circumstances.

To enable comparison between the various models we defined two performance
metrics: fast convergence and bounds on idle trips at equilibrium. Although the exact
motivations for these quorum strategies in ants have not been clearly understood (Pratt
et al., 2002; Pratt, 2005), one explanation is that the quorum mechanism is used to
secure the choice of a candidate new nest site for ants by speeding up convergence.
This can be seen from our simulations which indicate that the quorum strategy, with
a non-optimal choice for K, consistently outperforms the baseline models regardless of
whether K is chosen to be K∗(x0) or K∗. While we have only presented results for
one pair of initial and final configurations, our exploration of a varied set of initial and
final conditions supports this finding.

Lastly, one can argue that as processors become faster, the computational costs
associated with determining K∗ or K∗(x0), a priori, become trivial. However, this
does not address the question of how best to obtain K∗ since the notion of globally
optimal convergence is not well defined and its proper definition is likely to be sensitive
to many implementation issues such as the magnitude of uncertainties. Further, the cost
of computation, per se, is likely to be dwarfed by the sensing and communication costs
associated with estimating x0, should x0 be unknown. As such, the quorum strategy
becomes extremely attractive since it can be implemented with minimal computation
and communication resources.

7.2 Towards Physical Implementation

In this section we provide a brief description of the implementation of our decentralized
controllers at the agent level and discuss the effects of noisy sensors and actuators on
the performance of our methodology.

At the agent level, the controllers are implemented based on the simulation method-
ology described in Section 5.2. Rather than have every agent generate a random number
to determine whether it should switch from one site to another, we use the alternative
approach where each agent computes the time to switch to another site. Each time
an agent arrives at site i, it generates a random number t̂sj ∀j such that i ∼ j, dis-
tributed according to the Poisson distribution given by (16) with the appropriate kij .
Then, t = minj t̂sj , gives the time when the agent switches from the current site i to
the neighboring site j. The implementation of the controller is provided in Algorithm
1.

Algorithm 1 Agent-Level Controllers Derived from the Linear Model

Given a strongly connected graph, G = (V, E) s.t. u ∈ V, and K
Compute t̂sj from (16) with k = kij ∀j : i ∼ j
if currentT ime ≤ minj tsj then

Stay at current site
else

Switch to site k = arg minj tsj at currentT ime = minj tsj

end if
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To incorporate the quorum mechanism, we assume agents have the ability to de-
termine whether a site is either above or below the quorum based on encounter rates
with other agents. Thus, once an agent arrives at a site i, it first estimates the quorum
level and then executes a similar procedure to determine the time it should transition
to a neighboring site. The quorum controller is provided in Algorithm 2. We note that

Algorithm 2 Agent-Level Controllers Derived from the Quorum Model

Given a strongly connected graph, G = (V, E) s.t. u ∈ V, and K
Estimate the current occupancy level at site i given by xi/x̄i

if xi/x̄i < qi then
Compute t̂sj from (16) with k = kij ∀j : i ∼ j

else
Compute t̂sj from (16) with k = kmax

ij ∀j : i ∼ j
end if
if currentT ime ≤ minj tsj then

Stay at current site
else

Switch to site k = arg minj tsj at currentT ime = minj tsj

end if

while the transition times in our algorithms are computed based on each agent’s inter-
nal clock, the implementation of these controllers does not require the synchronization
of all clocks as long as the transition times are distributed according to the Poisson
law (16).

In physical systems, inaccuracies due to navigation are common since sensors and
actuators are generally noisy. A natural question that arises is the extent to which our
approach can be generalized to real-world situations where nonlinear effects cannot be
ignored. In this work, we employ linear transition rates that allow us to model the
transition of agents between sites as Poisson processes, which in turn result in a set
of switching rules for individual agents. In cases where the nonlinearities can be well
quantified, there is no obstacle to deriving a top-level differential equation that has
the appropriate nonlinear terms. This, of course, would require a method of mapping
the swarm level nonlinear feedback controllers to a set of switching rules that can be
executed by individual agents. In the case of linear transition rates, there is a one-to-one
correspondence between the swarm and agent level transition matrices which may no
longer hold when nonlinearities are introduced. Nonetheless, there are many analysis
methods that can be applied to the resulting nonlinear differential systems that may
potentially be orders of magnitude more efficient than dealing with the agent-level
models and this is clearly a direction for future work.

In the presence of weaker nonlinearities, such as the effect of traffic on transit time,
a more careful analysis can be achieved. Such inaccuracies can be captured via our de-
layed differential models, (5) and (12), where the time delays due to navigation and/or
quorum estimation are assumed to be constant (Halasz et al., 2007). As discussed in
Section 4, these delayed differential models are in fact an abstraction of more realistic
models where the delays are modeled as random variables that follow some distribu-
tion. In the work by Berman et al. (2008), an empirical distribution of the transit times
are derived for a given level of traffic and modeled as an expanded ODE where each
edge in the interconnection graph is represented by a sequence of fictitious sites. In
other words, we can convert the continuous time-delayed models into an equivalent
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baseline model with no time delays by representing each edge with a finite sequence
of “dummy sites”. The optimality of the transition rates derived from this expanded
model is then improved using successive approximations. This equivalence can be ex-
ploited when optimizing K∗ as long as the inaccuracies introduced by the physical
system can be mapped to stochastic time delays.

8 Conclusion

We have presented a bio-inspired approach to the (re)distribution of a swarm of robots
among a set of available sites. Our methodology models the swarm as a hybrid system
where agents switch between maximum transfer rates and constant transition rates
dictated by the baseline model. Furthermore, our methodology models the swarm as a
continuum in terms of population fractions which enables the synthesis of decentralized
controllers with no communication. We then compared the performance of our quorum
model to three versions of our baseline model and showed that our quorum model
consistently outperforms the baseline, regardless of the choice of K, in both time for
convergence and number of idle trips at equilibrium.

One immediate direction for future work is the development of a more systematic
method for the determination of an optimal transition matrix for a given network
topology subject to an upper bound on the equilibrium idle trips for the baseline
model. Additionally, we would like to incorporate agents’ estimation of whether a
quorum exists based on their own observations into our models. Lastly, we would
like to extend our approach to incorporate nonlinear transition rules that may allow
us to take inspiration from motifs in biomolecular networks and allow for interesting
phenomena such as spontaneous switching as a result of an external input.
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