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Abstract— We present an approach for the dynamic assign-
ment and reassignment of a large team of homogeneous robotic
agents to multiple locations with applications to search and
rescue, reconnaissance and exploration missions. Our work is
inspired by experimental studies of ant house hunting and
empirical models that predict the behavior of the colony that
is faced with a choice between multiple candidate nests. We
design stochastic control policies that enable the team of agents
to distribute themselves between multiple candidate sites in a
specified ratio. Additionally, we present an extension to our
model to enable fast convergence via switching behaviors based
on quorum sensing. The stability and convergence properties
of these control policies are analyzed and simulation results are
presented.

I. INTRODUCTION

We are interested in deploying swarms of homogeneous
robots to distinct locations for simultaneous execution of
tasks at each locale. This is relevant in applications such as
surveillance of multiple buildings, large scale environmental
monitoring or providing aerial coverage for various ground
units. In these applications, robots must have the ability to
distribute themselves among many locations/sites and have
the ability to autonomously redistribute to ensure task com-
pletion at each site which may be affected by robot failures or
changes in the environment. In addition, there are situations
when robots may not be able to easily communicate across
sites, e.g. mining at multiple sites, and thus it makes sense
to develop a strategy that can achieve (re)distribution of the
team with little to no communication.

This work draws inspiration from the process through
which an ant colony selects a new home from several sites
using simple behaviors that arise from local sensing and
physical contact [1]. Rather than choosing a “new home”,
we propose a strategy for the deployment of a swarm of ho-
mogeneous robots such that the team collectively distributes
itself to multiple sites in predefined proportions without the
use of inter-agent communication. This is similar to the
task/resource allocation problem where the objective is to
determine the optimal assignment of robots to tasks. As such,
the proposed strategy can be readily applied to the problem
of dynamic (re)assignment of a large team of homogeneous
robotic agents to multiple tasks.

Previous works that considered the assignment of multiple
robots to one task include [2]–[4]. In particular, market-
based approaches have gained much success in various multi-
robot applications like robot soccer and treasure hunting [5]–
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[7]. However, these existing methods do not address the
controller synthesis problem and often suffer in terms of
scalability with respect to the number of tasks and robots. As
such performance guarantees are often sacrificed to reduce
the computation and communication requirements [8], [9].

Other task allocation strategies include [10] where the
problem is formulated as a Distributed Constraint Satisfac-
tion Problem. This approach, however, requires the explicit
modeling of tasks, their requirements, and robot capabilities
making implementation to large populations difficult. In
[11], large robot populations are modeled using a partial
differential equation. Then a centralized optimal control
strategy is used to maximize robot occupation at a desired
position. In [12], an adaptive multi-foraging task with no
explicit communication or global knowledge is modeled as
a stochastic process. While the model was verified through
simulations, the only way to control robot task reallocation
is to modify the task distribution in the environment.

Similar to [12], [13], our proposed strategy employs a
multi-level representation of swarm activity. Rather than the
bottom-up analysis procedure, our methodology is based on
a top-down design approach. We build on [14], [15] and
extend our synthesis procedure to the problem of deployment
to multiple sites and consider the allocation of hundreds and
thousands of robots. Our proposed approach is computation-
ally inexpensive and scalable, and can be easily modified
to simultaneously solve the controller synthesis problem.
Furthermore, we are able to control the final allocation
among the various sites by translating the global specification
into agent closed-loop control laws that produce convergence
to the desired allocation. Lastly, our approach enables the
system to respond to robot failures in a natural way thus
ensuring graceful degradation.

This paper is organized as follows: Section II formulates
the problem and outlines the system model. Section III shows
the stability and convergence properties of our system. Sec-
tion IV presents our simulation results. Section V provides an
extension of our methodology to include a quorum sensing
mechanism to speed up convergence. Finally, we conclude
with a discussion of directions for future work in Section VI.

II. PROBLEM FORMULATION

A. Definitions

Consider N agents to be distributed among M sites. We
denote the number of agents at site i ∈ {1, . . . ,M} at time t
by ni(t) and the desired number of agents at site i by n̄i. We
define the population fraction at each site at time t as xi(t)
where xi(t) = ni(t)/

∑
i n̄i. Then the system state vector is

given by x = [x1, . . . , xM ]T . For some initial distribution of



the agents given by {ni}0, i = 1, ...,M , we denote the target
configuration as a set of population fractions to occupy each
site given by

x̄i =
n̄i∑M
i=1 n̄i

∀ i = 1, . . . ,M . (1)

A specification in terms of fractions rather than absolute
agent numbers is practical for scaling as well as for po-
tential applications where losses of agents to attrition and
breakdown are common.

We model the interconnection topology of the M sites
via a directed graph, G = (V, E), where the set of vertices,
V , represents sites {1, . . . ,M} and the set of edges, E ,
represents physical routes between sites. We say two sites
i, j ∈ {1, . . . ,M} are adjacent, i ∼ j, if a route exists for
agents to travel from i to j, and we represent this relation
by the ordered pair, (i, j), such that (i, j) ∈ V ×V , with the
set E = {(i, j) ∈ V × V|i ∼ j}. We assume the graph G is
a strongly connected graph, i.e. a path exists for any pair of
vertices (u, v) ∈ V . Furthermore, we assign every edge in
E constant transition rates, kij > 0, where kij defines the
transition probability per unit time for one agent from site i
to go to site j. Here kij is essentially a stochastic transition
rule and in general kij 6= kji. In addition, we will define the
flux from site i to site j, denoted by φij , as the fraction of
agents per unit time going from i to j and denote the time
required to travel from site i to site j as τij .

We assume every agent has complete knowledge of G
as well as all the transition rates kij . Furthermore, we
assume that each edge in E is associated with a maximum
capacity, which limits the number of agents that can travel
simultaneously along the edge. This limitation is enforced
by a maximum rate (agents per unit time) that may initiate
a transition from site i to j and vice versa.

B. Problem Statement
Consider the system of N homogeneous agents and M

sites. The task is to redeploy the swarm of N robots to the
desired configuration given by the set {x̄i}i=1,...,M , starting
from the initial distribution {xi}0i=1,...,M as fast as possible
using no communication. Our proposed strategy achieves this
by endowing each agent with a small set of instructions
based on the transition rates kij . Furthermore, rather than
model the system as a collection of individual agents, we use
differential equations to model the swarm as a continuum.
These deterministic models are used as abstractions to the
stochastic formulation of the system, which has a more
legitimate physical basis than the deterministic formulation
[16]. We refer the interested reader to [17] for the theoretical
justification for this abstraction.

In the limit of large N , the time evolution of the population
fraction at site i is given by a linear law:

dxi(t)
dt

=
∑

∀j|(i,j)∈E

kjixj(t)−
∑

∀j|(i,j)∈E

kijxi(t). (2)

Then the system of equations for the M sites is given by
dx
dt

= Kx (3)

with Kij = kji for i 6= j and Kii = −
∑M
j=1,Aij 6=0 kij . We

note that the columns of K sum to 0 and since the number
of agents is conserved, the system is subject to the following
conservation constraint

M∑
i=1

xi(t) = 1 . (4)

In this model, agents will move between sites even at
equilibrium, i.e. when the net flux for each site is zero.
This is due to our model which forces a trade-off between
maximizing the link capacities for fast equilibration and
achieving long-term efficiency during equilibrium. Lastly,
equation (2) can be equivalently written as

dxi(t)
dt

=
∑

∀j|(i,j)∈E

φji(t)−
∑

∀j|(i,j)∈E

φij(t).

The above model assumes agents instantaneously switch
from one site to another and does not take into consideration
the time needed to travel between sites. In reality, it takes
finite time τij to travel from site i to site j. We note that
the loss of agents at a site due to transfers to other sites is
immediate, while the gain due to incoming agents from other
sites is delayed. The effect of time travel can be included by
converting (2) into a delay differential equation given by

dxi(t)
dt

=
∑

∀j|(i,j)∈E

kjixj(t− τji)−
∑

∀j|(i,j)∈E

kijxi(t). (5)

Similar to (2), at equilibrium, agents will also move between
sites in this model. However, because of the time delays, at
equilibrium, the system will always result in a finite number
of agents en route between sites. Furthermore, the fraction
of agents en route versus the fraction at sites increases as
the time delays increase. Thus, the conservation equation for
this system is given by

M∑
i=1

ni(t) +
M∑
i=1

∑
∀j|(i,j)∈E

kijτijni(t) = N, (6)

where the first term gives the number of agents at sites and
the second term gives the number of agents on the roads.
Thus, in this model

∑M
i=1 n̄i < N . Lastly, equation (5) can

be equivalently written as

dxi(t)
dt

=
∑

∀j|(i,j)∈E

φji(t− τji)−
∑

∀j|(i,j)∈E

φij(t).

III. ANALYSIS

In this section we consider the uniqueness and stability
properties of the equilibrium points for the systems given
by (3) subject to (4) and (5) subject to (6). We state our
first theorem and a brief proof for the sake of completeness
and refer the interested reader to [18]–[20] for more detailed
exposition on the topic.

Theorem 1: For a strongly connected graph G, the system
(3) subject to (4) has a unique stable equilibrium point.

Proof: Since the columns of the matrix K sum to 0, the
rank of K is (M−1). Furthermore, the vector 1 exists in the



nullspace of KT . Thus, the the system Kx = 0 subject to
(4) has a unique equilibrium point. To show it is stable, we
recall that a mt ×mt Markov matrix, T, has the following

properties: Tij > 0 for 1 ≤ i, j ≤ mt; and
mt∑
j=1

Tij = 1.

Then, from the Perron-Frobenius theorem, one can show
that every eigenvalue, λ, of a Markov matrix satisfies |λ| ≤ 1.
Consider the matrix given by S = (1/s)(sI + KT ), where
s > 0 and I is the M ×M identity matrix. We note that
for s large enough, S is a Markov matrix with nonnegative
entries and the rows sum to 1. Let J denote the matrix of
eigenvectors of KT such that KT = JΛJ−1, where Λ is the
diagonal matrix with the eigenvalues of KT on the diagonal.
Then the following holds

S =
1
s

(sI + JΛJ−1)

= J
(

1
s

)
(sI + Λ)J−1 .

Thus, the eigenvalues of S are given by 1 + λ(KT )i/s for
i = 1, . . . ,M . Since |λ(S)i| ≤ 1 for all i, we can conclude
that λ(KT )i ≤ 0 for all i. Furthermore, since the eigenvalues
of KT are equivalent to the eigenvalues of K, K is negative
semi-definite with at least one zero eigenvalue and so the
system is stable. By design the system converges to the
desired occupancy fractions given by (1).

Next, we consider the uniqueness and stability properties
of the equilibrium point for the time-delayed system (5)
subject to (6).

Theorem 2: Given a strongly connected graph G and the
set {kij}, the system with time delays τij for every (i, j) ∈ E
subject to (6) has a unique and stable equilibrium at x =
[x̄1, . . . , x̄M ]T given by the specification (1).

Proof: We first note the time-delayed model (5) is
in fact an abstraction of a more realistic model in which
the delays are radom variables with a certain distribution.
Thus, we can convert the time-delayed model into the linear
model with no time delays by representing each edge with a
finite sequence of ”dummy sites”. If we let yij(t) denote the
fraction of the population en route between sites i and j and
the set of dummy sites between i and j as {y1

ij , . . . , y
p
ij}.

For finite p, the transition rates between dummy sites ylij
and yl+1

ij with l = 1, . . . , p are given by p/τij . Since G is a
strongly connected graph, the graph resulting from the addi-
tion of the dummy sites is also a strongly connected graph.
Furthermore, the expanded system can also be expressed in
the form of (2). Thus, by Theorem 1, this system is stable
and has a unique equilibrium given by (1).

IV. SIMULATIONS

We consider N agents moving in the plane. While our
focus is on the global design and properties of the swarm,
our methodology takes into account the exact number of
agents assigned to each site as well as the travel initiation
and termination times for each individual traveler. When
considering the continuous population model (2), transitions
between sites occur spontaneously based on the probability

Fig. 1. Left: Schematic of the main features of the network of sites. All
links are bi-directional, in that they allow the movement of agents in both
directions. The rate of transitions in each direction along links is set by
predetermined transition coefficients (kij ). Right: the network of 42 sites
used in our simulations.

per unit time of transition to any adjacent site. For the model
given by (5), agents transitioning between sites leave the
origin site at the moment of the transition and spend the
delay time associated with the respective transition traveling
between sites. Thus, at any given time some of the agents
will be travelers, assigned to the directed edge corresponding
to their transition rather than to any site. Our simulation
methodology is based on the abstraction procedure in [17]
which is a centralized approach that can be converted to an
equivalent decentralized approach. We refer the interested
reader to [17] for further details.

A. Results

Our first simulation models the system using (5) with
10, 000 agents and 42. Agents are initially scattered at sites
configured to form the letter “T” and the task is to redistribute
the team to another set of sites such that these sites form
the letter “C”. The interconnection topology of the sites
is shown in Figure 1. Each edge represents bi-directional
connections between sites. We distinguish between agents
located at sites, shown in red and green, and traveling
agents, shown in light blue. Agents at sites above the
desired fraction are shown in red, agents at sites below the
desired fraction are shown in green, and travelers are shown
in light blue. Snapshots for this simulation are shown in
Figure 2. The snapshots in the figure are in chronological
order, from 10, 100, 200, 250, 500, 750, 1000, 3800 and 9750
minutes into the simulation.

In Figure 3, we provide a comparison between the con-
tinuous and stochastic simulations of the linear model (2).
We plot the occupancy ratio (number of agents at a site over
design occupancy) for a single site during a redistribution
process for stochastic simulations of 1000 and 10000 agents
and an ODE simulation. The site is originally empty and
we see that the occupancy for the stochastic simulations
fluctuates around the continuum value. Another interesting
comparison is the difference between the desired and current
configurations which can be seen in Figure 4. Here we show
the time evolution of the fraction of misplaced agents, i.e.
the sum of the absolute values of the differences between



Fig. 2. Snapshots from a simulation using 10, 000 agents in the 42-dot
display network. The initial configuration forms the letter “T” with the
design specification for a letter “C”. Agents at sites above design specs are
shown in red, agents at sites below design specs are shown in green, and
travelers in light blue. The system is driven by the model given in (5).

the actual and desired number of agents at each site over the
total, for the same scenarios considered in Figure 3.

B. Discussion

To accomplish the multi-site deployment task, we allow
individual agents to transition between available sites at
random times, with transition rates that are pre-determined
and known by all agents. However, the inefficiency of this
simple solution quickly becomes evident if the cost of time
and energy involved is considered. The fast transition rates
that ensure quick switching from a remote configuration
may lead to many idle trips once the design configuration
is achieved. Conversely, low transition rates appropriate to
maintaining the configuration under mild perturbations imply
long switching times.

This phenomenon is due to the fact that agents do not
interact with one another in these models since each agent
transitions independently of the others. If one puts a high pre-
mium on the lack of interactions, this may be the appropriate
solution for the deployment task. However, the linear non-
interacting model given by (2) cannot modulate transfer rates
between sites. In situations when there is a high disturbance,
or when the initial condition differs greatly from the design
equilibrium, it makes sense to have the agents travel as close
as possible to the maximum rate associated with each edge
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Fig. 3. Occupancy fractions at one site for different total agent numbers
compared to the ODE model.
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Fig. 4. Total number of misplaced agents for different N agent numbers
compared to the ODE model.

to enable fast convergence to the desired state. However, in
acutal robotic systems, the extraneous traffic resulting from
the movement between sites at equilibrium may come at a
significant cost. The cost of breaking out of this dilemma is to
provide the agents with a rough notion of the overall state of
the system. In the following section we present an extension
of our system model (2) that incorporates such elements in
the form of switching behaviors based on quorum sensing.

V. EXTENSIONS

In this section we propose an extension to (2) to enable fast
convergence to the desired state using switching behaviors
based on quorum sensing. The quorum is defined as a
threshold occupancy. A site that is below quorum draws
agents from adjacent sites that are above quorum at a fixed
maximal rate. Similar to before, we will assume that agents
have a map of the environment and know the interconnection
graph, G, as well as the transition rate matrix, K. We will
also assume quorum information is instantly available which
can be achieved by providing sites with some mechanism to
communicate with adjacent sites.



Each site i is then characterized by a quorum, qi, a
minimal number of agents, which we specify as a fraction
of the design occupancy x̄i. If site i is above quorum, the
transition rate from i to a site j that is below quorum is
automatically set to the maximum transition rate, φmaxij . We
refer to such an edge as activated. This is maintained until
the imbalance is resolved, either by the underpopulated site
exceeding quorum or by the site above quorum becoming
underpopulated. In this model, we will further require the
following balancing condition:

x̄ikij = x̄jkji (∀)i 6= j . (7)

For simplicity, we assume that φmaxij = φmax for all i, j.
The differential equation model with quorum is

dxi(t)
dt

=
∑

∀j,(i,j)∈E

φji(t)−
∑

∀j,(i,j)∈E

φij(t), (8)

where the rates φij are given by:

φji(t) = kjixj(t) + σji (φmax − kjixj(t)) (9)

where σji ∈ [0, 1] is the analytic switching function given

σji =
(

1 + e
−γ1

(
xi
x̄i
−qi

))−1(
1 + e

γ2

(
xj
x̄j
−qj

))−1

. (10)

We note σji → 1 as xi/x̄i → 0 and xj/x̄j → +∞ with
σji → 0 otherwise. Furthermore, γ1, γ2 > 0 and chosen
such that σji = 1 when xi + ε = qi, xj = qj + ε where
ε > 0 is small.

We can show that the system described by (8) assuming
qi = q for all i has a stable equilibrium point that satisfies
the desired specifications (1). Consider the function given by

V =
M∑
i=1

x2
i

2x̄i
. (11)

Theorem 3: The system defined by equations (8) for i =
1, . . . ,M such that (i, j), (j, i) ∈ E with condition (7) and
conservation constraint (4), converges asymptotically to x =
[x̄1, . . . , x̄M ]T , defined by the specification (1).

Proof: We begin by showing the system is stable. First,
note that V is a radially unbounded function of ‖x‖. We
define the net influx from site i to site j as Φij = −φij+φji.
We note that Φij = −Φji and by design Φij = −φmax +
kjixj < 0 if and only if xi/x̄i > xj/x̄j . Consider the time
derivative of the Lyapunov function given by (11)

dV

dt
=

M∑
i=1

xi
x̄i

dxi
dt

=
M∑
i=1

xi
x̄i

 ∑
∀j,(j,i)∈E

φji(t) −
M∑

∀j,(i,j)∈E

φij(t)


=

∑
∀j,(i,j)∈E

(
xi
x̄i
− xj
x̄j

)
Φij < 0

By design, if xi/x̄i > xj/x̄j then Φij < 0 and if xi/x̄i <
xj/x̄j then Φij > 0. Thus, the time derivative of the
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Fig. 5. Global ’distance’ from the desired configuration as measured by the
total number of misplaced agents for different quorum values in the ODE
model, compared to the quorum-less model.

Lyapunov functon is always negative and so system is stable.
To show that the equilibrium point is given by (1), consider
the set of equilibrium states xe satisfying (4), such that dVdt =
0. The time derivative of the Lyapunov function evaluates
to zero when all Φij = 0 or when xi/x̄i = xj/x̄j for all
(i, j) ∈ E . By (7), Φij = 0 if and only if xi/x̄i = xj/x̄j .
Since

(
xi

x̄i
− xj

x̄j

)
Φij < 0 for all i, j where xi/x̄i 6= xj/x̄j ,

the only stable equilibrium is when (1) is satisfied. Thus, the
system converges asymptotically to (1).

To show the effects of adding quorum dependent edge
activation to our linear model (2), we performed simulations
with different quorum values and compared them with the
quorum-less linear model, i.e. quorum is zero. We show the
number of misplaced agents over time in Figure 5. This
figure suggests that increasing the quorum speeds up conver-
gence. However, when combined with time delays, it may be
possible for the system to get “stuck” for lengthy periods of
time in states characterized by high transition rates (driven by
below-quorum sites) with a very high fraction of travelling
agents. In such cases, choosing a lower quorum, with all else
being equal, may help avoid these configurations.

Lastly, we present simulation results of a redistribution of
200 agents among 3 sites, taking into account travel times
between sites in an urban environment. Initially, the team is
equally distributed between two sites in the urban environ-
ment shown in Figure 6. The task was to redeployment the
team such that they distribute between the sites 1, 2, and
3 following the ratio 2 : 2 : 1. Initially sites 1 and 2 are
above quorum. When the agents observe that site 3 is below
quorum, the agents at sites 1 and 2 transfer out of these sites
at a higher rate. Individual agent transitions are determined
stochastically based on predetermined transition rates. Here,
inter-site navigation is achieved via potential functions.

VI. CONCLUSION

We have presented an approach to redistribute a swarm of
robots among a set of available sites. Our methodology mod-
els the swarm as a continuum via a system of deterministic



Fig. 6. Snapshots from a simulation redeploying 200 agents, initially located at two sites, to three sites in an urban environment. Agents leaving sites
are denoted by square markers and agents entering sites are denoted by diamond-shaped markers. Agents located at sites above quorum are shown in red
while agents located at sites below quorum are shown in blue. The system is driven by the model given in ((8)) and taking travel times between sites into
account.

linear ordinary differential equations in terms of population
fractions that enables the synthesis of decentralize controllers
with no communication. We then extended our linear models
to include a quorum dependent redistribution mechanism to
speed up convergence. This second approach required the
communication of quorum status between adjacent sites.
Uniqueness and stability of solutions were analyzed and
simulation results were presented.

There are many directions for future work. We would like
to extend our convergence results for the quorum model to
more general interconnection topologies. Additionally, we
would like to incorporate stochastically distributed travel
times to our time delayed model and give agents the ability
to determine whether a quorum exists based on their own
observations. Lastly, we would like to implement nonlinear
transition rules that may allow us to take inspiration from
motifs in biomolecular networks and allow for interesting
phenomena such as spontaneous switching as a result of an
external input.
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