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Abstract— We compare our previously developed determin-
istic [7] and stochastic [3], [4] strategies for allocating tasks in
robotic swarms1 consisting of very large populations of highly
resource-constrained robots. We study our two task allocation
approaches in a simulated scenario in which a collective of
insect-inspired micro-aerial vehicles (MAVs) must produce a
specified spatial distribution of pollination activity over a crop
field. We investigate the approaches’ requirements, advantages,
and disadvantages under realistic conditions of error in robot
localization, navigation, and sensing in simulation. Our results
show that the deterministic approach, which requires region-
based robot navigation, yields higher task progress in all cases.
For robots without such navigation capabilities, the stochastic
approach is a feasible alternative, and its resulting task progress
is less sensitive to error in localization, error in navigation, and
a combination of high error in localization, navigation, and
sensing.

I. INTRODUCTION

Miniaturization of computing, sensing, actuation, and con-
trol technologies is enabling the development of robotic
swarms1 in which each robot is small and relatively inex-
pensive, making large-scale swarms affordable. Examples
of platforms for such multi-robot systems include the Kilo-
bot [28] and the RoboBee [25] (Fig. 1). At the forefront
of multi-robot systems is an effort to construct insect-scale
flapping-wing micro-aerial vehicles (MAVs) [34] like the
prototype in Fig. 1(b) [25]. Recent advances in airframe con-
struction [33], flight dynamics and control [30], and sensor
design [15] are quickly driving insect-scale MAVs closer
to mass production. Applications of MAV swarms include
micro-manipulation tasks such as crop pollination, search-
and-rescue, disaster response, exploration of hazardous en-
vironments, and surveillance.

The problem of controlling MAV swarms to accomplish a
collective goal presents unique challenges due to the extreme
resource constraints of the platforms [13]. MAVs have very
limited sensing and computing capabilities, and they may
not have the resources for inter-robot communication. In
addition, operations over large areas will require repeated
recharging of the MAVs since their flight times are expected
to be on the order of minutes, even with projected advances
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Fig. 1. Examples of miniature robot platforms1

in battery technology. Besides accommodating these lim-
itations, control strategies for MAV swarms must exhibit
adaptability to environmental conditions and robustness to
robot failures and errors in sensing and actuation.

In this work, we address the problem of allocating a
swarm of MAVs to tasks that are associated with different
spatial regions. We compare the utility of a deterministic task
allocation approach using the resource management system
Karma [7] and a stochastic approach OptRAD [4], which
is based on the optimization of a spatiotemporal model of
the swarm population dynamics. These two approaches were
developed for swarms of highly resource-constrained robots
that must adapt to disturbances and failures. The approaches
incorporate a supervisory agent that optimizes the task al-
location strategy using feedback from the robots on their
individual task progress. Despite the presence of a centralized
component, the two approaches are scalable with the number
of robots since the robot actions depend on locally sensed
information or a broadcast signal, and the supervisor does
not require knowledge of this individual activity [22]. We
evaluate the effectiveness of the two approaches for varying
degrees of error in robot localization, navigation, and sensing
in a simulated commercial crop pollination scenario.

II. RELATED WORK

Task allocation in multi-robot systems has received con-
siderable attention in the literature. We define a task as an
activity, here designated as pollination, that a robot performs
in a particular region of the environment. A taxonomy for
classifying multi-robot task allocation problems is proposed
in [9], [16]. Our application can be classified as an instance
of the single-task robot, multi-robot task (ST-MR) problem,
in which robots can execute at most one task at a time
and tasks require multiple robots, with either instantaneous

1 Images courtesy of 1(a) Mike Rubenstein; 1(b) Ben Finio



assignment (IA) of robots to tasks or a time-extended assign-
ment (TA) using planning for future demand.

Existing approaches to the ST-MR problem that allocate
robots to tasks in a deterministic manner require extensive
communication between robots that is not possible in large
MAV swarms. The problem of assigning teams to tasks
is known as coalition formation when applied to software
agents. Approaches to this problem, which is NP-hard, rely
on extensive agent cooperation that is not easily implemented
in robotic systems [32]. The algorithm in [29] was adapted
to multi-robot systems in [31], but robots must compute all
possible coalitions and agree on the best ones, and coalition
sizes are limited to small teams. The ST-MR problem has
been addressed with market-based techniques, which may be
centralized or decentralized [8] and apply to IA problems [5],
[19] or TA problems [35]. However, the computation and
communication requirements of market-based algorithms of-
ten scale poorly with increasing numbers of robots and tasks.

Our deterministic allocation approach, Karma, eliminates
the need for inter-robot communication by using a central
authority to allocate individual robots to tasks in a way
that scales with the population size. This approach can be
classified as IA since robots are each assigned a single task
after the central authority receives feedback on their progress.

Stochastic task allocation approaches for robotic swarms
that apply to the ST-MR problem have also been developed.
In these approaches, tasks are executed at random times
by unidentified robots, and an allocation emerges from the
collective activity of the swarm. Threshold-based algorithms
[1], [17], [18], inspired by division of labor mechanisms
in social insects, use a decentralized paradigm in which
robots decide to perform a task if its stimulus exceeds their
activation threshold. Recent works address the optimization
of the stochastic robot task-switching rates using non-spatial
macroscopic models that describe the time evolution of the
robot population in each state [2], [6], [21], [24]. In [23],
optimal control is applied to a spatial population model for
the specific problem of maximizing swarm presence in a
desired location.

Our stochastic task allocation approach, OptRAD, both
describes the spatial task distribution of a swarm with an
advection-diffusion-reaction (ADR) PDE population model
and employs optimization of the model parameters to derive
the robot control policies for a target global objective. Our
modeling methodology is similar to that in [11], [27], which
develop spatial models of robotic swarms that are based
on the Fokker-Planck PDE; these works do not address the
problem of controller optimization. The OptRAD approach
can be classified as TA since each set of policies, which are
optimized using feedback from the robots, causes the robots
to perform activities in a random sequence of regions, i.e.,
execute a sequence of tasks.

III. PROBLEM STATEMENT

A. Application Objective

We apply our task allocation approaches to a scenario
in which an MAV swarm must achieve a target number

of repetitions of a task in each of a set of regions of an
environment with a known layout. Specifically, we simulate
a commercial pollination scenario in which the task to be
repeated is the transfer of pollen from an MAV to a flower.
The environment, illustrated in Fig. 2, is modeled after a
section of a rabbiteye blueberry orchard [26] that consists
of R rows of plants. The allocation strategies should be able
to incorporate feedback from the MAVs in order to fulfill
the objective in the presence of unknown environmental
disturbances such as wind.

B. Swarm Control Architecture

We assume the existence of a central authority called the
hive (see Fig. 2) that has substantial computing and storage
resources and the ability to recharge the MAVs, which have
the capabilities outlined in [4]. Each MAV is considered to
have the ability to localize itself within the region of the
environment that it currently occupies (see Fig. 2), where the
set of regions forms a coarse discretization of the field. In
deterministic task allocation, a scheduler running at the hive
makes task allocation decisions for the individual robots. For
stochastic task allocation, the hive optimizes the parameters
that govern robot motion and stochastic decision-making.
In both approaches, the robots undertake brief flights called
sorties that originate from the hive and last a few minutes.
During a sortie, a robot records the number of flower visits
that it performs in each region where it lands on flowers.
It then returns to the hive to recharge when its batteries
run low, uploads the number of flower visits it has executed
in each region during the sortie, and receives its next task
(deterministic allocation) or parameters for its next sortie
(stochastic allocation).

C. Evaluation Criteria

Our goal is to compare the pollination progress achieved
using the two task allocation approaches for both ideal
conditions and more realistic situations in which the robots
have inaccurate navigation, localization, and sensing. Due to
their extreme resource constraints, the motion of MAVs is not
very accurate. Typically, they navigate using dead reckoning
along with detecting environmental features. However, over
time this estimate drifts, resulting in actuation error that leads
the MAV away from the intended destination. We refer to
this effect as navigation error. In addition, errors may be
introduced in the mechanism by which the MAVs localize
themselves in the regions (for example, using beacons or
visual landmarks). We term this localization error. Finally,
the simple MAV sensors, such as a template matching
sensor [15], can be subject to sensing errors in identifying
features of interest such as flowers.

IV. DETERMINISTIC TASK ALLOCATION

A. Overview

Previously, we built Karma [7], a resource management
system for programming and coordinating MAV swarms. The
primary objective of Karma is to disentangle what the user
wants to accomplish from problems relating to coordination
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Fig. 2. A section of a crop field with a hive of MAVs. The hive has a map
of the field, and the MAVs can localize within coarse regions of the field.

of the swarm. It provides a flexible programming interface
to the user that allows for easy specification of the desired
tasks, and it allows the user to express varied applications in
a uniform manner. Karma assumes that the MAVs have the
ability to navigate to a specific region in order to execute
the task associated with that region. Details of this approach
and example applications such as plume detection, target
tracking, and crop monitoring are described in detail in [7].

In our commercial pollination scenario, the application
programmer provides information on the size of the field, a
map of the plants divided into coarse-grained regions (see
Fig. 2), and a target number of flower visits per region
that will ensure an adequate crop yield from the resulting
pollination. The hive then assigns each MAV to a region
where pollination activity remains to be completed. The
MAVs fly to their assigned regions and repeatedly execute
the following behaviors to perform the pollination task:
flying random walks in the region, taking periodic sensor
measurements to detect flowers, and landing on a flower
to deposit and collect pollen. The hive uses the cumulative
flower visit counts recorded during by the MAVs during their
sorties to determine the next set of task allocations.

B. Task Allocation Mechanism

Karma optimizes the task allocation strategy for two main
objectives: (1) shortest time to application completion, and
(2) fairness across all active tasks, i.e., achieving proportional
progress on all currently active tasks. For every active task:

• Karma evaluates the progress of task i in region r using
a progress function pr

i . The increment in progress of
task i in region r between a past time t and the current
time t ′ per MAV sortie is defined as

dr
i (t, t

′) = (pr
i (t
′)− pr

i (t))/k,

where k is the number of MAVs that have contributed
to the progress of task i in region r between times t and
t ′.

• Karma estimates the amount of work remaining to

complete task i in region r at time t ′ as

W r
i (t ′) =

(1− pr
i (t
′))

E[dr
i (t, t ′)]

,

where E[dr
i (t, t

′)] is computed from a weighted average
of historical dr

i (t, t
′) values.

Karma allocates the n MAVs available at time t ′ to a queue
of tasks sorted according to the ratio of W r

i (t ′) to the total
work to be done across all tasks, W (t ′) = ΣiΣrW r

i (t ′). This
results in an allocation of n ·W r

i (t ′)/W (t ′) MAVs to each task
i, which is proportional to the amount of work remaining to
complete the task.

V. STOCHASTIC TASK ALLOCATION

A. Overview

We have previously presented a scalable approach to opti-
mizing robot control policies for a target collective behavior
in robotic swarms with arbitrary spatial distributions [4]. This
approach, which we refer to here as OptRAD, abstracts the
swarm to a macroscopic continuous model. OptRAD does
not require that the robots have the ability to navigate to
specified regions. It does require a priori information on
the locations of robots and environmental features, and it
applies to swarms that follow a particular type of motion
model and stochastic decision-making policies. While Karma
can accommodate more general robot controllers, this last
requirement facilitates OptRAD’s methodology of abstrac-
tion and top-down control synthesis and ensures probabilistic
guarantees on the system performance.

The user inputs the same information to OptRAD as in
Karma, and in addition provides the macroscopic model, or
the robot motion specification and behavioral transition pa-
rameters from which this model may be constructed, and the
optimization variables, objective function, and constraints.
The hive optimizes the parameters of the macroscopic model
for the desired objective and transmits them to the robots
before each sortie. These parameters map to deterministic
and random components of the MAVs’ velocities and their
stochastic policies of switching behaviors, which in the
pollination scenario are flying and hovering at a flower. The
robots pass through random regions, i.e., randomly perform
the tasks of pollinating the regions, while executing these
behaviors. Upon their return, the hive incorporates their
flower visit counts into the macroscopic model and optimizes
the parameters for their next sortie.

In [4], we developed an ordinary differential equation
macroscopic model over a discretization of the domain for a
pollination scenario, and in earlier work [3], we validated an
ADR PDE macroscopic model for a similar scenario. Here
we use the latter type of model in our optimization method
and numerically solve it using a technique that can compute
more accurate solutions than the one in [4].

B. Task Allocation Mechanism

1) Robot Control Policies: The tunable robot parameters
for each sortie s∈ {1, ...,S} are given in the following vector,



which is optimized and input to the robots at the hive:

ps = [ v D khov,1 ... khov,R φ ρ ]T . (1)

These parameters define the robot motion and decision-
making control policies as follows. The robots switch
stochastically between the behaviors fly and hover at a
flower. We assume that the flowers are distributed densely
enough such that a robot can always detect at least one
flower in its sensing range when it flies over plants. While
a robot is flying over row j ∈ {1, ...,R}, it decides with
probability khov, j∆t per timestep ∆t to pause at a flower
in its sensing range and hover for pollination. The robot
resumes flying with probability k f ly∆t per time step. At
every timestep during flight, the commanded velocity of
each robot i is the sum of a deterministic component vd

and a random component vr. The deterministic component
directs the robot in a compass direction φ at a constant
speed v until it encounters the edge of a plant row ρ ∈
{1, ...,R}, at which point it flies eastward at speed v. The
random component is actively added as a mechanism for
the swarm to achieve thorough coverage of the field. This
random motion is modeled as a diffusion with an associated
diffusion coefficient D. We define vr = (2D/∆t)1/2Z, where
the components of Z ∈ R2 are independent normal random
variables with zero mean and unit variance.

2) Macroscopic Model: From the robot velocity defini-
tion, the displacement of a robot during flight during each
time step ∆t is described by the standard-form Langevin
equation [10]. In addition, the robot decisions to visit and
leave flowers can be modeled as unimolecular chemical
reactions, as detailed in [4]. We can therefore describe the
expected spatiotemporal distribution of the swarm with a set
of ADR PDE’s [3]. The following equations govern the time
evolution of the population fields x = x(q, t) of the flying
robots (species B f ly), the hovering robots (species Bhov), and
the flower visit instances (species V ) at every point q ∈ R2

during a single sortie:

∂xB f ly

∂ t
=−∇ · (vd(q)xB f ly)+D∇

2xB f ly +gB f ly(q),

∂xBhov

∂ t
= gBhov(q),

∂xV

∂ t
= gV (q), (2)

where, for all points q in crop row j ∈ {1, ...,R},

gB f ly(q) = −khov, jxB f ly + k f lyxBhov ,

gBhov(q) = khov, jxB f ly − k f lyxBhov ,

gV (q) = khov, jxR f ly , (3)

and gk(q) = 0 for q outside of the crop rows.
3) Optimization of Robot Control Policies: The macro-

scopic model (2), (3) is used to compute the parameter
vector (1) for each sortie s that maximizes a metric f (ps)
of the degree of pollination over the sortie. The solution
of the model for sortie s is a function of these parameters,
i.e., xk = xk(ps,q, t), k ∈ {B f ly,Bhov,V}. We compute this
solution numerically as outlined in the Appendix. To specify
f (ps), we define F as the set of indices of regions that

contain flowers, NV
r as the target number of flower visits

per region r ∈F , and Cr as the collection of grid cells c
in the numerical solution that are contained in region r. As
described in the Appendix, v

n f
c (ps) is the numerical solution

of the field xV (q, t) in cell c for sortie s, initialized with the
total number of flower visits in cell c recorded by the robots
over sorties 1, ...,s−1. The metric for sortie s is defined as
the fraction of desired pollination activity over the field that
has been achieved during sorties 1, ...,s:

f (ps) =
1

MF
∑

r∈F
min

(
∑c∈Cr v

n f
c (ps)

NV
r

,1

)
. (4)

The optimization problem is posed as Problem P below:

[P] For each sortie s ∈ {1, ...,S}, minimize f (ps) subject to
the macroscopic model (2), (3) with boundary condition and
initial condition as described in the Appendix and subject to
the constraints pi,min≤ ps

i ≤ pi,max, i = 1, ...,4; ps
5 ∈{1, ...,R}.

We implement this problem using a Metropolis optimization
method similar to the one used with the closed-loop control
strategy in [4]. The flower visits counts recorded by the
robots during a sortie s are used to set v0

c(ps+1) ∀c, as
specified in the initial condition described in the Appendix,
for the optimization of ps+1.

VI. SIMULATION SETUP

As described in Section III, we use commercial crop
pollination as a sample application to compare our task
allocation approaches. To simulate the robots, we used
Simbeeotic [14], a framework built to simulate MAV swarms
at scale. Simbeeotic is a discrete event simulator written in
Java that allows the user to program custom MAV behavior,
different kinds of sensors, virtual environments, and realistic
conditions such as wind. It is built on top of JBullet, a 6-DoF
physics engine that simulates interactions by modeling them
as forces, including gravity. In addition, Simbeeotic provides
tools such as plotting and 3D visualization that allow the user
to investigate the swarm behavior.

Karma is implemented in Simbeeotic as described in
Section IV. In order to accurately compare the two task
allocation approaches under the same simulated conditions,
we implemented them as two separate schedulers in Karma.
Each simulation is initiated by submitting an application
to Karma with a map of the environment describing the
dimensions of the field, dimensions of the crop rows, and
a target number of MAV visits for each region. Karma then
executes the application using either the Karma scheduler to
allocate MAVs to tasks or the OptRAD scheduler to optimize
the set of parameters that governs this assignment.

The simulated crop field has the layout in Fig. 2 with ten
rows of crops and the following dimensions: lFx = 200 m,
lFy = 100 m, lRx = lRy = 10 m, lH = 10 m, and lC = 10 m.
The hive is placed at (xH ,yH) = (0 m, 50 m). In OptRAD,
the parameters were optimized over the following ranges:
v ∈ [1 10] m/s, D ∈ [3 5] m2/s, khov, j ∈ [0.05 1.25] s−1 for
all rows j, φ ∈ [−π/2 π/2] rad, and ρ ∈ {1, ...,10}. We run
each simulation for 1 hour of simulated time.



TABLE I
PROPERTIES OF KARMA AND OPTRAD

Property Karma OptRAD
Task allocation mechanism Deterministic Stochastic
Specificity to application Allocation mechanism agnostic to application Modeling and optimization depend on application
Requirements on a priori information No requirements Initial spatial distribution of robots and objects

about the environment with which they interact (ex. flowers)
MAV navigation requirements MAVs require ability to navigate to No requirements

specified regions
MAV actuation requirements No requirements Specified velocity field, degree of random motion,

and probability rates of switching behaviors
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Fig. 3. Snapshots of task progress in Karma and OptRAD over three sorties for n = 500 MAVs, no error.

Each simulated MAV can fly at a maximum speed of 10
m/s. The energy consumption of an MAV is modeled after
the energy consumption of our protoype MAVs [7], [14].
An MAV uses approximately 500 mW to fly at full speed
and about 250 mW to hover, and its energy consumption
is assumed to scale linearly with its flight speed. The MAV
recharge time is simulated to be 250 s. Each simulated MAV
is provided with a sensor that can detect flowers when the
MAV is hovering over them, and the act of detecting a flower
and landing on it is programmed to take 5 s on average.
Each MAV is also given an associated “location” sensor that
localizes the MAV to the region it currently occupies.

VII. COMPARISON OF TASK ALLOCATION APPROACHES

The objective in our simulated crop pollination scenario
is to uniformly pollinate ten rows of crops with NV

r =
125 target flower visits per region r. It is also possible
to specify nonuniform pollination with a different required
number of visits in each region. Table I summarizes the
salient differences between Karma and OptRAD. Both have
different requirements on the MAV capabilities; hence, only
one of the approaches may be suitable for any particular
application.

Fig. 4. Cumulative pollination progress for each sortie using Karma and
OptRAD to allocate n = 100 and n = 500 MAVs with no error.

A. Ideal localization, navigation, and sensing

Fig. 3 shows snapshots of the spatial distribution of task
progress over three sorties when both Karma and OptRAD
are used to allocate n = 500 MAVs with no error in navi-
gation, localization, or sensing. Task progress is measured
in each region as the percentage of target flower visits
achieved. The figure illustrates that the allocation of robots to



specified regions in Karma produces a uniform distribution of
pollination activity over the field after each sortie. In contrast,
OptRAD yields a coverage pattern that reflects the directed
movement and diffusion of the swarm under different sets of
optimized parameters, with each subsequent sortie generating
flower visits in previously unpollinated regions. OptRAD
initially produces more sufficiently pollinated regions than
Karma, but it does not achieve full coverage in all regions
as Karma does by the end of the simulation. This is largely
due to the decreased density of robots on the eastern side of
the field as a result of their diffusion over time.

Fig. 4 compares the cumulative task progress per sortie
achieved using both Karma and OptRAD with n = 100 and
n = 500 MAVs. Progress is measured as the ratio of the total
number of flower visits completed to the total target number
of visits. Each plot in Fig. 4 represents an average over five
trials, and the error bars indicate standard deviations. For
n = 100, both approaches yield approximately 20% progress
by the end of the simulation. A population of n = 500
is sufficient for Karma to achieve 100% progress, while
OptRAD produces 49% progress. The quicker progress of
Karma toward the goal is a result of its ability to target
specific underpollinated regions with MAVs, as opposed to
the OptRAD technique of relying on probabilistic region
occupation arising from the MAV motion. Although OptRAD
makes less progress than Karma, it shows a smaller final
decrease in progress compared to Karma when n is reduced
from 500 to 100.

B. Error in localization

To model error in localization, we add a normal random
variable with zero mean and standard deviation σl (in meters)
to the exact position recorded by the simulated location
sensor on each MAV. Denoting the actual position of a robot i
by qi = [qi,x qi,y]T , the position returned by the noisy location
sensor is qi +σlZ. In both Karma and OptRAD, localization
error can cause an MAV to incorrectly attribute its flower
visit to a region other than the one it actually occupies.
Since each region that overlaps a crop row spans the entire
width of the row (see Fig. 2), a region that contains crops
(“crop region”) is adjacent to at least two regions that do not
contain crops (“empty” regions). Thus, MAVs that are flying
over a crop region near its boundary are likely to attribute
their flower visits to an adjacent empty region, resulting in
reduced visit counts per crop region. Fig. 5 shows the effect
of this error on cumulative task progress, averaged over five
trials, with σl = 1.0 m and n = 500. Progress in Karma at
the end of sortie 3 to drops from 100% to 65%, requiring
another sortie for completion. Progress in OptRAD at the
end of sortie 5 shows a smaller decrease, from 49% to 32%.
This greater robustness to localization error is due to the
high probability of correctly-localized flower visits from the
cumulative activity of the dense swarm passing over different
sets of crop regions during each sortie.

Fig. 5. Effect of localization error on task progress with n = 500.

C. Error in navigation

We model error in navigation by adding noise to the
velocity commanded to each MAV. Defining the velocity
vector of the ith MAV as vi = [vi,x vi,y]T , we generate
a corresponding noisy MAV velocity vn

i at each timestep
by adding a normal random variable with zero mean and
standard deviation σn to the normalized velocity vector:

vn
i = ||vi||

(
vi

‖vi‖
+σnZ

)
. (5)

In Karma, the navigation error causes each MAV to deviate
from the direct path to its assigned region, delaying its entry
into the region and thus reducing the number of flower
visits that it can accomplish during a sortie. In OptRAD,
the error adds a random component to the motion of the
robots, effectively increasing their diffusion coefficient D.
This added diffusion is not incorporated into the macroscopic
model, and so the model parameters are optimized for a
higher density of robots and hence an overestimated density
of flower visits in the regions that they pass through. Fig. 6
shows that for σn = 0.2 and n = 500, these effects cause a
smaller reduction in the average progress over 5 trials for
OptRAD in comparison to Karma. In Karma, progress drops
from 100% to 77% at the end of sortie 3, while in OptRAD,
progress drops from 49% to 34% at the end of sortie 5.
Hence, OptRAD is slightly more robust to navigation error
than Karma.

D. Error in sensing

We simulate error in the MAV flower sensors by assigning
a probability pe that a hovering MAV does not detect a
flower within its sensing range, and hence does not pollinate
the flower. As Fig. 7 shows, for the case of pe = 0.05 and
n = 500 with results averaged over 5 trials, this reduction
in flower visits in the regions causes a similar degradation
in performance in Karma and OptRAD. In Karma, progress
decreases from 100% to 92% at the end of sortie 3, while in
OptRAD, progress decreases from 49% to 38% at the end
of sortie 5.



Fig. 6. Effect of navigation error on task progress with n = 500.

Fig. 7. Effect of sensing error on task progress with n = 500.

E. Error in localization, navigation, and sensing

We simulate all three types of error simultaneously for
two sets of the parameters σl , σn, and pe, running five
trials per parameter set. As Fig. 8 shows, Karma achieves
greater progress than OptRAD in both cases, while progress
in OptRAD is more robust to the combined high errors. In
Karma, progress achieved after 3 sorties drops from 100% for
low error to 60% for high error, while in OptRAD, progress
achieved after 5 sorties shows a much smaller reduction,
from 37% to 32%. This demonstrates the robustness of
OptRAD despite it not performing as well in ideal conditions.
The stochastic nature of OptRAD smoothens the effect of
real-world error in its performance.

VIII. CONCLUSION

Rapid innovations in computing, sensing, and actuation
are quickly making large-scale swarms of MAVs a reality.
One of the prominent challenges in realizing their potential is
understanding how to best use such swarms at scale. In this
work, we have compared the effectiveness of a deterministic
task allocation approach (Karma) and a stochastic approach
(OptRAD) for robotic swarms in the representative appli-
cation of crop pollination. Karma explicitly assigns MAVs
to specific regions, while OptRAD optimizes the parameters
that govern the MAV motion and stochastic decisions.

Fig. 8. Effect of error in localization, sensing, and navigation with n = 500.
Low err has error parameters σl = 0.2 m, σn = 0.05, pe = 0.05; high err
has parameters σl = 1.0 m, σn = 0.2, pe = 0.15.

Our results demonstrate that when it is possible to im-
plement region-based navigation for the robots, then Karma
is the more effective task allocation approach. The Karma
strategy is more capable than OptRAD at targeting regions
that are most in need of MAVs, and it facilitates a uniform
distribution of activity over the domain. The diffusive motion
of MAVs in the OptRAD strategy provides broader coverage
than velocity-driven motion alone, but it leads to underserved
regions far from the hive. Under ideal conditions of no MAV
error, Karma makes more efficient use of a large swarm of
500 MAVs than OptRAD, producing twice the total task
progress of OptRAD within fewer sorties. If the robots are
too resource-constrained for region-based navigation to be
implemented, even navigation with high error, then OptRAD
is a feasible strategy for task allocation. A larger swarm size
would be required to achieve the same level of task progress
as Karma. Due to its higher redundancy in swarm activity
over visited regions, OptRAD has the advantage over Karma
of significantly greater robustness in progress in cases where
there is either localization error alone or a combination of
high error in localization, navigation, and sensing.

In the future, we would like to compare our task allocation
approaches for other applications, including ones that incor-
porate inter-MAV communication, dynamic environmental
features such as wind, and dynamic features of interest
such as mobile targets to be tracked. Another direction of
future work is to investigate distributed programming models
for swarm task allocation. A distributed approach would
reduce information latency and increase the robustness of
the allocation mechanism by eliminating the single point of
failure (the hive) in our current control architecture.

APPENDIX: NUMERICAL SOLUTION OF THE
MACROSCOPIC PDE MODEL IN OPTRAD

We numerically solve the macroscopic model (2), (3) with
an explicit finite-volume method in which the advection term
is solved using the Lax-Wendroff method, implemented with
a superbee flux limiter to prevent spurious oscillations [20].
We use an Euler method to numerically integrate the model
with timestep ∆τ , operator splitting [12] to sequentially solve



the advection, diffusion, and reaction components of the
model at each timestep, and dimensional splitting to split
the 2D advection component into 1D subproblems.

The robots in our scenario may exit the domain of interest
Ω. Hence, the field xB f ly(q, t) evolves on an unbounded
domain and should satisfy the condition lim||q||→∞ xB f ly = 0.
We approximate this condition by solving for the field over
an enlarged domain Ωe and imposing a Dirichlet boundary
condition xB f ly(q, t) = 0 at its boundary.

We approximate the duration of each sortie as a constant ts.
The macroscopic model is solved on a uniform 2D Cartesian
grid over the domain Ωe at a set of times {tn}, n = 0,1, ...,n f ,
where t0 = 0, tn f = ts, and tn+1 − tn = ∆τ . We label each
grid cell as c ∈ {1, ...,C}. An approximated average of the
population fields xB f ly , xBhov , and xV over cell c at time
tn during sortie s is denoted by bn

f ly,c(p
s), bn

hov,c(p
s), and

vn
c(ps), respectively. At the beginning of each sortie s, we

set b0
f ly,c(p

s) = bN/MH +0.5c for all MH grid cells c in the
hive domain and v0

c(ps) = ∑
s−1
l=1 υ

n f
c (pl) when s > 1; all other

field values are initialized to 0. The value υ
n f
c (pl) is the

number of visits to cell c by time tn f during sortie l; this
number is recorded by the robots and uploaded to the hive
upon their return. When a region size is greater than the grid
cell size, this value is estimated by dividing the number of
visits recorded in the region during the sortie equally among
the grid cells that the region contains.
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[4] S. Berman, R. Nagpal, and Á. Halász. Optimization of stochastic
strategies for spatially inhomogeneous robot swarms: A case study in
commercial pollination. In Int’l. Conf. Intelligent Robots and Systems
(IROS), pages 3923–3930, 2011.

[5] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized
auctions for robust task allocation. IEEE Transactions on Robotics,
25(4):912–926, August 2009.

[6] N. Correll. Parameter estimation and optimal control of swarm-robotic
systems: A case study in distributed task allocation. In Int’l. Conf.
Robotics and Automation (ICRA), pages 3302–3307, 2008.

[7] K. Dantu, B. Kate, J. Waterman, P. Bailis, and M. Welsh. Programming
micro-aerial vehicle swarms with Karma. In Proc. 9th ACM Con-
ference on Embedded Networked Sensor Systems, SenSys’11, pages
121–134, New York, NY, 2011. ACM.

[8] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot
coordination: A survey and analysis. Proceedings of the IEEE,
94(7):1257 –1270, July 2006.
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