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Abstract. We present a methodology for characterizing, analyzing, and
synthesizing swarm behaviors using both a macroscopic continuous model
that represents a swarm as a continuum and a macroscopic discrete model
that enumerates individual agents. Our methodology is applied to a dy-
namical model of ant house hunting, a decentralized process in which a
colony attempts to emigrate to the best site among several alternatives.
The model is hybrid because the colony switches between different sets
of behaviors, or modes, during this process. Using the model in [1], we
investigate the relation of site population growth to initial system state
with a reachability analysis algorithm called the footprint algorithm. We
then derive a microscopic hybrid dynamical model of an agent that re-
spects the specifications of the global behavior at the continuous level.
Our multi-level simulations demonstrate that we have produced a rigor-
ously correct microscopic model from the macroscopic descriptions.

Key words: multiscale modeling; synthesis; abstractions of swarms;
reachability analysis; stochastic simulation; insect house hunting

1 Introduction

Coordinated multi-agent systems have yielded robust, efficient, and cost-effective
solutions to diverse objectives, such as the establishment of a mobile sensor
network for environmental monitoring, surveillance, or reconnaissance; object
manipulation and transportation; and search-and-rescue tasks. One multi-agent
paradigm is a swarm robotic system, which consists of many anonymous agents
that operate autonomously under decentralized control laws. Although each
agent follows relatively simple rules, the group can collectively achieve complex
tasks at the macroscopic level. In this sense, robot swarm systems can draw in-
spiration from the self-organized processes of natural aggregations such as social
insect colonies [2], which accomplish global objectives such as nest construction,
foraging, brood sorting, and colony relocation through local interactions, both
among individuals and between individuals and their environment. In a robotics
context, the simplicity and identical nature of swarm agents offer the advantages
of system robustness and control scalability with population size.
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Our goal in this paper is to establish a general methodology to solve the
so-called inverse problem: the design of individual behaviors to achieve a desired
macroscopic behavior for the group. This work is related in spirit to the work of
[3], which presents a systematic approach to translate group behaviors, modeled
as vector fields on a low-dimensional abstract manifold, into agent behaviors
in a high-dimensional manifold derived from copies of an agent’s state space.
As in recent work on modeling and analyzing swarm robotic systems [4] [5] [6],
we employ a multi-level representation of swarm activity. At the highest level,
we consider a macro-continuous model, also called the Rate Equation model
[7], characterized by differential equations in which the state variables represent
population fractions engaged in different global behaviors. We distinguish the
macro-discrete level, which models a discrete number of agents in each behav-
ior according to the Stochastic Master Equation [8], as an intermediate level.
This level permits behaviors synthesized at the highest level to be translated
into difference equations involving integers, in effect representing the system as
a finite automaton. At the bottom of the hierarchy, the microscopic level [7]
models agents in a physical setting, incorporating the geometry and dynamics
of individual agents and possibly modeling heterogeneity.

Several types of distributed robot systems have been modeled by translating
an individual robot controller into a description of collective behavior. Collabora-
tive stick-pulling [4] and object clustering [5] have been modeled with Probabilis-
tic Finite State Machines, whose states represent both (a) the possible behaviors
of a single agent at the microscopic level, and (b) the average number of agents
in each behavior at a certain time step at the macro-continuous level. The ro-
bots obey the semi-Markovian property: their state transitions depend only on
their present state and the amount of time they have occupied the state. Adap-
tive robots that change their behavior based on a history of local observations
have been modeled in a multi-foraging scenario [6]. In this work, the macro-
continuous and macro-discrete levels are derived from a microscopic model that
abstracts away physical robot behaviors. In all of the systems, it is assumed
that robots and their stimuli are uniformly spatially distributed. The state tran-
sition rates in the macro-continuous model are computed from physical robot
parameters, sensor measurements, and geometrical considerations. The macro-
continuous models are validated by comparing steady-state variables and other
quantities of interest to the results of embodied simulations and experiments.

In addition to the bottom-up design methodology just described, a top-down
approach has been used to synthesize agent controllers [9]. An algorithm is first
designed assuming that agents have global information, which is then replaced
with local information that is exchanged among agents. In an application to
the multi-foraging scenario [6], the probability of a state transition is generated
through the gradient descent of an objective function with a minimum at the
robot state distribution that matches the task type distribution.

In the methods just discussed, the main challenge is to derive an appropri-
ate mathematical form for the behavior state transition rates [7]. In contrast,
the top-down design approach that we present assumes that these rates are
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known beforehand. To investigate the effect of changing them, we do not need
to simulate the system under many different conditions; instead, our macro-
scopic analysis technique allows us to determine the global influence of ranges of
such parameters. In addition, we provide a framework for synthesizing a desired
system outcome and then translating the macroscopic behaviors into individual
agent behaviors. This technique does not require progressive model decentral-
ization and calibration of the fully distributed system, as does the top-down
approach in [9]. Finally, our macro-discrete level can capture phenomena that
occur at the microscopic level but are lost at the macro-continuous level. This
is because the stochastic formulation of a system has a more legitimate physi-
cal basis than the deterministic formulation [8]. Examples of such phenomena
include state fluctuations in relatively small populations, potentially leading to
stochastic transitions between equilibria of multi-stable systems [10].

We apply our methodology to a model inspired by the work of [1], which
studies the process by which a colony of Temnothorax albipennis ants chooses a
new home from several sites and emigrates through quorum-dependent recruit-
ment mechanisms. The quorum dependency creates a hybrid system in which
the ants switch behaviors, which can be thought of as sets of controllers, based
on their surroundings. The quorum sensing mechanism is key to the collective
decision-making process of nest site selection. The authors present models at the
two macroscopic levels. However, because they were not interested in models of
individual ants and their dynamics, the microscopic-level modeling is absent.

From a robotics perspective, an analogy can be drawn between the ants and
robotic agents with limited communication that must distribute themselves or
transport objects optimally among several locations. We are concerned with
three interesting questions on the biological phenomena and their implications
for robotics. (1) Why do the ants behave as they do and is their behavior optimal
in any sense? (2) Can we prove that this behavior leads to successful migration to
the best nest? (3) Can this behavior be realized on robotic systems? Our paper
addresses the second and third questions. We answer (2) using a reachability
analysis technique that permits us to explore all possible states reached by a
macro-continuous level model. We answer (3) by deriving a methodology that
allows macro-continuous level abstract behaviors (as in [3]) to be realized at the
macro-discrete level and then at the microscopic level.

2 Methodology

We consider a population of N agents moving in the continuous state space
Xa ⊂ R2. At any given time, an agent’s actions are determined by one of a
set La of la control strategies, called agent modes. We can describe the agent
as a hybrid automaton, Ha = {Xa, La}, to indicate that its activity is gov-
erned by both continuous and discrete dynamics. Figure 1a shows how this high-
dimensional microscopic level can be mapped to lower-dimensional representa-
tions, the macro-discrete and macro-continuous levels, through the abstractions
Fd and Fc, respectively.
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Representing the swarm as a continuous quantity, the macro-continuous level
models its dynamics with a set of differential equations whose variables, xi

(i = 1, ..., b), are the population fractions associated with different behaviors.
Each agent mode l ∈ La corresponds to one of these behaviors, and possibly to
a subdivision of activity within a behavior. It is assumed that the population is
conserved, so one variable may be removed through the conservation constraint.
The variables therefore comprise a continuous state space Xp ⊂ Rb−1. If the
model is a hybrid system, then the state space is divided into a set Lp of lp
regions, called population modes, each of which is associated with different con-
tinuous dynamics. The system may then be described by a hybrid automaton
Hp = {Xp, Lp}. The macro-discrete level, which considers a swarm as a collec-
tion of discrete agents rather than a continuum, maintains a count of the number
of agents in each of the b behavior states.

As Figure 1b shows, our methodology for designing a swarm system and
analyzing its behavior relies on all three of these levels of abstraction. We shall
illustrate our methodology with the concept of an emigrating ant colony whose
rules of behavior, either known (as in biological systems) or designable (as in
artificial swarms), are within our control.

Fig. 1. (a) Levels of abstraction of a swarm; (b) Analysis and synthesis methodologies.

The macro-continuous level is used to define and plan the execution of the
general task that the system should achieve. In nature, a signature of self-
organizing systems is multi-stability, with the most adequate stable states se-
lected according to their fitness [11]. This trait lends robustness to the system
under perturbations. In our engineered house-hunting scenario, however, we may
want to control the system so that there is always one outcome: the emigration
of the entire colony to the optimal nest among several available sites. In addition,
let us suppose that we want the emigration to allow at most a fraction of the
colony, say 25%, to be separated from the rest for no more than T time units.
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The macro-continuous level analysis checks whether or not the continuous
model satisfies the requirements. The first condition can be verified by using
steady-state analysis to ensure that the model has a single stable equilibrium
that corresponds to the entire colony’s settlement in the best site. The traditional
approach to checking the second condition, or to identifying a range of parameter
values that produces a desired result, is to solve the continuous model for many
different initial states and parameter sets. This verification can be done more
efficiently with reachability analysis, which determines the set of states that are
attainable from an initial set A. If set B consists of the states in which over 25%
of the colony is separated from the rest, then the analysis can show whether (1)
A ever reaches B and, if so, whether (2) the system remains there for longer than
time T . Problem (1) is a standard reachability question that can be investigated
by overapproximating the reachable set on a discrete abstraction of the system
or on the state space directly. Problem (2) can be converted into (1) by adding
a clock s for which ṡ = 1 if the system is in B and ṡ = 0 otherwise, and seeing
whether the augmented system reaches the set s > T . Similarly, the system
behavior over a parameter range can be analyzed by adding the parameter p
as a state with ṗ = 0 and including an interval over p in set A. The macro-
continuous model may be solved with the parameters that are chosen from this
analysis to ensure that they produce the desired system evolution.

If reachability analysis reveals that the system exhibits undesirable behav-
ior, then control terms can be added to the macro-continuous model to meet
the requirements. [12] presents a method of defining feedback control laws on
a piecewise-linear hybrid system. Control inputs are defined at the vertices of
a polytope state-space region that corresponds to a mode, and a convex com-
bination of these inputs is used to drive states inside the polytope to the next
desired mode.

The macro-discrete level connects the macro-continuous level to the micro-
scopic level, which is needed for the ultimate implementation. This level is still
a macroscopic model that abstracts away agent identities; however, now we con-
sider an integer number of agents. We simulate transitions between behaviors
by incrementing and decrementing the number of agents exhibiting each behav-
ior. To synthesize this level, we apply a simulation algorithm from [8], which
has been used in the mathematically similar problem of replacing a differential
equation description of chemical kinetics with individual molecular reactions.
The algorithm generates a sequence of transitions and their times according to a
probability density function that is rigorously derived from the known physical
principles that govern the underlying chemical processes. In our case, the rules
producing the transitions may be stochastic, intrinsically and/or by design, or
deterministic. Transition times in the house-hunting model are governed by a
Poisson distribution. As N → ∞, the Poisson transition probabilities per unit
time become transition rates, and the macro-discrete level simulation approaches
the macro-continuous level solution. Transitions have a deterministic component
if they are delayed by the time an agent takes to perform an action necessary to
change its state, such as navigation.
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If we wish to construct a robot swarm that behaves similarly to the ant
colony, we need to prescribe the behavior of each agent in all situations it may
encounter. This occurs at the microscopic level, where agent identities and spa-
tial considerations become important. At this level, travel between two sites is
implemented using navigation functions [13], which can be defined on environ-
ments of a certain topological class to guide an agent to a goal while steering it
away from obstacles. The resulting mean travel times are used as time delays in
the macro-discrete level. For the microscopic level to be abstracted to the macro-
discrete level, state transitions should not depend on the previous history of the
agent (the Markov property), and spatial information must be either discarded
or converted into substates associated with regions in the physical space.

We note that aside from its specification of navigation controllers, our micro-
scopic model is still a coarse-grained representation [7] since it abstracts away
ant behaviors such as quorum estimation, recruiter-recruitee communication,
and avoidance of collisions with other ants. Thus, the model still requires more
detail in order to constitute an executable robot controller. We point out that
the quorum dependency does not pose a theoretical impediment to synthesizing
such a controller. In our model, only the ants that visit a nest know whether it
has attained a quorum population. From the perspective of transition dynamics,
an ant that has perceived a quorum is in a different state than an ant that has
not, but the two ants are otherwise identical. Therefore, the quorum condition
does not violate the Markov property of the model.

3 Macro-Continuous Model

Our model of ant house hunting behavior is an extension of the one presented
in [1], which was constructed from experimental observations of Temnothorax
albipennis. Although we try to reflect ant behavior as accurately as possible,
our main goal is not to create a new description of ant house hunting, which has
already been modeled in considerable detail [14]. Instead, our objective is to make
the original model in [1] realizable on the microscopic level, with the ultimate
purpose of synthesizing robot controllers that will produce ant-like activity.

The model consists of a set of coupled delay differential equations whose
state variables represent population fractions that are physically located at the
home nest or one of the M potential home sites. The time delays are averages
of navigation times between sites from the microscopic simulation described in
section 5.2. Each ant has knowledge of at most two sites, one of which is its home.
A colony of N ants is divided into a fraction p of active ants and a remainder
of passive ants. The active ant fraction is divided among the following state
variables. Naive ants, Yi, reside at site i, which they consider their home; they
leave this site to search for a new nest. Assessing ants, Zij , regard site i as their
home and are evaluating site j as a potential new home. Recruiting ants, Yij,n,
are located at site n ∈ {i, j} and leave to bring other ants from i to j. The
method of recruitment of Yij,j ants depends on the population fraction located
at site j, Pj . If Pj has not reached a quorum Q, then Yij,j ants still consider
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site i to be their home, and they limit themselves to using tandem runs to lead
fellow active ants in one of btand states, Yi and Zk,i (k 6= i, j), to assess site j.
If Pj ≥ Q, then site j becomes their home and they use transports to carry the
passive ants at site i, Bi, to site j. Yij,i ants always recruit via transports. When
Yij,n ants realize that there are no Bi ants left to transport, they “forget” site i
and become naive ants at site j, Yj .

The rates in the model were experimentally derived [15]. Naive ants discover
site i at per capita rate µi. Assessors become recruiters to site i at per capita
rate ki, which is directly related to the quality of the site. λi and φi are the per
capita rates at which recruiters perform tandem runs and transports to site i,
respectively. ρij is the per capita rate at which assessors and recruiters at site i
encounter site j and switch their allegiance by becoming assessors of that site.

The model is defined by equations (1)-(5). For a variable X, X = X(t) and
X[τij ] = X(t− τij). The time delay τij represents the time taken to travel from
site i to site j; τji+ij = τji +τij . If i and j are in bold, unitalicized font, then the
trip is a tandem run. To illustrate the state transitions, the flowchart in Figure
2 diagrams the model with all time delays set to zero.

Ẏi =
∑M

j=0
j 6=i

[φiJA(Pi[τij+ji], Bj [τji])Yji,i[τij+ji] + φi(1−H(Bj [τji]))Yji,j ]

−
∑M

j=0
j 6=i

[λjI(Pj [τji], Yi)Yij,j [τji] + µjYi] (1)

Żij = µjYi[τij ]− (ki + kj)Zij +
∑M

k=0
k 6=i,j

[ρkjZik[τkj ]− ρjkZij ]

+
∑M

k=0
k 6=i,j

[ρij(1−G(Pi[τij ]))Yki,i[τij ] + ρkjG(Pk[τkj ])Yik,k[τkj ]]

+
∑M

k=0
k 6=i,j

[λjI(Pj [τjk+kj], Zik[τkj])Ykj,j [τjk+kj]− λkI(Pk[τkj ], Zij)Yjk,k[τkj ]]

+ λjI(Pj [τji+ij], Yi[τij])Yij,j [τji+ij] (2)

Ẏij,i = kjZji − φjYij,i (3)

Ẏij,j = kjZij + btand[−λjG(Pj)Yij,j + λjG(Pj [τji+ij])Yij,j [τji+ij]]
− φj(1−G(Pj))Yij,j + φjJB(Pj [τji+ij ], Bi[τij ])Yij,j [τji+ij ]

+ φjH(Bi[τij ])Yij,i[τij ]−
∑M

k=0
k 6=i,j

ρjkYij,j (4)

Ḃi =
∑M

j=0
j 6=i

[φiJB(Pi[τij+ji], Bj [τji])Yji,i[τij+ji] + φiH(Bj [τji])Yji,j [τji]]

−
∑M

j=0
j 6=i

[φjJB(Pj [τji], Bi)Yij,j [τji] + φjH(Bi)Yij,i] (5)

Pj = Yj + Bj +
∑M

i=0
i 6=j

[Yij,j + Yji,j + Zij ]
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G(P ) = 1 if P < Q; 0 otherwise
H(B) = 1 if B > 0; 0 otherwise
I(P, X) = 1 if P < Q and X > 0; 0 otherwise
JA(P, B) = 1 if P ≥ Q and B = 0; 0 otherwise
JB(P, B) = 1 if P ≥ Q and B > 0; 0 otherwise

Fig. 2. Flowchart for ant house hunting dynamics without time delays

4 Reachability Analysis

4.1 Algorithm

The footprint algorithm is written in Matlab and uses the Multi-Parametric
Toolbox (MPT) for polyhedral operations. The algorithm generates reachable
sets of a hybrid system Hp in the state space Xp by overapproximating Hp as a
rectangular hybrid automaton, in which the state derivatives ẋi (i = 1, ..., b−1) in
each population mode l ∈ Lp satisfy the condition ẋi ∈ [αi, βi], where αi and βi

are constants. The algorithm was developed for the purpose of computing more
precise and accurate reachable sets than an existing method [16], particularly for
systems with multi-affine dynamics. The algorithm begins by initializing a list
of reachable modes with the modes that contain the initial set. These modes are
identified as members of generation 0. The portion of the initial set that each
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mode contains is considered its first “footprint.” For each mode, a truncated cone
is defined as the convex hull of the origin and (ẋi,min, ẋi,max) (i = 1, ..., b − 1),
the minimum and maximum state derivatives at the mode vertices. The cone
is scaled, added to the mode’s footprint via a Minkowski sum, and bounded by
the mode facets. The resulting set of states represents an overapproximation of
the paths that all points in the footprint can traverse within the mode. Next,
each neighboring mode with a facet that intersects this reached set is added to
the list of reachable modes, and the intersection is designated as the footprint
of that mode. These modes are identified as members of the next generation.

The algorithm repeats the reachable set overapproximation and footprint
identification for modes in each consecutive generation. If a mode has multiple
footprints, the union of their conical reached sets is the total reachable set within
the mode. The algorithm terminates when the reachable set for each mode in
a generation is a subset of the set already computed for these modes. It may
also terminate if there are no new modes in the current generation, which occurs
when the reachable set hits the boundary of Xp.

4.2 Application to the House-Hunting Model

We applied our algorithm to the macro-continuous model in [1] to identify sets
of initial conditions that guarantee that a particular nest site reaches a quorum
before the other site. This model is a special case of the model (1)–(5) and does
not include time delays due to navigation. There are three nest sites, labeled 0, 1,
and 2. Site 0 is the home nest, which has been destroyed and therefore does not
attract recruitment. Pi is equal to the number of recruiters to site i, Y0i,i. There
are five active ant state variables (Y0, Y01,1, Y02,2, Z01, Z02), which are decoupled
from the three passive ant state variables (B0, B1, B2). Thus, after eliminating Y0

through the active ant conservation constraint, the full analysis region is the four-
dimensional state space {Y01,1, Y02,2, Z01, Z02 ≥ 0, Y01,1 +Y02,2 +Z01 +Z02 ≤ p}.

The state space is divided into modes by the hyperplanes P1 = Q and P2 =
Q, the quorum switches. The analysis focuses on a portion of the mode that
is bounded by these hyperplanes. The analysis region is set to Y01,1, Y02,2 ∈
[0, 0.0481], Z01, Z02 ∈ [0, 0.0721] and divided into modes of dimension 0.0120 ×
0.0120×0.0144×0.0144 for refinement of the reachable set. Initial box A is defined
as Y01,1 ∈ [0.0337, 0.0385], Y02,2 ∈ [0, 0.00481], Z01, Z02 ∈ [0.0288, 0.0337]; initial
box B is Y01,1 ∈ [0, 0.00481], Y02,2 ∈ [0.0240, 0.0288], Z01, Z02 ∈ [0.0288, 0.0337].

In Figure 3, the unions of gray polygons are two-dimensional projections
of the reachable set from each initial box. The computation took 33.5 minutes
and consisted of 8 generations for box A and 22.3 minutes, 9 generations for
box B. Each four-dimensional box has 16 vertices, which are projected onto the
Y01,1 − Y02,2 plane. The black lines are the solutions of the continuous model
starting at these vertices. As shown by comparison with these solutions, both
reachable sets correctly predict the first site to achieve a quorum of 0.0481. The
reachability results show that all system trajectories starting inside box A and
box B will first cross the quorum for site 1 and site 2, respectively. The algorithm
guarantees this without computing any of the actual trajectories.



10 Spring Berman et al.

0 0.00962 0.0192 0.0288 0.0385 0.0481
0 

0.00962

0.0192

0.0288

0.0385

0.0481

Y
01,1

Y
02

,2

B

A

Fig. 3. Two-dimensional projection of reachable sets; p = 0.25, Q = 0.0481, µ1 = µ2 =
0.013, λ1 = λ2 = 0.033, ρ12 = 0.004, k1 = 0.019, k2 = 0.020 (values are from [1], [15]).

5 Simulation

5.1 Algorithms

Macro-Continuous Level The system of equations (1)–(5) can be numerically
integrated using standard techniques such as the Runge-Kutta method.

Macro-Discrete Level Gillespie’s Direct Method [8] was used to perform a
stochastic simulation of the system that is represented deterministically by the
macro-continuous model. This method was originally devised to numerically cal-
culate the time evolution of chemical reactions. Like a system of reactions, the
macro-continuous model (1)–(5) is described by a set of coupled differential equa-
tions. Consider the model without time delays in Figure 2. Each of the S possible
transformations of xi into xj , the population fractions in behavior states i and
j, respectively, is governed by a term of the form ks0Z(Pq, xr)xm. The frac-
tion xi is analogous to the molecular concentration of a chemical species, and
ks0 is analogous to a deterministic reaction-rate constant. When m 6= i, m is
a recruiter state. Z(Pq, xr) = 1 when the transformation is not governed by
a switch. Otherwise, it is 0 or 1 depending on Pq, the population fraction at
the site containing ants in state m, and/or xr, the fraction of ants in a recruitee
state r. We can remove the switch dependence on xr, since an ant that decides to
recruit does not immediately know about the availability of recruitees. This de-
pendence is replaced with a deterministic state transition of the recruiter based
on the presence of recruitees once the recruiter reaches their site.

To construct a stochastic formulation of the system, we convert the macro-
continuous model into a set of unidirectional “reactions” with one “reactant
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ant” Xi and one “product ant” Xj . These reactions describe individual state
transitions. The transition is enabled only when Z(Pq) = 1. Like a chemical
reaction, each transition is characterized by a parameter cs such that csdt is the
average probability that a particular ant in state i will undergo transition s in the
next time interval dt. Since each transition has only one “reactant ant,” cs = ks

[8]. The parameter cs for transition s is computed by setting the original term
ks0xm = cs0xm equal to a new term csxi. In this way, we generate S transitions
Xi → Xj with parameter cs = cs0xm/xi.

The propensity as is defined such that asdt is the probability that transition s
will occur in the next time interval dt. It is the product of cs with hs, the current
number of distinct “reactant ant” combinations that can undergo the transition.
Because each transition has only one “reactant ant” Xi, hs is the number of ants
in state i, ni = xiN [8]. Thus, as = csni = cs0nm. The propensity as is zero if
nm = 0 or if transition s is disabled by a switch term Z(Pq).

The Direct Method is implemented in the following way. First, the number
of ants in each state is initialized in a counter and the S propensities are cal-
culated. The next state transition is selected according to a uniform probability
distribution over the propensities, and the time until its occurrence, ∆τ , is com-
puted from an exponential distribution with

∑
s as as its parameter. The time

is advanced by ∆τ and the transition is effected. If m = i for the transition,
then ni is decremented and nj is incremented either immediately, as in the the
transition from assessor to recruiter, or at a deterministic time in the future that
represents the completion of the ant’s navigation between sites. When m 6= i,
then nm, the number of ants in a recruiter state, is decremented to reflect the
start of a tandem run or transport. If any recruitees are available at the time
when the recruiter is expected to arrive at their site, then their population is
decremented in the state counter. At the end of the recruiter’s round-trip jour-
ney, the counter is updated to reflect the recruiter’s success or failure at bringing
another ant to the site. Whenever the counter is updated, the propensities must
be recalculated and a new transition and ∆τ are computed.

Microscopic Level At the microscopic level, each ant is represented as an
individual entity that stores knowledge of its behavior state, home nest, another
nest site, position, speed, type of ant it is recruiting (if any), and whether it is
navigating to a site. The stochastic simulation method described in the previous
section is used to generate state transitions and their times. At this level, the
simulation runs in time steps ∆t to implement the ants’ incremental navigation
through their environment. As a result, the completion of inter-site navigation
is checked at the beginning of every time step rather than acknowledged at the
exact time it happens, and transitions at time τ are initiated when t ≤ τ ≤ t+∆t.

When a transition is generated, a random ant in the appropriate behavior
state that is not already en route to a site is selected to attempt recruitment
or change state, either immediately or after traveling. Navigation functions [13]
are used to generate ant trajectories that mimic the behavior of traveling be-
tween sites while avoiding obstacles. A navigation function provides a form for
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a feedback controller that guides an agent to a goal, the unique minimum of the
function, while preventing collisions with obstacles. It can be defined on any en-
vironment that is deformable to a world with a spherical boundary and disjoint,
spherical obstacles.

In the simulation, ants and their destinations are represented as points, and
obstacles are circular. An ant’s position at time t, rt, is updated at each time
step according to the equation,

rt = rt−1 − v
∇ϕκ(rt−1, rd)

‖ ∇ϕκ(rt−1, rd) ‖∆t (6)

where v is the ant’s speed and ϕ is the navigation function with the ant’s cur-
rent destination rd. The ϕ of each ant share a common parameter κ, which was
selected empirically. Various combinations of v and rd are used to produce dif-
ferent agent modes; for example, one l ∈ La would be navigating from site 0 to
site 1 at the tandem-running speed.

The microscopic simulation uses a centralized approach, since a “global plan-
ner” initiates transitions. However, the simulation has a decentralized equivalent:
it produces transition times according to the same probability distribution as a
strategy in which each ant, at every time step ∆t, independently undergoes one
of its possible transitions s with probability cs∆t. To determine whether it can
execute switch-dependent transitions, an ant only needs to know whether the
population at its current site, Pq, exceeds a quorum. In a robotic system, this
estimate can be achieved through local sensing. The advantage of the central-
ized simulation is its speed; unlike the decentralized approach, it does not require
looping through all ants at each time step.

5.2 Application to the House-Hunting Model

We implemented macro-continuous, macro-discrete, and microscopic simulations
in Matlab of the model (1)–(5). The model is reduced to the scenario of a de-
stroyed home and two available new nests, although it is more detailed than the
model in [1]. All ants are initially located at site 0, and all active ants begin as
naive ants. The rate units are min−1. The nests are 65 cm apart, the inter-site
distance used in experiments to derive the site discovery and recruitment rates
[15]. Each nest is represented as a circle of radius 0.02 m; an ant is considered
inside the nest once it enters the circle. Ants performing tandem runs move
at 1.5 mm/sec, while all other ants move at 4.6 mm/sec, the transport speed
[1]. There are three obstacles in the environment. In the macro-continuous and
macro-discrete simulations, the time delays due to navigation, measured from
the microscopic simulation, are τ01 = τ02 = 6 min, τ01 = τ02 = 2.2 min,
τ10 = τ20 = 2.5 min, τ12 = τ21 = 7.84 min, and τ12 = τ21 = 2.48 min.

Figure 4 displays the population fractions at sites 1 and 2 from the macro-
continuous model solution and from macro-discrete and microscopic simulations
with N = 832, ∆t = 0.05 min. The two simulations match the macro-continuous
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model fairly well. Although not shown, it has been verified that the macro-
discrete simulation approaches the macro-continuous model as N increases. In
all plots, both sites achieve a quorum prior to 30 min and initially experience
population growth. Site 2 outpaces site 1 in growth because ants commit to
site 2 more quickly (k2 > k1) and are more willing to switch allegiance from
site 1 to 2 than vice versa (ρ12 > ρ21). By ∼130 min, all passive ants have
been transported from site 0, and recruiters “forget” this site. The newly naive
ants at site 1 or 2 repeat the process of finding, assessing, and recruiting to the
other potential home site; however, now they can recruit from the site as well.
Assessors at either site are more likely to recruit to the site of higher quality,
which results in a net transport of passive ants to site 2. By ∼376 min in the
macro-continuous and microscopic models, all passive ants at site 1 have been
removed to be reunited with those at site 2; only active ants remain at site 1.
Due to stochastic fluctuations, some passive ants still remain at site 1 in the
macro-discrete model.

Figure 5 shows snapshots of the microscopic simulation at times indicated
by the vertical lines in Figure 4. Nest sites are labeled in Figure 5d; gray circles
denote obstacles. The curvature in the ant trajectories is due to the shape of
the navigation functions, one of which is displayed in Figure 5a. The snapshots
correspond to the initial searching and assessing phase (5a), the period of trans-
port from site 0 (5b), the realization that site 0 contains no passive ants (5c),
and the period of transport between sites 1 and 2 (5d).
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Fig. 4. Population fractions at sites 1 and 2; p = 0.25, Q = (10/208)N , µ1 = µ2 =
0.013, λ1 = λ2 = 0.033, ρ12 = 0.008, k1 = 0.016, k2 = 0.020, φ1 = φ2 = 0.099 (values
are from [1], [15]); ρ21 = 0.002, κ = 2.7. Dashed vertical lines correspond to the times
of the snapshots in Figure 5.
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Fig. 5. Agent simulation snapshots (◦ = naive; ♦ = assessor ; F = recruiter ; ×
= passive) showing the colony at (a) 2.4 min (top left); (b) 80 min (top right); (c)
130 min (bottom left); and (d) 225 min (bottom right). The navigation function that
corresponds to an agent controller with rd at site 2 is shown at the top left.

6 Conclusion

We have described abstractions of a robotic swarm at three different levels and
presented a methodology for synthesizing behaviors for individual robotic agents.
Our behavioral synthesis at the highest level was derived from a mathematical
model of an ant population. The macro-continuous model was reduced to a
macro-discrete model to account for an integer number of agents. The macro-
scopic behaviors were then further realized by behaviors for individual agents.
The components of the methodology have been illustrated through the analysis
and simulation of nest site population growth in a model of ant house hunting.

Our current work has two directions of investigation. Using reachability
analysis and control synthesis at the macro-continuous level, we want to de-
termine parameter ranges and/or control terms that produce a certain degree
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of splitting in ant populations among nests. We are also interested in designing
macroscopic swarm behaviors that are more relevant to multi-robot applications
such as surveillance, sampling, and search-and-rescue. Here the methodology of
[12] can be used to synthesize macro-continuous behaviors, which can be trans-
lated to macro-discrete level and then to microscopic level behaviors.
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