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Spring Berman, Ádám Halász, and Vijay Kumar

GRASP Laboratory, School of Engineering and Applied Science,
University of Pennsylvania, Philadelphia PA 19104, USA.

{spring, halasz, kumar}@grasp.upenn.edu

Abstract. We present a new algorithm for the reachability analysis of
multi-affine hybrid systems. In our previous work on reachability analysis
and that of our collaborators [1–3], we exploited the convexity of multi-
affine functions and the fact that the vector field in modes with rec-
tangular invariants is uniquely determined by its values at the rectangle
vertices. In this paper, we explicitly calculate conical overapproximations
of the reachable set in the invariant of each mode. We describe our Multi-
Affine Reachability analysis using Conical Overapproximations, Marco,
and show that it yields results that are superior to those obtained by ex-
isting methods for multi-affine hybrid systems. Finally, we demonstrate
the application of Marco to the analysis of an ant house hunting model
that incorporates quorum sensing [4] and the analysis of bi-stability of
the lactose induction system regulated by glucose and lactose [5].

1 Introduction

Multi-affine equations are often used to model systems in the areas of molecu-
lar biology and population biology. Bio-molecular networks can be modeled by
multi-affine rate equations that describe chemical reactions among species [1].
In population biology, the Volterra-Lotka predator-prey equations constitute a
familiar example of a multi-affine model [6]. The spread of information or dis-
ease within a population can also be described using multi-affine equations, as
in the example of honeybee recruitment to a nest site [4]. As a result, multi-
affine models have potential applications in understanding biology, synthesizing
new biomolecular circuits, and designing bio-inspired controllers for networked
robotic systems.

We are particularly interested in multi-affine hybrid systems because of their
relevance in biology. These systems consist of discrete modes that are each char-
acterized by multi-affine continuous dynamics. While biological systems exhibit
smooth behavior on some level, it is often convenient to develop hybrid ab-
stractions to describe switches that are associated with such phenomena as gene
regulation or quorum-sensing. For example, a gene may be turned on (or off)
when a threshold concentration of regulatory biomolecular species is exceeded,



which results in a change in the dynamics of the network [7]. Similarly, ants
emigrating from a nest in search of alternative nests change their behavior when
they detect a quorum at any of the candidate nests [4]. Thus, we have found it
useful to use hybrid system abstractions to describe biological networks [1, 8].

In order to accurately approximate the global behavior of a set of hybrid
system trajectories, or to verify that they do not enter an undesirable region,
it is productive to consider reachability analysis, a well-known symbolic analy-
sis technique [9–11]. A typical reachability problem is to determine whether a
certain region of the state space can be reached by a system, starting from a
given set of initial conditions. The reachability problem is decidable when the
continuous dynamics are constant (timed and multirate automata), take values
in a constant interval (rectangular automata) [10], or fall into certain classes of
linear systems [12]. If the dynamics are not of these types, an overapproxima-
tion of the reachable set can be computed in one of two ways. One option is
to pursue a discrete abstraction of the hybrid system via an indirect method.
Alternatively, the reach set can be directly calculated the on the state space via
a direct method.

In the indirect method, one generally partitions the continuous state space
of the system into a finite number of sets and explores how states in one set
may reach states in another set. Sets are usually convex regions of the state
space; the exact representation of a set depends on a particular method. In this
paper, sets are represented by hyper-rectangles in the n-dimensional state space.
The multi-affine reachability algorithm developed in [1–3] is referred to here as
the Mar1 algorithm. It exploits the convexity of multi-affine functions on hyper-
rectangles in a manner similar to [13], which describes a technique for controlling
affine systems on general polytopes. Once a state is inside a hyper-rectangle, the
algorithm considers the entire hyper-rectangle to be reachable. Because of this,
the algorithm computes conservative approximations of the reach set. While this
approximation is guaranteed to include all reachable states, it can be overly
conservative and in many simple cases (for example, constant vector fields along
the diagonals of the hyper-rectangles) yield little insight into the actual behavior
of the system.

In this paper, we present a new direct reachability analysis algorithm for
multi-affine hybrid systems, Marco (Multi-Affine Reachability via Conical Over-
approximations), which attempts to overcome some of the shortcomings of the
Mar1 algorithm. We consider the problem of computing less conservative reach-
able sets without sacrificing accuracy. As in the Mar1 method, the algorithm
performs a computationally inexpensive reachability analysis within each mode
by exploiting the convexity property of multi-affine vector fields on rectangles.
However, we determine a better conical approximation for the reachable set, thus
providing a finer level of granularity for the reachable set without incurring a
significantly higher penalty for computations. As before, a higher degree of pre-
cision for the entire reachable set can be achieved by increasing the resolution
of the rectangular partitions.



Our technique for overapproximating the reachable set within a mode is
similar in spirit to that used in HyTech [10] and PHAVer [14], which are tools for
the verification of linear hybrid automata. This class of automata has piecewise
constant bounds on the derivatives of the continuous state variables. HyTech and
PHAVer overapproximate affine continuous dynamics by linear formulas over the
derivatives. PHAVer also has the ability to partition reachable modes recursively
along user-defined hyperplanes.

Due to the simplicity of its reachability operations, the Marco algorithm
is suitable for multi-affine hybrid systems with many modes, such as a system
that closely approximates a hybrid automaton with nonlinear dynamics. Thus,
in principle, it is more readily applicable to such systems than existing reacha-
bility algorithms that use direct techniques for nonlinear hybrid systems, such
as Matisse [15] and CheckMate [11].

2 Theory

We define a hyper-rectangular multi-affine switched system (HMS) as the seven-
tuple H = (X,X0, Ω, I, F, T,A). X ⊂ Rn is the continuous space of state
variables x, and X0 ⊂ X is a set of initial states, and Ω is a set of discrete
modes. I maps the modes to subsets of X such that when the system is at mode
ω ∈ Ω, x ∈ I(ω), the location invariant of ω. The location invariants are n-
dimensional hyper-rectangles, which are defined as follows. For each dimension
j = 1, ..., n, we specify a strictly monotonically increasing sequence of values,
{x(j)

0 , x
(j)
1 , · · · , x

(j)
Dj
}. A mode ω is labeled by an n-dimensional coordinate vec-

tor ω = (k1, · · · , kn), where kj ∈ {1, ..., Dj}. Then I(ω) is the hyper-rectangle
[x(1)

k1−1, x
(1)
k1

]×[x(2)
k2−1, x

(2)
k2

] · · ·×[x(n)
kn−1, x

(n)
kn

]. F is a map that assigns a continuous,

autonomous vector field to each mode ω, ẋ = fω(x) ∈ Rn. fω is a multi-affine
function of x.

Definition 1 (Multi-affine function). A multi-affine function f : Rn → Rn

has the following form:

f(x) =
2n−1∑

j=0

cjx
i1(j)
1 x

i2(j)
2 ...xin(j)

n ; cj ∈ Rn, (1)

where x = (x1, ..., xn) and the concatenation i1(j)i2(j)...in(j), where {i1(j),
..., in(j)} ∈ {0, 1}n, is a binary representation of the integer j.

Henceforth, Θj will denote the concatenation i1(j)i2(j)...in(j).

Proposition 1 ([1]). Let fω : I(ω) → Rn be a multi-affine function and let
x ∈ I(ω). Then fω(x) is a convex combination of the values of fω at the 2n

vertices of I(ω).

T is a finite set of transitions between modes, each defined by a three-tuple
(ω, ω′, gω,ω′), in which ω, ω′ ∈ Ω and gω,ω′ ⊂ ∂I(ω) is a guard set. The transition



from ω to ω′ is enabled when x ∈ gω,ω′ . Each guard gω,ω′ of mode ω corresponds
to a facet that I(ω) shares with I(ω′). We denote this shared facet by H(ω, ω′). A
is a finite set of symbols that label the transitions. We now define the trajectories,
footprints, and reachable sets of an HMS.

Definition 2 (Mode trajectory [16]). A trajectory (ω, τ, xω(t)) associated
with mode ω ∈ Ω consists of a nonnegative time τ and a continuous and piecewise
differentiable function xω : [0, τ ] → Rn such that xω(t) ∈ I(ω) and ẋω(t) =
fω(xω(t)) for all t ∈ (0, τ).

Definition 3 (Trajectory of an HMS [16]). A trajectory of an HMS starting
from xω0(0) ∈ X0 ⊂ I(Ω0), where Ω0 ⊂ Ω, is defined as an infinite sequence of
mode trajectories,

(ω0, τ0, xω0(t))
a0−→ (ω1, τ1, xω1(t))

a1−→ (ω2, τ2, xω2(t))
a2−→ · · · (2)

such that at the event times tωj =
∑j

i=0 τi, xωj (tωj ) ∈ H(ωj , ωj+1). Since the
HMS is defined to be a switched system, xωj

(tωj
) = xωj+1(0). The jth transition

is labeled by aj ∈ A.

The ordered set of modes in equation (2) after a finite number of transitions
is represented by a filiation sequence of length d ∈ N, s = {ω0, ω1, · · · , ωd−1}.
We define a concatenation operation similar to that which is used for strings:
s ∗ {σ} = {ω0, · · · , ωd−1, σ}. In the following definitions, φs designates an HMS
trajectory whose first d modes comprise sequence s, given some xω0 ∈ X0.

Definition 4 (Footprint). A footprint of degree d and filiation sequence s,
X

(d)
s,ωd ⊂ H(ωd−1, ωd), is the set consisting of xωd−1(tωd−1) from each φs.

Definition 5 (Forward reachable set of a mode). The forward reachable
set of mode ωd from a set B, where B = X0 if d = 0 and B = X

(d)
s,ωd if d > 0, is

Xr,ωd
(B) ⊂ I(ωd). It consists of the union of states

xωd−1(tωd−1) = xωd
(0) ∪ {xωd

(t) | t ∈ (0, τd)} ∪ xωd
(tωd

) = xωd+1(0) (3)

from each φs for which ωd ∈ s.

Definition 6 (Forward reachable set of an HMS). The forward reachable
set Xr from an initial set X0 of an HMS is the set of all continuous states xω(t)
associated with each φs.

Definition 7 (Time-elapse cone). The time-elapse cone Cω for mode ω =
(k1, · · · , kn) is the cone generated by nonnegative linear combinations of the
velocity vectors at the vertices of I(ω):

Cω = {
2n−1∑

j=0

λΘj fω(x(1)
k0+(k1−k0)i1(j)

, · · · , x
(n)
kn−1+(kn−kn−1)in(j)) | λΘj ≥ 0} . (4)



Proposition 2. Let xω(t) be defined as in Definition 2. The displacement vector
∆xω(t) = xω(t) − xω(0), t ∈ [0, τ ], is contained in the convex hull of the set of
velocities at the vertices of I(ω), scaled by the elapsed time t. That is, (∃) {ΛΘj

}
where ΛΘj ∈ [0, 1], j = 0, ..., 2n − 1, and

∑2n−1
j=0 ΛΘj = 1, such that:

∆xω(t) = t

2n−1∑

j=0

ΛΘj
fω(x(1)

k0+(k1−k0)i1(j)
, · · · , x

(n)
kn−1+(kn−kn−1)in(j)) . (5)

Proof. The solution to ẋω(t) = fω(xω(t)), t ∈ [0, τ ], is xω(t) = xω(0) +∫ t

0
fω(xω(s))ds. From Proposition 1, for s ∈ [0, τ ], (∃) {λΘj

(s)} where λΘj
(s) ∈

[0, 1], j = 0, ..., 2n − 1, and
∑2n−1

j=0 λΘj (s) = 1, such that:

fω(xω(s)) =
2n−1∑

j=0

λΘj
(s)fω(x(1)

k0+(k1−k0)i1(j)
, · · · , x

(n)
kn−1+(kn−kn−1)in(j)) (6)

The existence of {λΘj
(s)} is guaranteed but it is not unique; we can choose one

set. The displacement vector ∆xω(t) = xω(t)− xω(0) at t is:

∆xω(t) =
∫ t

0

2n−1∑

j=0

λΘj (s)fω(x(1)
k0+(k1−k0)i1(j)

, · · · , x
(n)
kn−1+(kn−kn−1)in(j))ds

=
2n−1∑

j=0

fω(x(1)
k0+(k1−k0)i1(j)

, · · · , x
(n)
kn−1+(kn−kn−1)in(j))

∫ t

0

λΘj (s)ds (7)

Define ΛΘj as the integrated quantity divided by t:

0 ≤ ΛΘj =
1
t

∫ t

0

λΘj (s)ds ≤ 1 (8)

2n−1∑

j=0

ΛΘj =
2n−1∑

j=0

1
t

∫ t

0

λΘj (s)ds =
1
t

∫ t

0

2n−1∑

j=0

λΘj (s)ds = 1 . 2 (9)

Corollary 1. The set of continuous states xω(t), t ∈ [0, τ ], in a trajectory of
mode ω is a subset of xω(0) ⊕ Cω, the Minkowski sum of xω(0) and the time-
elapse cone.

The following definitions specify the core steps of the Marco reachability
algorithm. The proofs demonstrate that the reachable set computed by the al-
gorithm contains the exact reachable set Xr.

Definition 8 (Overapproximated reach set of a mode). Consider a mode
ω and a set B ⊂ I(ω). The overapproximated reach set in mode ω with initial
set B is defined as:

Rω(B) = (B ⊕ Cω) ∩ I(ω) . (10)



Proposition 3. Xr,ω(B) ⊂ Rω(B).

Proof. From Definition 5, Xr,ω(B) is the set of all states xω(t) in the trajectory
of mode ω such that xω(0) ∈ B, which by Corollary 1 is a subset of xω(0)⊕Cω:

Xr,ω(B) = {xω(t) | xω(0) ∈ B, t ∈ [0, τ ]} ⊂ {xω(0)⊕ Cω | xω(0) ∈ B} = B ⊕ Cω

Since Xr,ω(B) ⊂ I(ω) by definition, Xr,ω(B) ⊂ (B ⊕ Cω) ∩ I(ω) = Rω(B). 2

Definition 9 (Overapproximated footprint). An overapproximated footprint
of degree d and filiation sequence s, F

(d)
s,ωd ⊂ H(ωd−1, ωd) is generated as follows.

F
(1)
{ω0},ω = (X0 ⊕ Cω0) ∩H(ω0, ω)

F
(d+1)
s∗{ωd},ω = (F (d)

s,ωd
⊕ Cωd

) ∩H(ωd, ω) (11)

The footprints and their corresponding overapproximated reach sets form a
tree structure, which in practical implementations is organized as a linked list.
The sequence s distinguishes among repeated passages through the same mode
during the reachability calculation.

Proposition 4 (Validity of overapproximation). The set of states xω(t)
in the first d mode trajectories of an HMS trajectory φs with xω0(0) ∈ X0 is
contained in the union of Rω0(X0) with Rωj (F

(j)
{ω0,...,ωj−1},ωj

), j = 1, ..., d− 1.

Proof. By Proposition 3, xω0(t) ∈ Rω0(X0) for xω0(0) ∈ X0, t ∈ [0, τ0]. There-
fore, by Definition 8, xω0(τ0) ∈ (X0 ⊕ Cω0) ∩ I(ω0). Also, xω0(τ0) = xω0(tω0) ∈
H(ω0, ω1) ⊂ I(ω0). Thus, by Definition 9, xω0(τ0) = xω1(0) ∈ F

(1)
{ω0},ω1

. By

Proposition 3 again, xω1(t) ∈ Rω1(F
(1)
{ω0},ω1

) for t ∈ [0, τ1]. The same set inclu-
sions may be defined for the remaining modes in s. 2

There are two possible termination conditions for the algorithm.

Proposition 5 (Termination condition 1). If Rωd
(F (d)

s,ωd) is a subset of Rωd
,

the union of the reach sets previously computed for mode ωd, then all states xω(t)
in HMS trajectories with xω0(0) ∈ F

(d)
s,ωd are contained in Rωd

and all reach sets
evolving from Rωd

.

Since the reach set might grow by very small amounts for a long time, a
second heuristic condition may be applied to ensure termination within a rea-
sonable amount of time. Each iteration of the algorithm generates a new set of
conical overapproximations and footprints; let V (Ri) be the volume of the newly
computed reach set at iteration i and V (S) be the volume of the state space.

Proposition 6 (Termination condition 2). For a small constant ζ, stop if
V (Ri) < V (Ri−1) and V (Ri) < ζ V (S).



3 Implementation

The Marco algorithm is written in Matlab and uses the Multi-Parametric Tool-
box (MPT) for polyhedral operations. Figure 1 illustrates its steps for a two-
dimensional state space, and Figure 2 gives an outline of the algorithm.

Fig. 1. Illustration of the Marco algorithm. (a) (upper left) Initial set X0 and veloc-
ities at vertices of mode α; (b) (upper right) definition of the time-elapse cone Cα; (c)

(lower left) computation of reachable set Rα and footprints F
(1)
α,β and F

(1)
α,ε of adjacent

modes; (d) (lower right) computation of Rβ , Rδ, and Rε.

The user inputs the specifications of the hybrid system H. First, the set
Ω of reachable modes is initialized with the modes Ω0 ⊂ Ω that contain the
initial set X0. These modes are identified as members of generation 0. In Figure
1a, Ω0 = α. The portion of X0 that intersects the mode invariant I(ω) for
ω ∈ Ω0 is the first incoming footprint of mode ω. For each mode in generation
0, a time-elapse cone Cω is found according to Definition 7. Figure 1a-b shows
the creation of the cone Cα from the velocities at the vertices of mode α. The
cone is scaled to extend past the mode boundaries. Cω is added to the mode
footprint via a Minkowski sum and then bounded by the facets of the mode to
produce the overapproximated mode reachable set, Rω(X0 ∩ I(ω)) (Figure 1c).
Next, each adjacent mode ω′ with a facet that has a nonempty intersection with
Rω(X0 ∩ I(ω)) is added to Ω if it is not already in the list, and the intersection



is designated as the overapproximated incoming footprint of that mode, F
(1)
{ω},ω′ .

These modes are identified as members of the next generation. In Figure 1d, the
footprints are F

(1)
α,β and F

(1)
α,ε , and modes β and ε are in generation 1.

Input: System dimension n, mode dividers, vertices of initial set I0, dynamical para-
meters
Output: R = {Rω0 , ..., RωN }, ωi ∈ Ω

Ω := {ωi | I(ωi) ∩X0 6= ∅}
for all ωi ∈ Ω : Generation(ωi) = 0; Rωi = ∅
G = −1
do

G = G + 1
for all {ωi | Generation(ωi) = G}

Rgen
ωi

= ∅
Calculate velocities at vertices of ωi

Create time-elapse cone Cωi

Combine overlapping footprints of ωi

for all footprints F
(G)
s,ωi :

Rωi(F
(G)
s,ωi) = (F

(G)
s,ωi ⊕ Cωi) ∩ I(ωi)

for all {ωj | F
(G+1)

s∗{ωi},ωj
= (F

(G)
s,ωi ⊕ Cωi) ∩H(ωi, ωj) 6= ∅}

if ωj 6∈ Ω
Ω = Ω ∗ {ωj}
Rωj = ∅

Generation(ωj) = G + 1
end
Rgen

ωi
= Rgen

ωi
∗ {Rωi(F

(G)
s,ωi)}

end
if Rgen

ωi
6⊂ Rωi

Rωi = Rωi ∗ {Rgen
ωi
}

end
until Rgen

ωi
⊂ Rωi ∀ {ωi | Generation(ωi) = G}

Fig. 2. Marco reachability algorithm

The algorithm repeats the reach set overapproximation and footprint iden-
tification for modes in each consecutive generation. Note that a mode ω may
have multiple footprints, as does mode δ in Figure 1d. Each footprint generates
a reach set, and the concatenation of these sets is the total reach set within the
mode. The algorithm terminates according to Proposition 5, Proposition 6, or
when there are no new modes in the current generation, which occurs when the
reach set hits the boundary of the state space X, as in Figure 1d. The algorithm
returns the total reach set, stored as polyhedral subsets of mode invariants, that
is attained from X0.



4 Examples

Our first set of examples illustrates the improvement of Marco over the method
in [1]. Figures 3 and 4 display reachable sets computed by Marco and by a
Matlab implementation of the Mar1 algorithm. The Marco reach sets are
shown in dark gray, while the Mar1 sets consist of light gray boxes in the 2D
examples and transparent boxes in the 3D and 4D examples. In each example,
both algorithms used the same state space boundaries and mode partition. All
examples were run on a standard 2 GHz. laptop.

In Figure 3a, the dynamics in each mode consist of the constant vector field
ẋ1 = 1, ẋ2 = 0.5, and the initial set is the box in the lower left corner. The
reach set computed by Marco is the exact reachable set. However, the Mar1
algorithm predicts that all modes are reached.

Figure 3b displays a vector field whose integral curves are spirals with a
steady state at the origin. The dynamics are given by

ẋ1 = −x1 + ax2 ẋ2 = −ax1 − x2 , (12)

where a = 2. The initial set is the box containing the steady state. The Marco
algorithm terminates and returns a conservative but finite reach set around the
equilibrium point; it essentially recognizes the presence of the steady state. The
Mar1 method considers the entire space to be reached, due to the velocity
components pointing out of the center mode.

Figure 3c shows the computation of the reach set for a three-dimensional
vector field with integral curves that are helical spirals. The results are similar
to those of Figure 3b.
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Fig. 3. Reachable sets for (a) 2D constant field; (b) 2D linear field; (c) 3D linear field

As another example, consider the bistable vector field,

ẋ1 = f(x2)− x1 ẋ2 = x1 − x2 , (13)

where f(x2) is a piecewise-linear approximation, P + Qx2, of a sigmoid-shaped
function. P and Q for a mode depend on the particular x1 interval that contains



the average x1 coordinate of the mode. In Figure 4a, the initial set is located at a
place where the vector field diverges. The Marco reach set correctly approaches
and terminates at the two steady states while avoiding the unstable steady state.
The Mar1 reach set is much more conservative.

Figure 4b illustrates a four-dimensional multi-affine system with 24 equi-
libria. In particular, the equilibrium xe1 = (10.5, 7.5, 1.5, 4.5) is stable and the
equilibrium xe2 = (10.5, 7.5, 4.5, 7.5) is unstable. The initial set for the reach-
ability computation is a box surrounding xe2. Figure 4b shows a projection of
the reach set onto the x2, x3, x4 dimensions. The reach set diverges at xe2: one
branch terminates at xe1, while the other runs into the state space boundary.
Again, the Mar1 reach set fails to attain the precision of the Marco set under
the same mode partition.
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Fig. 4. Reachable sets for (a) 2D affine field; (b) 4D multi-affine field

Table 1 compares the performance of the two algorithms in terms of the
computation time and volume fraction of the state space reached for each exam-
ple. Notes that although Mar1 is faster on all examples, its overly conservative
predictions of the reach set cannot be refined with iterative partitioning.

Table 1. Comparison of computation times and reachable set precision
Vector field Time (sec) Reached vol./State space vol.

Marco Mar1 Marco Mar1
2D constant 4.17 0.42 0.255 1.000
2D linear 2.83 0.42 0.329 1.000
3D linear 4.78 0.78 0.078 1.000
2D affine 7.27 0.94 0.266 0.714
4D multi-affine 130.31 2.53 0.022 0.061



5 Applications

5.1 Ant House Hunting Model

We consider a portion of the model of ant house hunting presented in [4]. This
model, constructed from experimental observations of Temnothorax albipennis
ants, predicts the behavior of a colony that is faced with a choice between two
new nest sites, labeled 1 and 2, following the destruction of its original nest, site
0. The state variables represent the number of ants in different roles: naive ants,
X; assessors of site i, Zi; and recruiters to site i, Yi. The method of recruitment
used by Yi ants varies depending on whether they have reached a quorum T .
The model equations are as follows [4]:

Ẋ = −(µ1 + µ2)X − λ1Y1θ(X)θ(T − Y1)− λ2Y2θ(X)θ(T − Y2)
Ẏ1 = k1Z1 − ρ12Y1 Ẏ2 = k2Z2 + ρ12Y1

Ż1 = µ1X + λ1Y1θ(X)θ(T − Y1)− ρ12Z1 − k1Z1

Ż2 = µ2X + λ2Y2θ(X)θ(T − Y2) + ρ12Z1 − k2Z2

θ(X) = 1 when X > 0, 0 otherwise (14)

We performed reachability analysis to determine whether a quorum of re-
cruiters at site 1 will ever be reached for a certain value of k1, which reflects the
quality of site 1. We reduce the model to a four-dimensional affine system by
using the ant conservation constraint X + Y1 + Y2 + Z1 + Z2 = N to eliminate
X. This conservation constraint forms a boundary of the state space, along with
nonnegativity constraints and the hyperplane corresponding to the quorum. The
initial set is the four-dimensional unit cube to approximate the biologically re-
alistic situation in which all ants start as naive. We set N = 52 and T = 10,
according to the values in [4].

Figure 5a shows the new reach set volume per iteration of the algorithm as
a fraction of the total state space volume. The algorithm was set to terminate
according to Proposition 6 with ζ = 0.05.

Figure 5b shows the projection of the reach set onto the Y1, Y2 dimensions.
The curved black lines are the solutions of the continuous model starting at the
vertices of the initial set. From comparison with these solutions, the reachable set
correctly predicts that site 1 will never achieve a quorum of 10. The large reach
set projection to the right of Y1 = 4 resulted from defining some relatively large
modes and from covering footprints with bounding boxes to reduce polyhedral
complexity.

5.2 Inducibility in the lac operon control network

The lac operon and its control network is an important example of bistability
in a genetic network. We apply reachability analysis to a model of this system,
due to Santillán and Mackey [5]. The system of equations is nonlinear and we
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Fig. 5. (a) Increase in reachable set volume at each iteration divided by state space
volume as a function of the number of iterations. (b) Projection of 4D reachable set
for k1 = 0.0025 [run time = 9251 sec].

replace it with a piecewise approximation. A diagram of the model network is
given in Figure 6a. We follow closely the model by [5], referring the reader there
for further details. The model variables {x1, x2, x3, x4, x5, x6}, are respectively
the concentrations of: β-galactosidase mRNA, permease mRNA, β-galactosidase,
permease, total allolactose, and total cAMP:

ẋ1 = kmx4η(x6, x5) − (µ + ξM )x1 ẋ2 = kmx4η(x6, x5) − (µ + ξM )x2

ẋ3 =
1
4
κBx1 − (µ + ξB)x3 ẋ4 = κP x2 − (µ + ξP )x4

ẋ5 =
1
2
φL1

Le

ΦL1 + Le

ΦG1

ΦG1 + Ge

x4x5

x5 + ΦL1/2
− 1

2
φL2

x3x5

x5 + ΦL2/2

ẋ6 = φC
ΦC

ΦC + Ge
− ξCω(x6) − µx6 (15)

The concentrations of external glucose Ge and lactose Le are inputs to the
system. The remaining symbols are constants taken from [5]. The system (15) is
bistable for some combinations of the external inputs; the system has two equilib-
ria, an induced state with high concentrations of β-galactosidase and high lactose
metabolism, and an uninduced state with very little enzyme. One can cause an
uninduced population to induce by exposing it temporarily to a high lactose/low
glucose environment, steering the system trajectory around the bistable region.
Thus, induction can be framed as a reachability problem: what is the region in
the Le − Ge plane where high enzyme concentration states are reachable from
an uninduced state?

In this example we use the methodology discussed in detail in [3]. Our pro-
cedure involves the piecewise multi-affine approximation of the equations of mo-
tion (15), including a two variable piecewise approximation of the function η(·, ·).
These are preliminary results obtained with an implementation in gnu C, on a
linux workstation with four Pentium Xeon processors. We perform our reacha-
bility calculations using a grid of 4105728 hyper-rectangles in the model space,



for various values of the external inputs. In each calculation we evaluate the set
of all hyper-rectangles reachable from the mode with the lowest values of the
concentrations of all substances. Figure 6b summarizes the reachability results.
Points signify values for which induction is not possible according to reachabil-
ity. The plot also shows the boundary of the bi-stable region. The non-inducible
points are inside the bistability region, as expected intuitively.

Fig. 6. (a) Diagram of the lactose-glucose network. External glucose and external lac-
tose are external inputs. (b) Bistability region in the Le−Ge plane, in the exact model
and the piecewise approximation. Superimposed are points where reachability forbids
upward switching. All units are µM.

6 Conclusion

Multi-affine hybrid systems arise naturally in biological systems. The main con-
tribution of this paper is the development of Marco, a reachability analysis
algorithm that can be used to calculate reachable sets for biological systems.
We have shown that Marco overapproximates reachable sets and yet provides
results that are quantitatively better than the Mar1 algorithm.

There are several directions for future work. First, it is necessary to use
information on the volume of the time-elapsed cones and footprints to adap-
tively regulate the growth of reachable sets to improve efficiency and to ensure
automatic termination of the algorithm. Second, we are working on many com-
putational techniques to speed up the performance of the algorithm. Finally, our
ultimate goal is to be able to use reachability analysis as a tool for bio-inspired
synthesis of controllers for collective behaviors.
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