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Abstract— We present a decentralized, scalable approach to
designing a reconfigurable manufacturing system in which a
swarm of robots assembles heterogeneous parts into target
amounts of products. The sequence of part assemblies is
determined by interactions between robots in a decentralized
manner in real time. Our methodology is based on deriving
a continuous abstraction of the system from chemical reaction
models and formulating the strategy as a problem of selecting
rates of assembly and disassembly. The rates are mapped onto
probabilities that define stochastic control policies for individual
robots, which then produce the desired aggregate performance.
We illustrate our approach using a physics-based simulator with
examples involving 15 robots and two types of final products.

I. INTRODUCTION

We consider a scenario in which a large supply of het-
erogeneous parts must be assembled into desired amounts of
different products. The assembly strategy should be scalable
in the number of parts, easily modeled to facilitate the
optimization of appropriate parameters for fast production,
and quickly adjustable when product demand changes.

We fulfill these criteria by using a swarm of autonomous
mobile robots to execute the assembly task in a decentralized
fashion. The robots move randomly inside an arena, identify
and pick up randomly scattered parts, and combine them
according to a predefined assembly plan. These actions
are performed using local sensing and local communication
with parts and with other robots. Since robots are parts are
uniformly distributed throughout the arena, the system can
be modeled as being spatially homogeneous, which allows
us to describe it as a Chemical Reaction Network (CRN).
We control the equilibrium part populations by designing
the robot probabilities of executing assemblies and disassem-
blies; when demand changes, the only adjustment needed is
the update of these probabilities, such as via a broadcast. This
strategy can be readily implemented on resource-constrained
robots and is scalable in the number of robots.

Previous assembly systems that are based on random
collisions between parts have also been modeled as CRN’s
[1]–[3]. In [3], modules that have combined can detach into
different parts with certain probabilities, which are optimized
to maximize the equilibrium yield of one assembly type. The
optimization does not scale well with the number of parts
because it requires the enumeration of all reachable states.

We synthesize the robot control policies using a “top-
down” design methodology (Fig. 1) similar to that in [4],
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Fig. 1. Levels of abstraction of the assembly system with analysis and
synthesis methodologies. The high-dimensional micro-continuous model is
mapped to lower-dimensional models through the abstractions Fd and Fc

using the theoretical justification in [9].

where we applied it to the problem of reallocating robots
among a set of tasks. We generate the continuous dynamics
of individual robots using a realistic 3D physics simulation,
the micro-continuous model. Since the system is spatially
homogeneous, it can be represented by a continuous-time
Markov process, the macro-discrete model, whose states are
discrete populations of parts and robots. When these popu-
lations are large, the system can be abstracted to an ordinary
differential equation (ODE) model, the macro-continuous
model, whose state variables are continuous amounts of parts
and robots. We design the parameters of this model for fast
production of target amounts of assemblies; this optimization
is independent of the number of robots and parts. When the
parameters are mapped onto robot probabilities of assembly
and disassembly, the average evolution of products over time
follows the prediction of the macro-continuous model.

Recent work on modeling robot swarms [5]–[7] has also
developed accurate macroscopic models of physical systems.
Our novel contribution is our control synthesis methodology,
which provides theoretical guarantees on performance. In the
following sections, we illustrate our approach on an example
system. For further details on this work, see [8].

II. MICRO-CONTINUOUS MODEL

The assembly task is implemented in the robot simulator
Webots [10], which uses the Open Dynamics Engine to
accurately simulate physics. A group of Khepera III robots
combines parts of four different types into larger parts
according to the assembly plans in Fig. 2 to ultimately
form final assemblies F1 and F2. The number of robots
is at least the total number of scattered parts, and the arena
is sufficiently large to prevent robot crowding. Each robot
has infra-red distance sensors for collision avoidance and
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Fig. 2. Assembly plans for final assemblies F1 and F2.

a protruding bar with a rotational servo at the tip. Both
robots and parts have an infra-red emitter/receiver for local
communication and for computing relative bearing. A robot
that detects a part approaches it until a magnet on the servo
bonds to a magnet on the part’s top face. The servo rotates
the part into the correct orientation for assembly. When the
robot finds a robot that is carrying a compatible part, the
two robots align their parts and approach each other until the
parts bond via magnets on their side faces. One robot carries
off the newly assembled part; the other resumes searching for
a part on the ground. A robot can disassemble a part it is
carrying by deactivating a magnetic part bond.

III. MACRO-CONTINUOUS MODEL

Interactions between parts and robots are modeled as a
CRN. The complexes are the combinations of parts and/or
robots that appear before and after reaction arrows. Each
reaction pathway is associated with a positive rate constant.
Xi denotes a part of type i, and XR symbolizes a robot. Xi

may be further classified as Xu
i , an unclaimed part, or as

Xc
i , a claimed part i and the robot that is carrying it. Let M

be the number of these variables, or species, in the system.
Then x(t) ∈ RM is the vector of species populations, which
are represented as continuous functions of time t.

The CRN in Fig. 3 models all possible actions in the
system. The rate constants are estimated as functions of the
following probabilities:

ei = pe , k+
j = pe · pa

j · p+
j , k−j = p−j . (1)

pe is the probability that a robot encounters a part or
another robot. The uniform distribution of robots and parts
in the arena allows us to calculate pe from the geometrical
approach that is used to compute probabilities of molecular
collisions [11]: pe ≈ vTw/A, where v is the average
robot speed, T is a timestep, A is the arena area, and w is
twice a robot’s communication radius. pa

j is the probability
of two robots successfully completing assembly process j; it
depends on the part geometries. Finally, p+

j is the probability
of two robots starting assembly process j, and p−j is the
probability per unit time of a robot performing disassembly
process j. These are the tunable parameters of the system.

Fig. 3. CRN representing all actions in the assembly system.
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Fig. 4. F1, F2 populations in three models; the macro-discrete and micro-
continuous models are each averaged over 100 runs. The system has 15
robots and parts for 3 final assemblies. Error bars show standard deviations.

We constructed the macro-continuous model (see below
for details) and numerically integrated it with pe, p

a
j mea-

sured from the micro-continuous model and p+
j = 1, p−j =

0 ∀j. We also used the StochKit toolbox [12] to efficiently
perform a stochastic simulation of the macro-discrete model.
Fig. 4 compares the evolution of final products in all three
models. Discrepancies among the models are due in part to
the fact that the ODE model is most accurate for very large
populations, while the system has relatively low numbers
of parts and robots (15 each) so that it would not be too
computationally expensive to simulate. If the populations
were increased, the micro- and macro-continuous models
should correspond more closely. Also, assembly disruption
sometimes occurs in Webots due to erroneous collisions and
robot interference; we do not model these failures.

Nevertheless, the macro-continuous model predicts the
F1, F2 populations fairly accurately, so we can use it to
design p+

j , p−j to direct the system behavior. In order to be
able to prove convergence properties of the model, we reduce
its dimensionality by abstracting away robots, assuming that
the time for a robot to find a part is small and that there are
at least as many robot as parts. Then the CRN becomes a

set of reactions of the form Xl +Xm 

k+

j

k−j
Xn, j = 1, ..., 6.

We define a vector y(x) ∈ R12 in which entry yi is the part



or product of parts in complex i:

y(x) = [x1x2 x5 x3x4 x6 x2x7 xF1

x5x6 x7 x2x5 x8 x6x8 xF2]T . (2)

We also define a matrix M ∈ R10×12 whose entries are
the coefficients of part types in the complexes and a matrix
K ∈ R12×12 constructed from k+

j and k−j . Then the macro-
continuous model can be written in the following form:

ẋ = MKy(x) . (3)

The model is subject to four linearly independent conserva-
tion constraints on the xi. Results from CRN theory [13] can
be used to show that the model has a unique, positive, glob-
ally asymptotically stable equilibrium. Thus, we can achieve
a target distribution of part quantities, xd, from any initial
distribution x0 by computing K to satisfy MKy(xd) = 0,
which defines xd as the model’s equilibrium.

IV. CONTROLLER SYNTHESIS

We defined xd to contain a large number of final assem-
blies compared to other part quantities. A set of k+

j , k
−
j was

randomly selected to satisfy the above constraint on K and
the constraint that p+

j , p
−
j ∈ [0, 1] in equation (1). Two other

sets of k+
j , k

−
j were computed as optimization variables that

minimize a measure of the convergence time of model (3) to
xd subject to these constraints. One set was obtained from a
linear program that maximizes the average inverse relaxation
time, the time for a system mode to converge to equilibrium
after perturbation, which was estimated by linearizing the
model around xd [14]. Another set was computed using a
Monte Carlo method that directly minimizes the time for the
model to reach a certain level of convergence.

We calculated random and optimized k+
j , k

−
j for α ≡

xd
F1/(x

d
F1 +xd

F2) = 0.1, 0.5, 0.9 and mapped them onto the
micro-continuous model as follows. A robot carrying a part
that can be disassembled according to process j computes
a uniformly distributed random number R ∈ [0, 1] at each
timestep ∆t (32 ms in Webots) and disassembles the part
if R < p−j ∆t. A robot about to begin assembly process j
computes R and executes the assembly if R < p+

j ∆t.
Fig. 5 shows the evolution of final product fractions in the

micro- and macro-continuous models for the different sets of
k+

j , k
−
j . For each α, the models that use optimized k+

j , k
−
j

converge faster to the target F1, F2 fractions than the models
that use random k+

j , k
−
j . This demonstrates that the simple

ODE model can indeed be used to compute control policies
that improve the yield rate when used in a realistic system
model. The Monte Carlo k+

j , k
−
j lead to faster production

than those from the linear program; however, on a standard
2 GHz laptop, the Monte Carlo optimization takes about 10
hours to converge to a solution, whereas the linear program
computes k+

j , k
−
j in less than a second.

V. CONCLUSIONS

We have presented a top-down methodology to derive de-
centralized, stochastic control policies for a swarm of robots

Fig. 5. F1, F2 fractions in the micro-continuous (solid lines) and macro-
continuous (dashed lines) models using k+

j , k−j optimized by the Monte
Carlo method (top row) or linear program (center row) or randomly selected
(bottom row). Micro-continuous models are each averaged over 30 runs and
have 15 robots and parts for 3 final assemblies. xd

F1 + xd
F2 was computed

as the equilibrium xF1 + xF2 of model (3) with x0 = [3 6 3 3 0]T .

to quickly manufacture target quantities of different products.
Possible future work includes optimizing the assembly plan
and using inter-robot communication to introduce a positive
feedback mechanism that increases the yield rate.
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