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Chapter 1
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We present a decentralized, scalable, communication-less approach to
the dynamic allocation of a swarm of homogeneous robots to multiple
sites in specified fractions. This strategy has applications in surveillance,
search-and-rescue, environmental monitoring, and other task allocation
problems. Our work is inspired by an experimentally based model of
ant house-hunting, a decentralized process in which a colony attempts
to emigrate to the best nest site among several alternatives. In our ap-
proach, we design a continuous model of the swarm that satisfies the
global objectives and use this model to define stochastic control policies
for individual robots that produce the desired collective behavior. We
define control policies that are derived from a linear continuous model,
a model that includes navigation delays, and a model that incorporates
switching behaviors based on quorum sensing. The stability and conver-
gence properties of these models are analyzed. We present methods of
optimizing a linear model for fast redistribution subject to a constraint
on inter-site traffic at equilibrium, both with and without knowledge of
the initial distribution. We use simulations of multi-site swarm deploy-
ments to compare the control policies and observe the performance gains
obtained through model optimization, quorum-activated behaviors, and
accounting for time delays.

1.1. Introduction

Advances in embedded processor and sensor technology that have made
individual robots smaller, more capable, and less expensive have also en-
abled the development and deployment of teams of robotic agents. While
multi–robot systems may seem like a recent paradigm shift, distributed ro-
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botics research had its genesis in the early 1980’s, when the initial focus was
primarily on the control and coordination of multiple robotic arms.1 The
unrelenting progression of Moore’s law in the 1990’s with improvements in
sensor and actuation technology, coupled with ubiquitous wireless commu-
nication, made it possible to create and deploy teams of robots numbered
in the tens and potentially hundreds and thousands. However, as team
size increases, it becomes difficult, if not impossible, to efficiently man-
age or control the team through centralized algorithms or tele–operation.
Accordingly, it makes sense to develop strategies in which robots can be
programmed with simple but identical behaviors that can be realized with
limited on–board computational, communication, and sensing resources.

In nature, the emergence of complex group behaviors from simple agent
behaviors is often seen in the dynamics of bee2 and ant3 colonies, bird
flocks,4 and fish schools.5 These systems generally consist of large numbers
of organisms that individually lack either the communication or computa-
tional capabilities required for centralized control. As such, when consid-
ering the deployment of large robot teams, it makes sense to consider such
“swarming paradigms” where agents have the capability to operate asyn-
chronously and determine their trajectories based on local sensing and/or
communication. One of the earliest works to take inspiration from biologi-
cal swarms for motion generation was presented in 1987 by Reynolds,6 who
proposed a method for generating visually satisfying computer animations
of bird flocks, often referred to as boids. Almost a decade later, Vicsek et
al. showed through simulations that a team of autonomous agents moving
in the plane with the same speeds but different headings converges to the
same heading using nearest neighbor update rules.7 The theoretical expla-
nation for this observed phenomenon was provided by Jadbabaie et al.,8

and Tanner et al. extended these results to provide detailed analysis of the
stability and robustness of such flocking behaviors.9 These works show that
teams of autonomous agents can stably achieve consensus through local in-
teractions alone, i.e. without centralized coordination, and have attracted
much attention in the multi-robot community.

We are interested in the deployment of a swarm of homogeneous robots
to various distinct locations for parallel task execution at each locale. The
ability to autonomously distribute a swarm of robots to physical sites is rel-
evant to many applications such as the surveillance of multiple buildings,
large-scale environmental monitoring, and the provision of aerial coverage
for ground units. In these applications, robots must have the ability to dis-
tribute themselves among many locations/sites as well as to autonomously
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redistribute to ensure task completion at each site, which may be affected
by robot failures or changes in the environment.

This problem of (re)distribution is similar to the task/resource alloca-
tion problem, in which the objective is to determine the optimal assignment
of robots to tasks. Such combinatorial optimization problems are known
to scale poorly as the numbers of agents and tasks increase. Furthermore,
in the multi–robot domain, existing methods often reduce to market–based
approaches10–12 in which robots must execute complex bidding schemes to
determine the appropriate allocation based on the various perceived costs
and utilities. While market–based approaches have gained much success
in various multi–robot applications,13–16 the computation and communi-
cation requirements often scale poorly in terms of team size and number
of tasks.17,18 Therefore, as the number of agents increases it is often im-
practical, if not unrealistic, to expect small, resource-constrained agents to
always have the ability to explicitly communicate with other team mem-
bers, especially those physically located at other sites, e.g. in mining and
search-and-rescue applications. For this reason, we are interested in devel-
oping a decentralized strategy to the allocation problem that can lead to
optimal outcomes for the population in a manner that is efficient, robust,
and uses minimal communication.

In this paper, we present a bio–inspired approach to the deployment
of a robot swarm to multiple sites that is decentralized, robust to changes
in team size, and requires no explicit inter–agent wireless communication.
Our work draws inspiration from the process by which an ant colony selects
a new home from several sites using simple stochastic behaviors that arise
from local sensing and physical contact.3,19 While there are many exist-
ing bio–inspired swarm coordination strategies,8,9,20–23 group behaviors are
often obtained from the synthesis of a collection of individual agent behav-
iors. Rather than follow these bottom–up approaches to group behavior
synthesis, we propose a methodology that enables the design of group be-
haviors from global specifications of the swarm which can then be realized
on individual robots. In other words, we provide a top–down approach to
group behavior synthesis such that the resulting agent closed–loop control
laws will lead the population to behave in the prescribed manner.
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1.2. Background

1.2.1. Related Work

Social insect colonies have inspired much research on the development of
self-organized task allocation strategies for multi-robot systems. In these
decentralized strategies, robots switch between action states based on en-
vironmental stimuli and, in some cases, interactions with other robots. A
study on the effects of group size on task allocation in social animal groups
concluded, using deterministic and stochastic swarm models, that larger
groups tend to be more efficient because of higher rates of information
transfer.24 A similar analysis on robotic swarm systems used the imple-
mentation of ant-inspired algorithms to demonstrate the effect of group
size and recruitment on collective foraging efficiency.25 Another study on
foraging showed how division of labor and greater efficiency can be achieved
in a robot swarm via simple adaptation of a transition probability based
on local information.26

A common technique in these types of allocation approaches is to employ
a threshold-based response, in which a robot becomes engaged in a task, de-
terministically or probabilistically, when a stimulus or demand exceeds its
response threshold. A comparison of market–based and threshold methods
for task allocation has shown that threshold methods perform more effi-
ciently when information is inaccurate.27 The efficiency and robustness of
three threshold–based allocation algorithms have been analyzed and com-
pared for an object aggregation scenario.28 One task allocation strategy,
based on a model of division of labor in a wasp colony, minimizes global
demand by modeling agents’ preferences for particular tasks as stochastic,
threshold-based transition rates that are refined through learning.29

Other recent work on distributed task allocation focuses on deriving a
continuous model of the system with a high degree of predictive power by
defining individual robot controllers and averaging their performance. In
these “bottom-up” methods, the main challenge is to derive an appropri-
ate mathematical form for the task transition rates in the model.30 The
rates are computed from physical robot parameters, sensor measurements,
and geometrical considerations, under the assumption that robots and their
stimuli are uniformly spatially distributed. The resulting continuous model
is validated by comparing steady-state variables and other quantities of in-
terest to the results of embodied simulations and experiments. The appli-
cations that have been modeled include collaborative stick-pulling,20 object



June 1, 2008 5:26 World Scientific Review Volume - 9in x 6in biocc˙swarm

Ant-Inspired Allocation: Top-Down Controller Design for Distributing A Robot Swarm among Multiple Tasks5

clustering,21 and adaptive multi-foraging.22 In the last application, which
uses a swarming paradigm similar to the one we consider, the task is mod-
eled as a stochastic process and it involves no explicit communication or
global knowledge. However, the only way to control robot task reallocation
is to modify the task distribution in the environment.

In the task allocation methods discussed, it is necessary to perform
simulations of the system under many different conditions to investigate the
effect of changing parameters. In contrast, our top-down synthesis approach
allows us to a priori design the set of transition rates that will guarantee a
desired system outcome by carrying out the design at the population level,
which can then be used to synthesize individual robot controllers. This work
draws inspiration from the process by which a Temnothorax albipennis ant
colony selects a new home from several sites using simple behaviors that
arise from local sensing and physical contact with neighbors. We describe
this process in the following section.

1.2.2. Ant House-Hunting

Temnothorax albipennis ants engage in a process of collective decision-
making when they are faced with the task of choosing between two new
nest sites upon the destruction of their old nest.19 This selection process
involves two phases. Initially, undecided ants choose one of the sites quasi-
independently, often after visiting both. A recruiter ant, i.e. one who has
chosen one of the two candidate sites, returns to the old nest site and re-
cruits another ant to its chosen site through a tandem run. The “naive”
ant learns the path to the new site by following the recruiter ant. Once the
path is learned, the naive ant is highly likely to become a recruiter for the
particular candidate site; in essence, showing a preference for this site. In
such a fashion, ants with preferences for different sites recruit naive ants
from the old nest to their preferred site. Once a critical population level
or quorum at a candidate site has been attained, the convergence rate to a
single choice is then boosted by recruiters who, instead of leading naive ants
in tandem runs, simply transport them from the old nest to the new one.
While it has been shown that this quorum-activated recruitment signifi-
cantly speeds up convergence of the colony to the higher-quality site,3,31,32

the exact motivations for the quorum mechanism by the ants are not well
understood. However, the process itself is completely decentralized and
results in the formation of a consensus by the colony on which of the two
candidate sites to select as its new home.
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This “house-hunting” process has been modeled from experimental ob-
servations for the case of two available nest sites of differing quality.3,19

During the selection process, ants transition spontaneously but at well-
defined and experimentally measurable rates between behaviors. The pat-
tern of transition rates, which determines the average propensity of individ-
ual ants to switch behaviors, ensures that the higher quality nest is chosen
and that no ants are stranded in the worse nest. This outcome has been
observed to be robust to both environmental noise and to changes in the
colony population.

In our initial studies on applying the ant-inspired swarm paradigm to
multi-robot task allocation, we synthesized robot controllers to produce
antlike house-hunting activity that resulted in convergence to the better of
two sites.31 We then explored the idea of controlling the degree of distribu-
tion; we altered the house-hunting model with realistic ant behaviors such
that the synthesized controllers cause the swarm to split between the two
sites in a predetermined ratio.32 In this chapter, we extend this concept
to the problem of distributing robots among many sites in predefined frac-
tions. We abandon the ant roles in favor of a simpler set of tasks defined
as site occupation. Furthermore, we address the problem of performance
specification and compare the performance of the various proposed models.

In the remainder of this chapter, we provide a detailed description and
analysis of the various models that can be used to represent the swarm
at the population level. We formulate the problem in Section 1.3 and
discuss the stability of our derived controllers in Section 1.4. Sections 1.5
and 1.6 summarize our design methodology and the derivation of agent–
level controllers from our proposed population models. We present our
simulation results in Section 1.7, which is followed by a brief discussion in
Section 1.8. We conclude with some final thoughts in Section 1.9.

1.3. Problem Statement

We are interested in the distribution of a large population of N homoge-
neous agents among M sites. We begin with a brief summary of relevant
definitions and a detailed discussion of the various models/abstractions used
to represent the swarm of agents.
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1.3.1. Definitions

We denote the number of agents at site i ∈ {1, . . . ,M} at time t by ni(t)
and the desired number of agents at site i by n̄i. We specify that n̄i > 0 at
each site. The population fraction at each site at time t is defined as xi(t) =
ni(t)/N , and the system state vector is given by x(t) = [x1(t), . . . , xM (t)]T .
We denote the desired final distribution of the swarm as

x̄i = n̄i/N ∀ i = 1, . . . ,M . (1.1)

A specification in terms of fractions rather than absolute agent numbers
is practical for scaling as well as for potential applications where losses of
agents to attrition and breakdown are common. The task is to redeploy the
swarm of robots from an initial distribution x0 to the desired configuration
x̄ while minimizing inter-agent communication.

To model the interconnection topology of the M sites, we use a di-
rected graph, G = (V, E), such that the set of vertices, V, represents sites
{1, . . . ,M} and the set of edges, E , represents physical routes between sites.
Two sites i, j ∈ {1, . . . ,M} are adjacent, i ∼ j, if a route exists for agents to
travel directly from i to j. We represent this relation by (i, j) such that the
edge set is defined as E = {(i, j) ∈ V×V|i ∼ j}. We assume that the graph
G is strongly connected, i.e. a path exists for any i, j ∈ V. Here, a path from
site i to site j is defined as a sequence of vertices {v0, v1, . . . , vp} ∈V such
that v0 = i, vp = j and (vk−1, vk) ∈ E where k = 1, . . . , p. An example of
such a graph is shown in Figure 1.3.

We consider x(t) to represent the distribution of the state of a Markov
process on G, for which V is the state space and E is the set of possible
transitions. We assign to every edge in E a constant transition rate, kij > 0,
where kij defines the transition probability per unit time for one agent at
site i to go to site j. Here kij is essentially a stochastic transition rule and
in general kij %= kji. In addition, we assume there is a kmax

ij associated with
every edge (i, j) ∈ E which represents the maximum capacity for the given
edge (i.e., road). Lastly, we define the flux from site i to site j, denoted by
φij , as the fraction of agents per unit time moving from i to j and denote
the time required to travel from site i to site j as τij .

For a graph that is strongly connected with bidirectional edges ((i, j) ∈
E if and only if (j, i) ∈ E) but not necessarily fully connected, we consider
the case of having a reversible Markov process on the graph. A reversible
Markov process with respect to x̄ satisfies the detailed balance equations:

kij x̄i = kjix̄j , (i, j) ∈ E . (1.2)
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In this case, we can define a strongly connected, undirected graph Gu =
(V, Eu) that corresponds to G. Eu is the set of unordered pairs (i, j) such
that the ordered pair (i, j) (and thus also (j, i)) is in the edge set E of graph
G. Each edge (i, j) ∈ Eu is associated with a weight wij , defined as

wij = kij x̄i = kjix̄j , (i, j) ∈ Eu . (1.3)

We assume that every agent has complete knowledge of G as well as all
the transition rates kij and their corresponding kmax

ij . This is equivalent to
providing a map of the environment to every agent. Finally, we assume that
agents have the ability to localize themselves within the given environment.

1.3.2. Linear Model

Our baseline strategy33 endows each agent with a small set of instructions
based on the transition rates kij and achieves (re)deployment of the swarm
among the sites using no explicit wireless communication. Rather than
model the system as a collection of individual agents, this strategy models
the swarm as a continuum. In the limit of large N , the time evolution of
the population fraction at site i is given by a linear equation, the difference
between the total influx and total outflux at the site:

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t)−
∑

∀j|(i,j)∈E

kijxi(t) . (1.4)

The system of equations for the M sites is given by the linear model

ẋ = Kx (1.5)

where K ∈ RM×M . The entries of K are defined as Kij = kji, j %= i,
if (j, i) ∈ E and 0 otherwise, and Kii = −

∑
(i,j)∈E kij . We note that

the columns of K sum to 0. Additionally, since the number of agents is
conserved, the system is subject to the conservation constraint:

M∑

i=1

xi(t) = 1 . (1.6)

In general, for some desired final distribution x̄, the entries of K are
chosen such that in the limit t → ∞, x(t) → x̄. This, in turn, results in
agent level closed–loop controllers given by K that encode the set of agent–
level instructions necessary for (re)deployment of the swarm to the various
sites.
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1.3.3. Time–Delayed Model

The linear model assumes that agents instantaneously switch from one site
to another. In practice, it takes a finite time τij to travel between sites i
and j (or to switch between two tasks). We note that the loss of agents
at a site due to transfers to other sites is immediate, while the gain due
to incoming agents from other sites is delayed. The linear model can be
extended to take into consideration the time needed to travel between sites
by converting (1.4) into a delay differential equation (DDE),

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t− τji)−
∑

∀j|(i,j)∈E

kijxi(t) (1.7)

for i = 1, ...,M .
Unlike (1.4), the time delays in (1.7) will always result in a finite number

of agents en route between sites at equilibrium. Furthermore, the fraction
of agents en route versus the fraction at sites increases as the time delays
increase. Let nij(t) be the number of robots traveling from site i to site j
at time t and yij(t) = nij(t)/N . Then the conservation equation for this
system is:

M∑

i=1

xi(t) +
M∑

i=1

∑

∀j|(i,j)∈E

yij(t) = 1 . (1.8)

1.3.4. Quorum Model

In the linear and time-delayed models, agents will move between sites even
at equilibrium, when the net flux at each site is zero. This is because
these models force a trade-off between maximizing the link capacities for
fast equilibration and achieving long-term efficiency at equilibrium. In this
section, we propose an extension to model (1.5) to enable fast convergence
to the desired state using switching behaviors based on quorum sensing.
We define the quorum as a threshold occupancy at a site; when a site is
above quorum, the agents there will travel to adjacent sites at an increased
rate. In addition to assuming that agents have a map of the environment
and know G, K, and each kmax

ij , we assume that they can detect a quorum
at a site based on their encounter rate with other agents at the site.34

Each site i is then characterized by a quorum qi, a threshold number
of agents which we specify as a fraction of the design occupancy x̄i. If site
i is above quorum, the transition rate from i to an adjacent site j can be
automatically set to either a multiple of the existing transition rate, αkij ,
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with α > 0 chosen to satisfy maxαkij < min kmax
ij , or simply the maximum

transition rate, kmax
ij . We refer to such an edge as activated and activation

is maintained until xi drops below qi. We assume that the site graph G
has bidirectional edges and that there is a reversible Markov process on the
graph, so that equations (1.2) hold.

The differential equation model with quorum is

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t)−
∑

∀i|(i,j)∈E

φij(t), (1.9)

where the fluxes φij are defined as

φij(t) = kijxi(t) + σi(xi, qi)(α− 1)kijxi(t) (1.10)

or

φij(t) = kijxi(t) + σi(xi, qi)
(
kmax

ij − kij

)
xi(t) (1.11)

depending the choice of edge activation. The function σi ∈ [0, 1] is an
analytic switch given by

σi(xi, qi) =
(
1 + eγ(qi−xi/x̄i)

)−1
, (1.12)

where γ ) 1 is a constant. We note that as (qi − xi/x̄i) → −∞, σi → 1
with σi → 0 otherwise. The constant γ is chosen such that σi ≈ 1 when
xi/x̄i = qi + ε, where ε > 0 is small. This is similar to threshold methods
described in29 and.28

To incorporate time delays due to non–zero quorum estimation time
and non–zero travel time between sites, we can formulate (1.9) as a delay
differential equation:

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t− τji − τEj )−
∑

∀j|(i,j)∈E

φij(t− τEi), (1.13)

where τEi denotes the time required to estimate the quorum at site i. The
fluxes φij are given by equation (1.10) or (1.11) depending on the choice of
edge activation.

1.4. Analysis

In this section we consider the uniqueness and stability properties of each
model’s equilibrium point, which is the desired final distribution.
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1.4.1. Linear Model

We state our first theorem for the linear model and provide a brief sketch
of the proof.

Theorem 1.1.33 For a strongly connected graph G, the system (1.5) subject
to (1.6) has a unique, stable equilibrium point.

Proof. The proof of this theorem can be easily constructed in two parts.
The first part builds on the fact that the rank of K is (M − 1) since the
columns of the matrix K sum to 0. Furthermore, the vector 1 exists in
the nullspace of KT . From here we can conclude that the system Kx = 0
subject to (1.6) has a unique equilibrium point. Next, to show that the
equilibrium point is in fact a stable one, consider the matrix given by S =
(1/s)(sI+KT ), where s > 0 and I is the M ×M identity matrix. We note
that for large enough s, S is a Markov matrix with nonnegative entries
which then allows us to prove that KT is negative semi–definite. We refer
the interested reader to33 for more detailed exposition. !

1.4.2. Time-Delayed Model

We can arrive at a similar conclusion for the time–delayed model (1.7) if we
view this model as an abstraction of a more realistic one in which the time
delays, τij , are random variables from some distribution. If we approximate
the probability density function of these delays as a gamma distribution,
then the DDE model given by (1.7) can be transformed into an ordinary
differential equation (ODE) model of the form (1.4).

To achieve this, we replace each edge (i, j) with a directed path com-
posed of a sequence of dummy sites, u = 1, ..., Dij . Assume that the dummy
sites are equally spaced; then τij/Dij is the deterministic time to travel from
dummy site u ∈ {1, ..., Dij} to its adjacent site. The rate at which an agent
transitions from one dummy site to the next is defined as the inverse of this
time which we denote by λij = Dij/τij . The number of transitions between
two adjacent dummy sites in a time interval of length t has a Poisson distri-
bution with parameter λijt. If we assume that the numbers of transitions
in non-overlapping intervals are independent, then the probability density
function of the travel time Tu between dummy sites u and u+1 is given by

f(t) = λije
−λijt . (1.14)

Let Tij =
∑Dij

u=1 Tu be the total time to travel from site i to site j. Since
T1, ..., TDij are independent random variables drawn from the common den-
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sity function (1.14), their sum Tij follows the gamma density function35

g(t) =
λ

Dij

ij tDij−1

(Dij − 1)!
e−λijt (1.15)

with expected value E(Tij) = τij and variance V ar(Tij) = τ2
ij/Dij . Thus,

in an equivalent ODE model, the average travel time from site i to site j
is always the delay τij from the DDE model, and the number of dummy
sites Dij can be chosen to reflect the travel time variance. Lastly, note that
V ar(Tij)→ 0 as Dij →∞.

Therefore, the equivalent ODE model for the system (1.7) with gamma-
distributed time delays can be obtained by replacing each ẋi(t) with the
following set of equations:

ẋi(t) =
∑

j|(j,i)∈E

λjiy
(Dji)
ji (t) −

∑

j|(i,j)∈E

kijxi(t) ,

ẏ(1)
ij (t) = kijxi(t) − λijy

(1)
ij (t) ,

ẏ(m)
ij (t) = λij

(
y(m−1)

ij (t) − y(m)
ij (t)

)
,

m = 2, ..., Dij , (1.16)

where y(l)
ij (t) denotes the fraction of the population that is at dummy site

l ∈ {1, ..., Dij}, λij denotes the transition rates between the dummy sites,
and (i, j) ∈ E . Figure 1.1 illustrates how an edge from model (1.4) is
expanded with dummy states y(l)

ij in (1.16).

Fig. 1.1. A labeled edge (i, j) = (1, 2) that consists of (a) the physical sites, correspond-
ing to model (1.4), and (b) both physical and dummy sites (for D12 = 2), corresponding
to (1.16).

From here, it is easy to see that the equivalent ODE model (1.16) is in
fact an expanded version of the linear model (1.4) whose interconnection
topology can also be modeled as a directed graph, G′ = (V ′, E ′), where V ′ =
{1, ...,M ′} and E ′ = {(i, j) ∈ V ′ × V ′ | i ∼ j } with M ′ = M +

∑
i∼j Dij .

Since G is strongly connected, so is G′. Furthermore, the system (1.16)
is subject to a similar conservation constraint as (1.6), where the total
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number of agents is conserved across all real and dummy sites. We refer to
this system as the chain model, since it incorporates a chain of dummy sites
between each pair of physical sites. We will refer to the corresponding linear
model (1.5) (the system without dummy sites) as the switching model, since
it describes a system in which agents switch instantaneously between sites.
This approach is similar to the “linear chain trick” used by MacDonald36 to
transform a system of integro-differential equations with gamma-distributed
delays into an equivalent system of ODE’s.

Theorem 1.2.37 If the graph G is strongly connected, then the chain model
has a unique, stable equilibrium.

Proof. Since the system can be represented in the same form as (1.5)
subject to (1.6), Theorem 1.1 can be applied to show that there is a unique,
stable equilibrium. !

1.4.3. Quorum Model

In this section we state our final theorem, which concerns stability of the
quorum model given by (1.9). We begin with the edge activation scheme
given by (1.10) and assume that qi = q for all i. Consider the following
candidate Lyapunov function given by

V =
M∑

i=1

x2
i

2x̄i
. (1.17)

Theorem 1.3.38 The system defined by equation (1.9) for i = 1, . . . ,M
subject to condition (1.2) and the conservation constraint (1.6) converges
asymptotically to x̄ = [x̄1, . . . , x̄M ]T , defined by the specification (1.1).

Proof. We first show that the system is stable. We note that V is a
radially unbounded function of ‖x‖. The net flux from site i to site j is
defined as Φij = −φij + kjixj . Note that Φij = −Φji. By design, Φij =
−φmax+kjixj < 0 if xi/x̄i > q and xj/x̄j < q and Φij = −kijxi+φmax > 0
if xi/x̄i < q and xj/x̄j > q. If both sites are above quorum, then Φij

simplifies to

Φij = α(−kijxi + kjixj) .

Using (1.2), the above equation can be rewritten as

Φij = α

(
−kijxi +

x̄i

x̄j
kijxj

)
= αkij x̄i

(
−xi

x̄i
+

xj

x̄j

)
.
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The above relationship holds when both sites are below quorum except
when α = 1.

Consider the time derivative of the Lyapunov function (1.17):

dV

dt
=

M∑

i=1

xi

x̄i

dxi

dt
=

∑

∀i|(i,j)∈E

1
2

(
xi

x̄i
− xj

x̄j

)
Φij . (1.18)

By design, if Φij < 0, then xi/x̄i > xj/x̄j and similarly, if Φij > 0, then
xi/x̄i < xj/x̄j . In the event that sites i and j are both above quorum,
Φij will be opposite in sign to (xi/x̄i − xj/x̄j). Thus, by (1.18), the time
derivative of the Lyapunov function is always negative and so the system is
stable. To show that the equilibrium point is given by (1.1), consider the
set of equilibrium states xe satisfying (1.6), such that dV

dt = 0. The time
derivative of the Lyapunov function evaluates to zero when all Φij = 0 or
when xi = x̄i for all i. By design, Φij %= 0 for all (i, j) ∈ E whenever
xi/x̄i %= xj/x̄j , so

(
xi
x̄i
− xj

x̄j

)
Φij < 0 for all i, j. Thus, the only stable

equilibrium is xe = x̄, so the system converges asymptotically to (1.1). !

Similarly, we can show that the quorum model (1.9) with edge activation
scheme (1.11) is also stable. However, rather than view the system as a
single system described by (1.9), we treat it as a hybrid system with one
mode described by (1.9) and the other described by (1.4). The system is
in the quorum mode when xi > qi for some i, i.e. some sites are above
quorum, and in the linear mode when xi < qi ∀i, where all sites are below
quorum. For simplicity we assume that qi = q for all i and kmax

ij = kmax

for all (i, j) ∈ E . Next, consider the following function:

Wq =
M∑

i=1

max{xi − qx̄i, 0} (1.19)

where Wq denotes the fraction of the population that is operating in the
quorum mode. We note that agents who transition between above-quorum
sites have no net effect on Wq, while the flux between sites above quorum
and sites below quorum does produce an effect. Using non–smooth analysis,
one can show that the time rate of change of Wq is always negative by de-
sign. This means that the number of agents operating in the quorum mode
is always decreasing. Additionally, let Wl denote the scaled occupancy of
the most populated site in the linear mode,

Wl = max
i

{xi/q} . (1.20)
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Similarly, one can show that the time rate of change of Wl is always de-
creasing since maxi{xi/qi} ≥ (xj/qj) for all j. This means that even in the
linear mode, the occupancy at the most populated site always decreases.
Therefore, as the system switches between the quorum and linear modes,
the system is always exiting each mode at a lower energy state than when
the system first entered it. Furthermore, once the system enters the linear
mode, it will not return to the quorum mode and thus the quorum model
(1.9) with edge activation scheme (1.11) is stable.

1.5. Design of transition rate matrix K

As mentioned previously, while these models accomplish the multi-site de-
ployment task, the solutions can be relatively inefficient since the rate of
convergence of the system to the desired configuration depends on the mag-
nitudes of the transition rates kij . While large transition rates ensure fast
convergence, they result in many idle trips once the design configuration is
achieved. In actual robotic systems, the extraneous traffic resulting from
the movement between sites at equilibrium come at a significant cost. In
light of this trade-off, we define an optimal deployment strategy as a choice
of K that maximizes convergence toward the desired distribution while
bounding the number of idle trips at equilibrium. In other words, an opti-
mal transition rate matrix is one that can balance short term gains, i.e. fast
convergence, against long term losses, i.e. inter-site traffic at equilibrium.

1.5.1. Linear Model

In general, determining an optimal transition rate matrix that satisfies both
the short and long term restrictions is not trivial. In addition, given the
same set of short and long term requirements, one can either determine a
transition rate matrix that is optimal for the entire domain of initial dis-
tributions or one that is optimal for the given initial distribution, x0. In
this section, we describe our methodology for obtaining a general optimal
transition rate matrix K∗ that is suitable for a large range of initial distri-
butions and an optimal transition rate matrix K∗(x0) that is specifically
tailored for a given initial configuration.

While obtaining K∗ may seem computationally expensive, this matrix
can in fact be calculated with limited assumptions using convex optimiza-
tion. Since system (1.5) is linear, the rate of convergence of x to x̄ is
governed by the real parts of the eigenvalues of K, of which one is zero and
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the rest are negative by Theorem 1.1. The smallest nonzero eigenvalue of
K, denoted by λ2(K), governs the asymptotic rate of convergence of (1.5)
to x̄. Thus, when designing K, one way to produce fast convergence to x̄
is to maximize Re(λ2(−K)) (note that this quantity is positive) subject to
the following constraint on the total flux (traffic) at equilibrium,

∑

(i,j)∈E

kij x̄i ≤ ctot , (1.21)

where ctot is a positive constant.
To achieve this, we assume that G has bidirectional edges and that

there is a reversible Markov process on the graph. The site topology can be
modeled by a corresponding undirected graph Gu = (V, Eu), as described in
Section 1.3.1. The problem of maximizing Re(λ2(−K)) subject to (1.21)
can then be posed as

min
w

∑

(i,j)∈Eu

2wij

subject to Π−1/2LΠ−1/2 . I− vvT

w ≥ 0 (1.22)

where wij is the set of undirected edge weights, v = [(x̄1)1/2 ... (x̄M )1/2]T ,
and Π = diag(x̄). L is the M × M weighted Laplacian of Gu; its (i, j)
entries are defined as Lij = −wij if (i, j) ∈ Eu, Lii =

∑
(i,j)∈Eu

wij , and
Lij = 0 otherwise. Here, the optimization variable is w and the transition
rates kij are derived from w according to (1.3). This program is similar to
program (11) in39 for finding the fastest mixing reversible Markov process
on a graph. The optimization problem can be further extended to more
general strongly connected graphs.40

To find the optimal K for a given initial configuration x0, K∗(x0),
Metropolis optimization41 is used with the entries of K as the optimization
variables. The objective is to minimize the convergence time subject to up-
per bounds on the number of idle trips at equilibrium according to (1.21)
and possibly on the transition rates, kij ≤ kmax

ij . We use the linear model
(1.5) to calculate the convergence time to a set fraction of misplaced agents
∆(x, x̄), the total disparity between the actual and desired population frac-
tions at all sites, in closed form. This is achieved by decomposing K into its
normalized eigenvectors and eigenvalues and mapping (1.5) into the space
spanned by its normalized eigenvectors. Then, given an initial state x0, we
can apply the appropriate transformation to compute the new state x(t)
using the matrix exponential of the diagonal matrix of eigenvalues of K
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multiplied by time. We use x(t) to calculate ∆(x, x̄). Since (1.5) is stable
by Theorem 1.1, ∆(x, x̄) always decreases monotonically with time, so a
Newton scheme can be used to calculate the exact time when ∆(x, x̄) is
reduced to 10% of its initial value. Figure 1.2 plots the convergence time
for a sample stochastic optimization of the transition rates.

Fig. 1.2. Convergence time for stochastic optimization of the transition rates. The
random walk in the space of all K configurations is biased with the convergence time so
that lower times are eventually found. The horizontal axis is the number of the respective
configuration.

1.5.2. Time-Delayed Model

The optimization methods described above can be extended to the time-
delayed model (1.7) when it is represented as an equivalent ODE model as
outlined in Section 1.4.2. We employ our multi–level swarm representation
to empirically determine the travel time distributions for all pairs of sites.
These distributions can be affected by road congestion, population levels
at the target sites, and time spent on collision avoidance. Once a gamma
distribution of the form (1.15) is fitted to the distribution for each edge,
the resulting parameters Dij and λij give the number of dummy sites to
be added and the transition rates between these dummy sites, respectively.
This allows us to construct the chain model, which in turn allows for the
optimization of the transition rates following the procedures outlined in the
previous section.
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1.6. Simulation Methodology

As in recent work on modeling and analyzing swarm robotic systems20–22,30

we employ a multi-level representation of swarm activity. At the physical
level, the swarm consists of a collection of individual robots whose dynam-
ics are governed by their control laws. In our case, the control policies,
i.e. K∗ and K∗(x0), are derived from the continuous linear model (1.5),
which assumes an infinitely large number of agents in a swarm. In prac-
tice, while the population size of a swarm is not infinitely large, it is of-
ten large enough to render most agent–based simulations costly. As such,
it makes sense to develop an equivalent intermediate level of description,
termed macro–discrete, as opposed to the micro–discrete (agent level) and
macro–continuous (ODE) models, that will allow for relatively inexpensive
simulations and retain some of the features of an agent–based simulation.

The correspondence between a given ODE model and a set of individual
stochastic transition rules is straightforward if we choose to implement the
latter as Poisson transitions controlled by fixed transition rates. Consider
two states, which can either be behaviors or correspond to physically sepa-
rate locations or sites. Assume that initially all agents are at site i and they
all follow a stochastic transition rule by which they move to site j at rate
k = 1.0× 10−4 per second. At every iteration (assume one second per iter-
ation for simplicity), each agent runs a random process with two possible
outcomes, 0 or 1, such that the probability of 1 is given by k∆t = 1.0×10−4.
If the outcome is 1, the agent moves to site j; otherwise it stays at i. It is
clear that, given a large population size, the number of agents remaining at
site i after time t is well approximated by ni(t) = ni(0)e−kt. Alternatively,
instead of generating a random number each time, an agent could generate
a random number T distributed according to the Poisson distribution

f(t) =
1
k

e−kt (1.23)

and perform its transition at time t = T . The two methods described above
are mathematically equivalent in the limit of very short sampling times ∆t.
If the random number generators used by the agents are independent, then
the individual transition times will be distributed according to the Poisson
law (1.23) and the time dependence of the number of agents remaining at
site i will approximate the continuous formula.

The idea for the macro–discrete model is as follows. We begin with a
population of ni(0) agents at site i. The transition probability per unit time
for each agent is k, so that the individual probability of transition between
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0 and (an infinitesimally small) ∆t is ∆p = k∆t. The probability for any
one of the ni(0) agents to transition in the same time interval is ni(0)k∆t.
Thus, the distribution of the time of the first transition is similar to that
for a single agent, only with probability rate (or propensity) ni(0)k:

f(t, ni(0)) =
1

ni(0)k
e−ni(0)kt . (1.24)

We can then simulate the consecutive transitions in a single program, where
we only follow the number of agents at each site and generate transitions
according to (1.24). Of course, once the first transition takes place, the
number ni(0) is decreased by one agent and the next transition is generated
using propensity (ni(0)− 1)k.

This is an illustration of the more general Gillespie algorithm,42 in which
the system is described in terms of the number of agents at each site
and transition times are generated consecutively using properly updated
propensities. We stress that this method is mathematically equivalent to
an agent-based simulation in which individual agents follow the respective
Poisson transition rules. This method has the advantage of much faster
execution compared to an agent-based simulation. We refer the interested
reader to31 for further discussion of this framework.

1.7. Results

We implemented simulations of multi-site deployment scenarios to compare
the performance of different choices of K in terms of convergence to the de-
sired distribution and the number of idle trips at equilibrium. We begin
with the comparison of optimal and non–optimal K matrices and demon-
strate the benefit of using quorum-activated transition rates.38 Next, we
show how a chain model, which takes into account the time delays due to
navigation, performs better than the corresponding switching model.37

1.7.1. Linear Model vs. Quorum Model

We consider the deployment of 20, 000 planar homogeneous agents to 42
sites, each executing controllers derived from the model (1.5) with a non–
optimal choice Ku for K, an optimal matrix K∗ that is independent of
the initial configuration, and an optimal matrix K∗(x0) that is specifically
chosen for a particular initial configuration x0. We then compare the per-
formance of the same system with agents executing controllers derived from
the quorum model with the edge activation scheme given by (1.11).
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For our simulations, K∗ and K∗(x0) were obtained following the
methodology described in Section 1.5.1. Both K∗ and K∗(x0) were com-
puted assuming the same upper bounds on the number of idle trips at
equilibrium and the transition rates. The transitions between sites were
simulated according to the methodology in Section 1.6. The interconnection
topology of the sites is shown in Figure 1.3, in which each arrow represents
a “one–way road” connecting two sites.

Fig. 1.3. The network of the 42 sites used in our simulations.

Agents are initially scattered at sites configured to form the number 0,
and the task is to redistribute the swarm to another set of sites that form
the number 8. While our focus is on the global design and properties of the
swarm, our simulation methodology takes into account the exact number of
agents assigned to each site as well as the travel initiation and termination
times for each individual traveler. Snapshots of the simulation are shown
in Figure 1.4, in which the red circles represent the number of the agents
at each site. The larger the circle, the higher the agent population.

For the first set of simulations, the transition rate matrix K was set
to Ku, K∗, and K∗(x0). The agents switch between sites with controllers
derived from (1.5), i.e. no quorum activation is used. In all of these simu-
lations, the equilibrium initiation rate for a transition from site i to site j
was set to 1. This is equivalent to bounding the total number of idle trips
at equilibrium. Also, kmax = 12 in all simulations.

Figure 1.5 shows the fraction of misplaced agents over time for the
three different choices of K. It is not surprising that both K∗ and K∗(x0)
outperform Ku in terms of convergence speed for the same bound on idle
trips at equilibrium. Note that the stochastic runs fluctuate around the
corresponding ODE simulations, which verifies that the transition rates
designed using the continuous model produce similar system performance
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Fig. 1.4. Snapshots from a simulation of 20, 000 agents, sequenced from top left to
bottom right. The initial configuration forms the number 0, and the design specification
is the number 8. This simulation is based on the linear model (1.5) with a non–optimal
choice for K.

Choice of Time units to 2/3 Idle trip initiation Maximum
K of initial deviation rate at equilibrium kij

Ku 21.81 1 1.35
K∗ 4.51 1 11.88

K∗(x0) 1.84 1 6.94

when run on individual robots. The properties of each K are summarized
in the first table.

Figure 1.6 shows the fraction of misplaced agents over time for the linear
model (1.5) with Ku and two other choices of K. The first, Kmax(x0), is
the optimal transition rate matrix given an initial configuration x0 subject
solely to constraints kij ≤ kmax, with no constraints on idle trips at equi-
librium. This means that Kmax(x0) is the optimal transition rate matrix
with respect to convergence speed. The second choice of K is the quorum
model (1.9) with below-quorum transition rates chosen from Ku and the
edge activation scheme (1.11). In these simulations, we see that the quorum
model allows us to maximize transient transfer rates between sites without
sacrificing the limit on the number of idle trips at equilibrium. The second
table summarizes the different properties of the three systems shown in
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Fig. 1.5. Fraction of misplaced agents over time for system (1.5) with three choices of
K: Ku (red), K∗ (green), and K∗(x0) (blue). (a) Stochastic simulation. (b) Differential
equation simulation.

Choice of Time units to 2/3 Idle trip initiation Maximum
K of initial deviation rate at equilibrium kij

Ku 179.3 1 0.396
Kmax(x0) 14.18 12.64 12

Quorum with Ku 19 1 12

Figure 1.6.

1.7.2. Linear Model vs. Time-Delayed Model

To investigate the utility of the chain model in optimizing the transition
rates, we simulated a surveillance task with transition rates from a linear
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Fig. 1.6. Fraction of misplaced agents over time for system (1.5) with three choices of
K: the quorum model (1.9) with Ku and edge activation scheme (1.11) (red), Kmax(x0)
(green), and Ku (blue). (a) Stochastic simulation. (b) Differential equation simulation.

model (1.5) (a “switching model”; see Section 1.4.2) and a chain model
computed from travel time distributions. The workspace was chosen to
be a four-block region on the University of Pennsylvania campus, shown in
Figure 1.7. The task was for a collection of 200 robots to perform perimeter
surveillance of four campus buildings, highlighted in light dashed lines in
Figure 1.7. We used a graph G for these four sites with the structure in
Figure 1.8. The robots are initially distributed equally between sites 3 and
4, and they are required to redistribute in equal fractions among all sites.
The transitions between sites are simulated according to the methodology
in Section 1.6.

Agents exhibit two types of motion: perimeter tracking and site-to-site
navigation. An agent that is monitoring a building circulates around its
perimeter, slowing down if the agent in front of it enters its sensing radius.
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This results in an approximately uniform distribution of agents around the
perimeter. This motion can be easily achieved with feedback controllers
of the form given in;43 in this simulation the agents simply aligned their
velocities with the straight-line perimeters.

To implement inter-site navigation, we first decomposed the free space
into a tessellation of convex cells, shown in Figure 1.7. This results in a
discrete roadmap on which shortest-path computations between cells can
be easily obtained using any standard graph search algorithm. Each edge
(i, j) ∈ E was defined as a path from building i to building j that begins
at a distinct exit point on the perimeter of i and ends at an entry point
on j. The exit and entry point for (i, j) were associated with the adjacent
cells, and Dijkstra’s algorithm was used to determine the shortest path
between these cells, which consisted of a sequence of cells to be traversed
by each agent moving from i to j. Navigation between cells was achieved by
composing local potential functions such that the resulting control policy
ensured arrival at the desired goal position.44 These navigation controllers
were then composed with repulsive potential functions to achieve inter-
agent collision avoidance within each cell. Inter-site navigation was achieved
by providing each agent a priori with the sequence of cells corresponding
to each edge (i, j), and at each time step the agent computed the feedback
controller to move from one cell to the next based on its current position
and the set of agents within its sensing range.

We first used the Metropolis optimization of Section 1.5.1 to obtain
an optimal switching model Ksw

∗ (x0) (ignoring travel times). From the
simulation using this K, we collected 750 − 850 travel times τij per edge.
We then fit a gamma distribution to the resulting histograms to obtain Dij

and λij for each edge (Section 1.4.2); a sample fitting is shown in Figure
1.9. The average equilibrium traveler fraction from ∼ 30000 data points
was approximately 0.27. This fraction was used as a constraint in the
optimization of the chain model Kch

∗ (x0) according to Section 1.5.2. The
simulation was then run with the transition rates from Kch

∗ (x0).
The snapshots in Figure 1.10 illustrate the redistribution of the agents

in equal fractions among the four sites for the chain model. The dark
red agents have committed to traveling between two buildings; the light
red agents are not engaged in a transition. Figure 1.11 shows that the
traveler fraction for both models oscillates close to the mean switching
model fraction, 0.27. Both models therefore have approximately the same
equilibrium inter-site traffic. Figure 1.12 shows that the misplaced agent
fraction of the chain model converges to 10% of its original value faster
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than the switching model. This provides evidence that the chain model is
a better approximation of the simulated surveillance system.

Fig. 1.7. Workspace with cell decomposition of the free space used for navigation.

Fig. 1.8. Numbering and connectivity of surveyed buildings, which are highlighted in
Figure 1.7.

Fig. 1.9. Histogram of the travel times from site 1 to site 4 (758 data points) and the
approximate gamma distribution. Based on this data, D14 = 9 and λ14 = 0.0144.
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Fig. 1.10. Snapshots of the full chain model simulation at intervals of 2000 time steps.

1.8. Discussion

In biology, complex group behaviors often arise from the numerous inter-
actions of individual agents that switch between a small set of “standard”
behaviors. This is clearly seen in the house-hunting process of the Tem-
nothorax albipennis ants. Additionally, it has been shown how the differ-
ential equations describing the global evolution of the swarm stem from
simple, stochastic switching rules executed by the individuals.31,32 These
rules are equivalent to the transition rates kij encoded in K. In this work,
we built on the deployment scheme presented in33 and independently con-
sidered the effects of a quorum–based strategy and the effects of travel time
delays on the (re)distribution problem.

Our baseline model is a set of states that can be interpreted as physical
sites or internal states/behaviors. As we demonstrated, this model forces a
trade–off between fast convergence to the desired distribution and number
of idle trips at equilibrium. Fortunately, under certain circumstances, the
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Fig. 1.11. Fraction of travelers vs. time for the switching and chain models.
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Fig. 1.12. Fraction of misplaced agents vs. time for the switching and chain models.

optimization of the transition rates can be posed as a convex optimization
problem. Given an initial configuration of the swarm, Metropolis opti-
mization can be used to obtain the optimal transition rates for the desired
final configuration. Hence, the multi-site linear model can be analyzed with
some very powerful tools: a well developed theoretical framework,39 closed-
form solutions of the corresponding ODEs, and an efficient macro-discrete
simulation method that easily scales up to tens of thousands of agents.

In the quorum model, we endowed agents with the ability to choose
between two sets of transition rates depending on whether the current site
is above or below a certain threshold occupancy. As discussed earlier, the
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exact motivations for these quorum strategies in ants are not clearly un-
derstood; however, one explanation is that the quorum mechanism is used
to secure the choice of a candidate new nest site for ants by speeding up
convergence. This can be seen in our simulations, which indicate that the
quorum strategy, used with a non–optimal choice for K, consistently out-
performs the linear models regardless of whether K is chosen to be K∗(x0)
or K∗. While we have only presented results for one pair of initial and final
configurations, our exploration of a varied set of initial and final conditions
supports this finding. The quorum model is an example of a biologically
inspired heuristic that provides a large benefit under limited sensing capa-
bility. We used our simulation framework to quantify the gain in efficiency,
allowing for a future cost-benefit analysis when the cost of the necessary
sensing can be properly defined.

Lastly, in a step toward more real–world applications, the final contribu-
tion is a method that can account for realistic distributions of travel times
without leaving the linear ODE framework. We achieve this by augmenting
the network of sites with specifically constructed sets of virtual sites that
represent the progress of agents along the paths connecting the physical
sites. This approach relies on two important points: in practice, travel
times are highly variable due to factors such as collision avoidance and er-
rors in localization; and the travel time over a chain of Dij sites which are
connected through Poisson transition rules converges to a gamma distribu-
tion whose relative standard deviation is proportional to D−1/2

ij . Thus, the
mean and standard deviation of an experimentally derived distribution of
travel times can be matched by a properly chosen linear chain of sites. Our
results illustrate the possibility of building larger linear ODE models that
provide good approximations of variable agent travel times. The predictive
value of such models is of course dependent on how well the distribution
of the travel times is characterized. As our results show, the additional
insight allows for better design of stochastic transition rate systems.

1.9. Conclusions

We have presented a bio–inspired approach to the (re)distribution of a
swarm of robots among a set of available sites. Our methodology is built on
top of our baseline strategy, which models the swarm as a continuum via a
system of deterministic linear ordinary differential equations. We extended
our linear model to a hybrid system in which agents switch between max-
imum transfer rates and constant transition rates dictated by the model.
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We also considered the effects of travel time delays and proposed a method-
ology to synthesize optimal transition rates given gamma-distributed travel
times. Although we model our system as a continuum, our methodology
enables us to synthesize decentralized controllers that can be implemented
at the agent level with little to no explicit wireless communication.

In physical systems, inaccuracies in navigation are common due to noisy
sensors and actuators. However, these inaccuracies can be easily captured
via our delay differential equation model. As discussed in Section 1.4.2,
this model is in fact an abstraction of a more realistic model in which
the delays are represented as random variables that follow a distribution
which allows the time–delayed model to be converted into an equivalent
linear model with no delays. This equivalence can be exploited as long
as the inaccuracies introduced by the physical system can be mapped to
stochastic time delays. Thus, the effects of crowding, localization errors,
collision avoidance, and quorum estimation can be readily incorporated
into our framework if we are able to model the distribution of the resulting
delays. This is a topic of great interest for future work.

While stochastic controllers seem appealing because they involve signif-
icantly less communication, sensing, and planning compared to determin-
istic approaches, the purposeful introduction of stochasticity into an engi-
neered system raises a number of questions. One issue is the development
of simulation tools for the assessment of the performance of a mesoscopic
swarm. In this work, we developed a mathematical framework, using meth-
ods borrowed from chemistry, to bridge the gap between the agent-based
description (necessary for the implementation and testing of individual con-
trollers) and the top-level description which is traditionally continuous. Our
long term goal is to investigate the utility and limitations of this approach
when used either by itself or in conjunction with more traditional models
of swarm behavior synthesis.
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33. Á. Halász, M. A. Hsieh, S. Berman, and V. Kumar. Dynamic redistribution
of a swarm of robots among multiple sites. In Proc. of the Conf. on Intelligent
Robot Systems (IROS), pp. 2320–2325, (2007).

34. S. C. Pratt, Quorum sensing by encounter rates in the ant Temnothorax
albipennis, Behavioral Ecology. 16(2), (2005).

35. B. Harris, Theory of Probability. (Addison-Wesley, Reading, MA, 1966).
36. N. MacDonald, Time-lags in biological models. vol. 27, Lecture Notes in Bio-

mathematics, (Springer, Berlin, 1978).
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